A DEFECT RELATION FOR LINEAR SYSTEMS ON COMPACT COMPLEX MANIFOLDS¹

BY

ALDO BIANCOFIORE

Introduction

In 1979 Shiffman ([7]) conjectured that if $f: \mathbb{C}^m \to \mathbb{P}_n$ is a non-constant meromorphic map and if D_1, \ldots, D_q are distinct hypersurfaces of degree d in \mathbb{P}_n such that no point is contained in the support of n + 1 distinct D_j and $f(\mathbb{C}^m) \not\equiv \text{supp } D_j$ for all j, then

(1)
$$\sum_{j=1}^{q} \delta_{f}(D_{j}) \leq 2n,$$

where δ_f denotes the Nevanlinna defect. To support his conjecture Shiffman proved (1) for a class of meromorphic maps of finite order.

To extend the class that satisfies (1) we use the method of associate maps which was introduced in 1941 by Ahlfors [1], generalized and developed by Weyl [11], Stoll [8], Cowen-Griffiths [4] and Wong [12]. Namely, (1) holds either if $f(\mathbb{C}^m)$ is contained in a line of \mathbf{P}_n or is a projection of a "special exponential map", i.e., an exponential map satisfying (6.1) (see Section 6). More in general we introduce an auxiliary defect τ_f , which we express explicitly and for all meromorphic maps $f: \mathbb{C}^m \to \mathbb{P}_n$ we prove

(2)
$$\sum_{j=1}^{q} \delta_{f}(D_{j}) \leq n(1+\tau_{f}).$$

Therefore in order to prove (1) for all meromorphic maps it would be sufficient to prove $\tau_f \leq 1$.

To add generality we prove (2) for meromorphic maps $f: \mathbb{C}^m \to X$, where X is a compact complex *n*-dimensional manifold and for $D_1, \ldots, D_q \in |L|$, where L is a spanned line bundle.

Received March 22, 1982.

¹ This research was partially supported by a grant of the Consiglio Nazionale delle Ricerche (Italy).

^{© 1984} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

ALDO BIANCOFIORE

1. Nevanlinna theory

Define

$$\tau(z) = |z|^2 = \sum_{j=1}^m |z_j|^2$$
 for any $z = (z_1, ..., z_m) \in \mathbb{C}^m$.

If r > 0, we set

$$\mathbf{C}^{m}[r] = \{ z \in \mathbf{C}^{m} | |z| < r \}, \quad \mathbf{C}^{m} \langle r \rangle = \partial \mathbf{C}^{m}[r].$$

Define

$$v = dd^c \tau$$
 on \mathbf{C}^m

and

$$\sigma = d^c \log \tau \wedge (dd^c \log \tau)^{m-1} \quad \text{on } \mathbf{C}^m - \{0\}$$

where

$$d^{c} = \left(\frac{i}{4\pi}\right)(\bar{\partial} - \partial).$$

Let v be a divisor on \mathbb{C}^m . For all $0 < r_0 < r$ the valence function is defined by

$$N_{\nu}(r, r_0) = \int_{r_0}^r n_{\nu}(t) t^{-1} dt$$

where, with $S_t = \mathbf{C}^m[t] \cap \text{supp } v$,

$$n_{v}(t) = \begin{cases} t^{2-2m} \int_{S_{t}} v v^{m-1} & \text{if } m > 1 \\ \sum_{z \in S_{t}} v(z) & \text{if } m = 1 \end{cases}$$

is the counting function of v.

Let L be a non-negative line bundle on the compact complex manifold X, with a hermitian metric κ . Let $f: \mathbb{C}^m \to X$ be a meromorphic map. For $r > r_0 > 0$, define the *characteristic function*

$$T_f(r, r_0, L, \kappa) = \int_{r_0}^r \left(\int_{\mathbb{C}^m[t]} f^*(c(L, \kappa)) \wedge v^{m-1} \right) t^{1-2m} dt$$

where $c(L, \kappa)$ is the Chern form of L for κ .

Let $s \in \Gamma(X, L)$ be a global section on L and let $D = D[s] \in |L|$ be the divisor associated to s. Define the valence function of f for D

$$N_f(r, r_0, D) = N_{\nu f}(r, r_0)$$

for $r > r_0 > 0$ and where $v_f^D = f^*(D)$ is the pull-back divisor. If $f(\mathbb{C}^m) \not\equiv \sup D$ and r > 0, then

$$m_f(r, D) = \int_{\mathbb{C}^m \langle r \rangle} \log \frac{|s|_{\mathfrak{l}}}{|s \circ f|_{\kappa}} ds$$

is the compensation function of f for D, where I is a metric on $\Gamma(X, L)$ such that $|s|_{I} |s \circ f|_{\kappa}^{-1} \leq 1$. Such a metric exists since X is compact.

The First Main Theorem asserts that

(1.1)
$$T_f(r, r_0, L, \kappa) = N_f(r, r_0, D) + m_f(r, D) - m_f(r_0, D)$$

if $r > r_0 > 0$ and $f(\mathbb{C}^m) \not\subseteq \text{supp } D$.

The *defect* of f for $D \in |L|$ is defined by

$$\delta_f(D) = \liminf_{r \to \infty} \frac{m_f(r, D)}{T_f(r, r_0, L, \kappa)}$$

(1.1) implies $0 \le \delta_f(D) \le 1$.

Now assume $X = \mathbf{P}_n$. If $f: \mathbb{C}^m \to \mathbf{P}_n$ is a meromorphic map then we recall that $\omega: \mathbb{C}^m \to \mathbb{C}^{n+1}$ is a representation for f if $\mathbf{P} \circ \omega = f$ on $\mathbb{C}^m - \omega^{-1}(0) \neq \emptyset$ and the representation ω is said to be reduced if dim $\omega^{-1}(0) \leq m - 2$.

Let L = H be the hyperplane section bundle on \mathbf{P}_n with the metric κ induced by the standard metric on \mathbf{C}^{n+1} . Let

$$T_f(r, r_0) = T_f(r, r_0, H, \kappa).$$

If $D = D[\alpha] \in |H|$ is a hyperplane in \mathbf{P}_n and $\omega: \mathbb{C}^m \to \mathbb{C}^{n+1}$ is a reduced representation of f then Jensen's formula states that

(1.2)
$$N_{f}(r, r_{0}, D) = \int_{\mathbb{C}^{m}\langle r \rangle} \log |\alpha \circ \omega| \sigma = \int_{\mathbb{C}^{m}\langle r_{0} \rangle} \log |\alpha \circ \omega| \sigma.$$

(1.1) and (1.2) imply

(1.3)
$$T_f(r, r_0) = \int_{\mathbb{C}^m \langle r \rangle} \log |\alpha| \sigma - \int_{\mathbb{C}^m \langle r_0 \rangle} \log |\alpha| \sigma.$$

2. Associated maps

Let B be a holomorphic (m - 1, 0) form on \mathbb{C}^m . We shall define a differential operator D_B as follows. Let $\omega: \mathbb{C}^m \to \mathbb{C}^{n+1}$ be a holomorphic map. Then

$$u' = D_R u \colon \mathbf{C}^m \to \mathbf{C}^{n+1}$$

is a holomorphic map defined by

$$d\omega \wedge B = D_B \omega \, dz_1 \wedge \cdots \wedge dz_m$$

The differential operator D_B can be repeated so we can define

$$\alpha^{(p)} = D^p_B \, \alpha = D_B (D^{p-1}_B \, \alpha).$$

Let $f: \mathbb{C}^m \to \mathbb{P}_n$ be a meromorphic map and $\omega: \mathbb{C}^m \to \mathbb{C}^{n+1}$ a representation of f. Take p = 0, ..., n. Then

$$u_p = u_{p,B} = u \wedge u' \wedge \cdots \wedge u^{(p)}$$

is the pth associated representation. Obviously

$$\alpha_p\colon \mathbf{C}^m\to \widetilde{G}_{n,p}\subseteq \bigwedge_{p+1}\mathbf{C}^{n+1}$$

is a holomorphic map. (Here $\tilde{G}_{n,p}$ is the Grassmannian cone of (p + 1)-planes in \mathbb{C}^{n+1} .)

We say that f is general of order p for B if and only if $\omega_p \neq 0$. Also f is general for B if and only if f is general of order n for B, in which case f is general of order p for all p = 0, ..., n. Then

$$f_p = \mathbf{P} \circ \mathscr{U}_p \colon \mathbf{C}^m \to G_{n,p} = \mathbf{P}(\tilde{G}_{n,p})$$

is a well defined meromorphic map with w_p as a representation. The meromorphic map f_p is called the *p*th associate map of f for B.

Let Ω_p be the Fubini-Kaehler form on $\mathbf{P}(\bigwedge_{p+1} \mathbf{C}^{n+1})$ respectively on $G_{n,p}$ for $p = 0, \ldots, n$. Let $f: \mathbf{C}^m \to \mathbf{P}_n$ be a meromorphic map general for B. Define the *p*th volume form of f for B by

$$H_p = i_{m-1} m f_p^*(\Omega_p) \wedge B \wedge \bar{B} \quad \text{on } \mathbf{C}^m - I_{f_p}$$

where $i_{m-1} = (i/2\pi)^{m-2}(m-1)!(-1)^{(m-1)(m-2)/2}$ and I_{f_p} is the indeterminacy set of f_p . Let h_p be such that $H_p = h_p v^m$; then we have

(2.1)
$$h_0 = \frac{|\alpha_1|^2}{|\alpha|^4}$$
 and $h_p = \frac{|\alpha_{p-1}|^2 |\alpha_{p+1}|^2}{|\alpha_p|^4}$ for $0 .$

Define

(2.2)
$$S_p(r) = \frac{1}{2} \int_{\mathbb{C}^m \langle r \rangle} \log |h_p| \sigma.$$

Let $f: \mathbb{C}^m \to \mathbb{P}_n$ be a non-degenerate meromorphic map (i.e., $f(\mathbb{C}^m)$ is not contained in any hyperplane in \mathbb{P}_n). Then (see [9] Theorem 7.1) there exists a holomorphic (m - 1, 0) form on \mathbb{C}^m whose coefficients are polynomials of degree at most n - 1 and such that f is general for B and

(2.3)
$$i_{m-1}B \wedge \overline{B} \leq (1 + r^{2n-2})v^{m-1}$$
 on $\mathbb{C}^{m}[r]$.

3. General position

Let X be a projective variety of dimension n_0 in \mathbf{P}_n . For p = 1, ..., n, set

$$\tilde{X}_p = \{ (x, y) \in X \times G_{n,p} \mid x \in E(y) \}$$

where $E(y) \subseteq \mathbf{P}_n$ denotes the *p*-plane associated by $y \in G_{n,p}$. We know that the projection $\pi_p: \tilde{X}_p \to G_{n,p}$ is proper and holomorphic. Therefore $X_p = \pi_p(\tilde{X}_p)$ is a compact analytic subset of $G_{n,p}$. For any $D = D[\alpha] \in |H|$ hyperplane in \mathbf{P}_n we define

$$u_p(D): X_p \to \mathbf{R}[0, 1]$$

by

$$u_p(D)(x) = \frac{|x \perp \alpha|^2}{|x|^2 |\alpha|^2} \quad \text{for } p = 0, \dots, n$$

and for $x = \mathbf{P}(x) \in X_p$. Here $x \perp \alpha$ is such that

 $(x \perp \alpha, \beta) = (x, \alpha \land \beta)$ for every $\beta \in \bigwedge_p (\mathbb{C}^{n-1})^*$.

If $D_j = D[\alpha_j]$ are hyperplanes in \mathbf{P}_n , j = 1, ..., q define

$$c_p = c_p(D_1, \dots, D_q) \colon X_p \to \mathbb{Z} \text{ for } p = 0, \dots, n$$

by

$$c_p(x) = \#\{j \in \mathbb{N}[1, q] | u_p(D_j)(x) = 0\}.$$

DEFINITION 3.1. Let $k_0, k_1 \in \mathbb{N}$ such that $n_0 \leq k_1$. We say that D_1, \ldots, D_q are in general position of order (k_0, k_1) with respect to X if $c_0(x) \leq k_1$ for every $x \in X$ and if $\alpha_{j_0}, \ldots, \alpha_{j_{k_1}}$ span a linear subspace of dimension at least $k_0 + 1$ in $(\mathbb{C}^{n+1})^*$ for every choice of $1 \leq j_0 < \cdots < j_{k_1} \leq q$.

We observe that if D_1, \ldots, D_q are in general position of order (k_0, k_1) with respect to X then

$$(3.1) n_0 \le k_0 \le \operatorname{Min}(k, n)$$

and for any $t \le k_1$ and $1 \le j_0 < \cdots < j_t \le q$ then

(3.2)
$$\dim \bigcap_{h=0}^{t} D_{j_h} \le (n-k_0) + (k_1-t).$$

Now proceeding as in [3] for the proof of Lemma 3.2, for any $x \in X$ we have

(3.3)
$$c_p(x) \le \lambda(k_0, k_1, p) \text{ for } p = 0, ..., n$$

where $\lambda(k_0, k_1, p)$ is an abbreviation for Min $(k_1, n - k_0 + k_1 - t)$.

Let $f: \mathbb{C}^m \to \mathbb{P}_n$ be a meromorphic map not contained in any hyperplane in

 \mathbf{P}_n . Consider a holomorphic (m-1, 0) form *B*. Assume *f* is general for *B* and $f(\mathbb{C}^m) \subseteq X$, then $f_p(\mathbb{C}^m) \subseteq X_p$ for p = 0, ..., n. So the map $\phi_p(D) = u_p(D) \circ f_p$ is well defined for every hyperplane *D*. Set

$$m_p(r, D) = - \int_{\mathbb{C}^m \langle r \rangle} \log \phi_p(D) \sigma.$$

Then we have

(3.4)
$$m_0(r, D) = m_f(r, D),$$

(3.5) $m_n(r, D) = 0$ (since f_n is constant).

From (3.4) and (3.5) we get

(3.6)
$$\sum_{p=0}^{n-1} (m_p(r, D) - m_{p+1}(r, D)) = m_f(r, D).$$

Let D_1, \ldots, D_q be distinct hyperplanes in \mathbf{P}_n in general position of order (k_0, k_1) w.r.t. X. Set

$$Y_p = \bigcup_{j=1}^{q} (u_p(D_j)^{-1}(0)) \le X_p \text{ for } p = 0, \dots, n.$$

Then, similarly as in [3] for Proposition 4.1 we have

(3.7)
$$\sum_{j=1}^{q} \log\left(\frac{\phi_{p+1}(D_j)}{\phi_p(D_j)^{1-\beta}}\right) \le \lambda(k_0, k_1, p) \log\left(\sum_{j=1}^{q} \frac{\phi_{p+1}(D_j)}{\phi_p(D_j)^{1-\beta}}\right) + O(1)$$

on $\mathbb{C}^{m} - f_{p}^{-1}(Y_{p})$, where $0 < \beta < 1$. We note that, by (2.1) and (2.2),

$$-\sum_{p=0}^{n-1} \lambda(k_0, k_1, p) S_p(r)$$

= $k_1 \int_{\mathbb{C}^m \langle r \rangle} \log |\omega| \sigma + (k_1 - k_0) \int_{\mathbb{C}^m \langle r \rangle} \log \frac{|\omega_{n-1}|}{|\omega_n|} \sigma$
+ $\int_{\mathbb{C}^m \langle r \rangle} \log \frac{|\omega_{n-k_0}|}{|\omega_n|} \sigma.$
 $Q_k(r, f) = \int_{\mathbb{C}^m \langle r \rangle} \log \frac{|\omega_{n-k}|}{|\omega_n|} \sigma \text{ and } Q(r, f) = Q(r, f).$

Set

Therefore by (1.3) we have

(3.8)
$$-\sum_{p=0}^{n-1} \lambda(k_0, k_1, p) S_p(r)$$
$$= k_1 T_f(r, r_0) + (k_1 - k_0) Q(r, f) + Q_{k_0}(r, f) + O(1).$$

4. Defect relation

Before stating the theorem we fix some notations. Let g and h be real valued functions on $\mathbf{R}(r_0, \infty)$. We write $g(r) \leq h(r)$ if a subset E of $\mathbf{R}(r_0, \infty)$ with finite Lebesgue measure exists such that $g(r) \leq h(r)$ for all $r \in \mathbf{R}(r_0, \infty) - E$.

We set

$$\tau_k(f) = \limsup_{r \to \infty} \frac{Q_k(r, f)}{T_f(r, r_0)}$$

and $\tau_f = \tau_1(f)$.

THEOREM 4.1. (SECOND MAIN THEOREM AND DEFECT RELATION). Let $f: \mathbb{C}^m \to \mathbb{P}_n$ be a non-degenerate, transcendental, meromorphic map. Let D_1, \ldots, D_q be hyperplanes in \mathbb{P}_n in general position of order (k_0, k_1) with respect to a projective variety X of dimension n_0 in \mathbb{P}_n . Then

(4.1)
$$\sum_{j=1}^{\infty} m_f(r, D_j) \le k_1 T_f(r, r_0) + (k_1 - k_0) Q(r, f) + Q_{k_0}(r, f) + O(\log r T_f(r, r_0)),$$

and

(4.2)
$$\sum_{j=1}^{q} \delta_j(D_j) \le k_1 + (k_1 - k_0)\tau_f + \tau_{k_0}(f).$$

Proof. Since the proof is rather long and since it is similar to the proof of the Second Main Theorem in [4] for m = 1 and in [9] or [12] for the general case, we shall give here only a sketch of it.

By (3.6) we have

(4.3)
$$\sum_{j=1}^{q} m_{f}(r, D_{j}) = \sum_{j=1}^{q} \sum_{p=0}^{n} (m_{p}(r, D_{j}) - m_{p+1}(r, D_{j})).$$

Let $\gamma_p = \text{Max}_{1 \le j \le q} m_p(r_0, D_j)$ and

$$\beta(r) = \frac{1}{q(T_{f_p}(r, r_0) + \gamma_p)}.$$

Since $T_{f_p}(r, r_0) \to \infty$ for $r \to \infty$ then there exists $r' > r_0$ such that $0 < \beta(r) < 1$ for all r > r'. Using (3.7) and proceeding similarly as in [9] for Lemma 11.4 we get

(4.4)
$$\lambda(k_0, k_1, p)S_p(r) + \sum_{j=1}^q (m_p(r, D_j) - m_{p+1}(r, D_j)) + O(1)$$
$$\leq \frac{\lambda(k_0, k_1, p)}{2} \int_{\mathbb{C}^m \langle r \rangle} \log\left(\sum_{j=1}^q \frac{\phi_{p+1}(D_j)}{\phi_p(D_j)^{1-\beta(r)}} h_p\right) \sigma.$$

Using Ahlfors Estimates (see [9] Theorem 10.3) and proceeding as in [9] for lemma 11.5 we get

(4.5)
$$\int_{\mathbb{C}^{m}\langle r \rangle} \log \left(\sum_{j=1}^{q} \frac{\phi_{p+1}(D_j)}{\phi_p(D_j)} h_p \right) \sigma \leq O(\log r T_f(r, r_0)).$$

Then (4.4) and (4.5) yield

(4.6)
$$\lambda(k_0, k_1, p)S_p(r) + \sum_{j=1}^q (m_p(r, D_j) - m_{p+1}(r, D_j))$$

 $\leq O(\log r T_f(r, r_0)).$

Therefore by (3.8), (4.3) and (4.6) we get (4.1). Since f is transcendental, by the definition of τ_f , $\tau_k(f)$ and (4.1) we get

$$\sum_{j=1}^{q} \delta_f(D_j) = \sum_{j=1}^{q} \liminf_{r \to \infty} \frac{m_f(r, D_j)}{T_f(r, r_0)}$$

$$\leq \liminf_{r \to \infty} \left(\sum_{j=1}^{q} \frac{m_f(r, D_j)}{T_f(r, r_0)} \right)$$

$$\leq k_1 + (k_1 - k_0)\tau_f + \tau_{k_0}(f), \qquad \text{Q.E.D.}$$

We observe that

(4.7)

$$Q_n(r, f) = T_f(r, r_0) - N_\theta(r, r_0)$$

$$= O(1)$$

$$\leq T_f(r, r_0) + O(1)$$

where θ is the Wronskian divisor of f. More generally,

$$Q_k(r,f) = \sum_{s=n-k+1}^n \int_{\mathbb{C}^m \langle r \rangle} \log \frac{|\omega_{s-1}|}{|\omega_s|} \sigma$$

and since (see [9] Proposition 10.6)

$$S_p(r) = \int_{\mathbb{C}^m \langle r \rangle} \log \frac{|\omega_{p-1}|}{|\omega_p|} \sigma - \int_{\mathbb{C}^m \langle r \rangle} \frac{|\omega_p|}{|\omega_{p+1}|} \sigma$$

$$\leq O(\log r T_f(r, r_0))$$

we have

(4.8)
$$Q_k(r, f) \leq kQ(r, f) + O(\log r T_f(r, r_0)).$$

Therefore (4.7) and (4.8) imply the following result.

COROLLARY 4.2. With the same notations as in Theorem 4.1 we have

$$(4.9) \qquad \sum_{j=1}^{q} m_{f}(r, D_{j}) \leq \begin{cases} k_{1}(T_{f}(r, r_{0}) + Q(r, f)) \\ + O(\log rT_{f}(r, r_{0})) \\ 2k_{1}T_{f}(r, r_{0}) + O(\log rT_{f}(r, r_{0})) \\ (k_{1} + 1)T_{f}(r, r_{0}) + (k_{1} - n)Q(r, f) \\ + O(\log rT_{f}(r, r_{0})) \\ (n + 1)T_{f}(r, r_{0}) + O(\log rT_{f}(r, r_{0})) \\ if k_{0} = n \\ (n + 1)T_{f}(r, r_{0}) + O(\log rT_{f}(r, r_{0})) \\ if k_{1} = k_{0} = n \end{cases}$$

(4.10)
$$\sum_{j=1}^{q} \delta_{f}(D_{j}) \leq \begin{cases} k_{1}(1+\tau_{f}) & \text{if } n=1\\ k_{1}+1+(k_{1}-n)\tau_{f} & \text{if } k_{0}=n\\ n+1 & \text{if } k_{1}=k_{0}=n. \end{cases}$$

Remark 4.3. If $k_1 = k_0 = n$ and $X = \mathbf{P}_n$ then "general position of order (k_0, k_1) with respect to \mathbf{P}_n " is the same as "general position". Therefore (4.10) for $k_0 = k_1 = n$ is the classical result.

5. An application

First we fix some notations and recall some known results. Let Y be a compact, complex, *n*-dimensional manifold. Let L be a line bundle over Y. Set $N + 1 = \dim_{\mathbb{C}} \Gamma(Y, L)$. Let $\psi: Y \to \mathbb{P}_N$ be the *dual classification map*. Then L is spanned if and only if ψ is a holomorphic map. In addition, if L is spanned, we have that $\psi(Y)$ is a projective variety in \mathbb{P}_N . If H is the hyperplane section bundle over \mathbb{P}_N then $\psi^*(H) = L$ and $\psi^*: \Gamma(\mathbb{P}_N, H) \to \Gamma(Y, L)$ is an isomorphism.

DEFINITION 5.1. Let D_1, \ldots, D_q be divisors of L. We say that D_1, \ldots, D_q are in general position if no point of Y is contained in n + 1 distinct D_j .

We shall need later the following general assumptions.

(A1) Let Y be a compact, complex *n*-dimensional manifold and L a line bundle over Y with hermitian metric $\psi^*(\kappa)$ the pull-back of the metric in the hyperplane section bundle H over \mathbf{P}_N . Set $n_0 = \dim \psi(Y)$.

(A2) Let $f: \mathbb{C}^m \to Y$ be a meromorphic map. Set

 $h = \psi \circ f \colon \mathbf{C}^m \to \mathbf{P}_N.$

Assume h is not constant.

(A3) Let $\mathbf{P}_s \subseteq \mathbf{P}_N$ be a subspace of minimal dimension such that $h(\mathbf{C}^m) \subseteq \mathbf{P}_s$. Define $\tilde{h}: \mathbf{C}^m \to \mathbf{P}_s$ by $h(z) = \tilde{h}(z)$ for every $z \in \mathbf{C}^m$. If $\iota: \mathbf{P}_s \subseteq \mathbf{P}_N$ is the inclusion then $h = \iota \circ \tilde{h}$. We have \tilde{h} non-degenerate.

(A4) Let B be a holomorphic (m - 1, 0) form on \mathbb{C}^m . Assume \tilde{h} is general for B and $i_{m-1}B \wedge \bar{B} \leq (1 + r^{2s-2})v^{m-1}$ on $\mathbb{C}^m[r]$.

(A5) Let D_1, \ldots, D_q be distinct divisors of L in general position such that $f(\mathbb{C}^m) \not\subseteq \text{supp } D_j$ for $j = 1, \ldots, q$. Assume $q \ge n + 1$.

DEFINITION 5.2. Assume (A1)-(A4). Then we define

$$(5.1) Q(r, f) = Q(r, h)$$

(5.2)
$$\tau_f = \tau_{\tilde{h}}$$

THEOREM 5.3. Assume (A1)–(A5). Abbreviate $T_f(r, r_0, L, \psi^*(\kappa))$ by $T_f(r, r_0)$. Then

(5.3)
$$\sum_{j=1}^{q} m_f(r, D_j) \leq \begin{cases} n(T_f(r, r_0) + Q(r, f)) + O(\log r T_f(r, r_0)) \\ 2nT_f(r, r_0) + O(\log r T_f(r, r_0)) & \text{if } s = 1 \end{cases}$$

and

(5.4)
$$\sum_{j=1}^{q} \delta_{f}(D_{j}) \leq \begin{cases} n(1+\tau_{f}) \\ 2n \quad \text{if } s = 1. \end{cases}$$

Proof. Let $\tilde{D}_1, \ldots, \tilde{D}_q$ be hyperplanes in \mathbf{P}_N such that $\psi^*(\tilde{D}_j) = D_j$. Then

(5.5)
$$T_{f}(r, r_{0}) = T_{h}(r, r_{0}),$$
$$N_{f}(r, r_{0}, D_{j}) = N_{h}(r, r_{0}, \tilde{D}_{j}),$$
$$m_{f}(r, D_{j}) = m_{h}(r, \tilde{D}_{j}).$$

Moreover $\tilde{D}_1, \ldots, \tilde{D}_q$ are in general position of order (n_0, n) with respect to $\psi(Y)$. Let $P_j = \iota^*(\tilde{D}_j)$ be hyperplanes in \mathbf{P}_s . Then we have that P_1, \ldots, P_q are in general position of order (n'_0, n) with respect to $X = \psi(Y) \cap \mathbf{P}_s$ where $n'_0 = \text{Max} (\dim X, n_0 - N + s)$. Since $h = \iota \circ \tilde{h}$ we have

(5.6)
$$T_{h}(r, r_{0}) = T_{h}(r, r_{0}, H, \kappa) = T_{\bar{h}}(r, r_{0}, \iota^{*}H, \iota^{*}\kappa) = T_{\bar{h}}(r, r_{0}),$$
$$N_{h}(r, r_{0}, \tilde{D}_{j}) = N_{\bar{h}}(r, r_{0}, P_{j}),$$
$$m_{h}(r, \tilde{D}_{j}) = m_{\bar{h}}(r, P_{j}) + O(1).$$

Hence by (5.5) and (5.6) we get

(5.7)
$$T_{f}(r, r_{0}) = T_{\hbar}(r, r_{0}),$$
$$N_{f}(r, r_{0}, D_{j}) = N_{\hbar}(r, r_{0}, P_{j}),$$
$$m_{f}(r, D_{j}) = m_{\hbar}(r, P_{j}) + O(1).$$

Applying (4.9) and (4.10) to the map \tilde{h} and hyperplanes P_1, \ldots, P_q and using (5.7) we obtain (5.3) and (5.4), Q.E.D.

6. Exponential maps

In the previous sections we found that if $f: \mathbb{C}^m \to \mathbb{P}_n$ is a meromorphic map such that $f(\mathbb{C}^m) \subseteq \mathbb{P}_1$, then

$$Q(r, f) \le T_f(r, r_0) + O(1).$$

Our aim, in this section, is to extend this result to a wider class of meromorphic maps.

Let $f: \mathbb{C}^m \to \mathbb{P}_n$ be a non-constant meromorphic map with

$$\boldsymbol{u} = (f_0, \ldots, f_n)$$

as reduced representation. We say that f is an exponential map if $f_j = \psi_j \exp \phi_j$, where ψ_j and ϕ_j are holomorphic functions on \mathbb{C}^m for j = 0, ..., n, and there exists a holomorphic function u on \mathbb{C}^m such that if $h_j = \psi_j u^{-1}$ then

$$T_{h}(r, r_0) = o(T_f(r, r_0)).$$

We also say that the holomorphic function u satisfying the above condition is *admissible* for f.

We note that if f is an exponential map then f is transcendental (see Mori [5]).

Let $\alpha = (\psi_0 \exp \phi_0, \dots, \psi_n \exp \phi_n)$ be the reduced representation of the exponential map f. Then we set

$$R(\omega) = (\exp \phi_0, \ldots, \exp \phi_n)$$

and

$$I(\omega) = (\exp(-\phi_0), \dots, \exp(-\phi_n))$$

Then $R(f) = \mathbf{P} \circ R(\omega)$ and $I(f) = \mathbf{P} \circ I(\omega)$ are exponential maps. We say that f is a special exponential map (S.E.M.) if

(6.1)
$$T_{I(f)}(r, r_0) = T_{R(f)}(r, r_0) + o(T_f(r, r_0))$$

DEFINITION 6.1. Let $f: \mathbb{C}^m \to \mathbb{P}_n$ be a meromorphic map. We say that $f \in \mathscr{R}$ (or $f \in \mathscr{R}_s$) when the following are satisfied.

(i) There exist an exponential map (or an S.E.M.) $g: \mathbb{C}^m \to \mathbb{P}_N$ and a linear map $\lambda: \mathbb{C}^{N+1} \to \mathbb{C}^{n+1}$ such that $f = \mathbb{P}(\lambda) \circ g$.

(ii) If u and g are reduced representations of f and g respectively and if u is a holomorphic function on \mathbb{C}^m such that $uu = \lambda \circ g$ then u is admissible for g.

(iii) g is non-degenerate.

(iv)
$$\lambda(0, ..., 0, 1, 0, ..., 0) \neq 0$$
 for $j = 0, ..., N$.

Let $f \in \mathcal{R}$ then (g, λ) defined above satisfying (i)-(iv) is called a *decomposition* of f.

Let $f: \mathbb{C}^m \to \mathbb{P}_n$ be a meromorphic map. We also must define Q(r, f) when f is degenerate.

Let $\mathbf{P}_k \subseteq \mathbf{P}_n$ be the subspace of minimal dimension such that $f(\mathbf{C}^m) \subseteq \mathbf{P}_k$. Then $\tilde{f}: \mathbf{C}^m \to \mathbf{P}_k$ defined by $\tilde{f}(z) = f(z)$ for every $z \in \mathbf{C}^m$ is non-degenerate. Let B be a holomorphic (m - 1, 0) form on \mathbf{C}^m whose coefficients are polynomials of degree at most k - 1 and therefore satisfying (2.3). Assume \tilde{f} is general for B. Then we define

$$Q(r,f)=Q(r,\tilde{f}).$$

If $f \in \mathscr{R}$ with (g, λ) as decomposition then $\tilde{f} \in \mathscr{R}$ with $(g, \tilde{\lambda})$ as decomposition, where $\tilde{\lambda}: \mathbb{C}^{N+1} \to \mathbb{C}^{k+1}$ is defined by $\tilde{\lambda}(z) = \lambda(z)$ for every $z \in \mathbb{C}^{N+1}$.

PROPOSITION 6.2. For every $f \in \mathcal{R}_s$ we have

(6.2)
$$Q(r,f) \le T_f(r,r_0) + o(T_f(r,r_0)).$$

As a direct consequence of Proposition 6.2 we have the following result.

THEOREM 6.3. Assume that (A1)–(A5) holds. Then if $h(\mathbb{C}^m) \subseteq \mathbb{P}_1 \subseteq \mathbb{P}_N$ or if $h \in \mathscr{R}_S$ we have

(6.3)
$$\sum_{j=1}^{q} m_f(r, D_j) \leq 2nT_f(r, r_0) + o(T_f(r, r_0))$$

(6.4)
$$\sum_{j=1}^{q} \delta_j(D_j) \le 2n.$$

Before proving Proposition 6.2 we want to show that \mathscr{R}_S is not empty. In fact it extends the class of meromorphic maps for which Shiffman [7] proved (6.4).

PROPOSITION 6.4. Let $f: \mathbb{C}^m \to \mathbb{P}_n$ be an exponential map with

$$\omega = (\psi_0 \exp \phi_0, \ldots, \psi_n \exp \phi_n)$$

as reduced representation. If one of the following conditions is satisfied then f is an S.E.M.

1. There exists an isometry α : $\mathbb{C}^m \to \mathbb{C}^n$ such that $-\phi_j = \phi_j \circ \alpha$ for j = 0, ..., n.

2. There exist a holomorphic function ϕ on \mathbb{C}^m and real numbers $\lambda_0, \ldots, \lambda_n$ such that $\phi_j = \lambda_j \phi$ for $j = 0, \ldots, n$.

Proof. If f satisfies condition 1 then since σ is invariant by isometry we get $T_{R(f)}(r, r_0) = T_{I(f)}(r, r_0)$ and therefore (6.1).

Suppose now that f satisfies condition 2. Let

$$(j_0,\ldots,j_n)$$

be a permutation of (0, 1, ..., n) such that $\lambda_{j_0} \leq \cdots \leq \lambda_{j_n}$. Let $\alpha_k = \lambda_{j_k} - \lambda_{j_0}$ and $a = \lambda_{j_0}$. Then there exist constants $c_1 > c_0 > 0$ such that

(6.5)
$$c_0 |e^{2\alpha\phi}| (1+|e^{\phi}|^2)^{\alpha_n} \le \sum_{j=0}^n |e^{\phi}|^{2\lambda_j} \le c_1 |e^{2\alpha\phi}| (1+|e^{\phi}|^2)^{\alpha_n}.$$

Therefore if $h = \mathbf{P}(1, e^{\Phi}): \mathbf{C}^m \to \mathbf{P}_1$ then, by (1.3),

$$T_{R(f)}(r, r_0) = \alpha_n T_h(r, r_0) + O(1)$$

and

$$T_{I(f)}(r, r_0) = \alpha_n T_h(r, r_0) + O(1).$$

Hence (6.1) is satisfied, Q.E.D.

Remark 6.5. (a) Condition 1 in Proposition 6.4 is clearly satisfied when all ϕ_j are homogeneous polynomials of the same degree or in general when $\phi_j = \sum_{k=0}^{\infty} P_{jk}$ where P_{jk} are homogeneous polynomials of degree $2^h(2k+1)$ for a fixed $h \in \mathbb{Z}[0, \infty)$. For example when h = 0 then ϕ_j are odd functions.

(b) Processed as in [2] for the proof of Proposition 6.1 it is possible to prove that all the meromorphic maps considered in [7] by Shiffman are in \mathcal{R} . Moreover if (g, λ) is a decomposition of a meromorphic map in [7] then

$$g = \mathbf{P}(\psi_0 \exp P_0, \dots, \psi_N \exp P_N)$$

where all P_j are homogeneous polynomials of the same degree. Therefore by (a) we have that \mathcal{R}_s extends the Shiffman class.

Proof of Proposition 6.2. Let (g, λ) be a decomposition of f. Then from (6.1) and

(6.6)
$$T_g(r, r_0) \leq T_f(r, r_0) + o(T_f(r, r_0)),$$

ALDO BIANCOFIORE

(6.7)
$$T_{R(g)}(r, r_0) \leq T_g(r, r_0) + o(T_f(r, r_0)),$$

(6.8)
$$Q(r, g) \leq T_{I(g)}(r, r_0) + o(T_f(r, r_0))$$

(6.9)
$$Q(r, f) \leq Q(r, g) + o(T_f(r, r_0)),$$

we will get (6.2). Therefore we will prove (6.6)-(6.9). First we note that (6.6) is a direct consequence of Proposition 4.3 in [2]. Let $\varphi = (\psi_0 \exp \phi_0, ...,$ $\psi_N \exp \phi_N$ and ω be reduced representations of g and f respectively and u a holomorphic function such that $u\alpha = \lambda \circ g$. Then if $h_j = \psi_i/u$ we have by assumption $T_{h}(r, r_0) = o(T_{g}(r, r_0))$. Since

$$|R(\varphi)| \le \left(\sum_{j=1}^{N} |h_j|^{-2}\right)^{1/2} |u|^{-1} |\varphi|$$

and

$$\int_{\mathbf{C}^m\langle r\rangle} \log\left(\sum_{j=0}^N |h_j|^2\right)^{1/2} \sigma \leq \sum_{j=0}^N T_{h_j}(r, r_0) + O(1) \leq o(T_g(r, r_0)),$$

and we have (6.6), we get (6.7). Set $\tilde{g} = u^{-1}g$. Then $\tilde{g}_k = u^{-(k+1)}g_k$ and

(6.10)
$$Q(r, g) = \int_{\mathbb{C}^{m} \langle r \rangle} \log \frac{|\mathcal{G}_{N-1}|}{|\mathcal{G}_{N}|} \sigma$$
$$= \int_{\mathbb{C}^{m} \langle r \rangle} \log \frac{|\mathcal{G}_{N-1}|}{|\mathcal{G}_{N}|} \sigma - \int_{\mathbb{C}^{m} \langle r \rangle} \log |u| \sigma$$
$$\leq \int_{\mathbb{C}^{m} \langle r \rangle} \log \frac{|\mathcal{G}_{N-1}|}{|\mathcal{G}_{N}|} \sigma.$$

Write $\tilde{g} = (\tilde{g}_0, \dots, \tilde{g}_N)$ where $\tilde{g}_j = h_j \exp \phi_j$ for $j = 0, \dots, N$. Then

$$\tilde{g}^{(k)} = (\tilde{g}_0^{(k)}, \ldots, \tilde{g}_N^{(k)})$$

and $\tilde{g}_{j}^{(k)} = d_{kj} \exp \phi_{j}$ where d_{kj} are meromorphic functions defined recursively by

$$d_{kj} = d'_{k-1,j} + \phi'_j d_{k-1,j}$$
 for $k \in \mathbb{N}$ and $d_{0j} = h_j$.

Set $\Phi = (d_{ij})$ for i, j = 0, ..., N, $\Phi_k = (d_{ij})$ for i = 0, ..., N - 1 and j = 0, ..., N - 1k-1, k+1, ..., N and $\tilde{\psi}_k = \det \Phi_k (\det \Phi)^{-1}$. Then it is not difficult to see that

$$|\tilde{\varphi}_{N-1}| |\tilde{\varphi}_{N}|^{-1} = \left(\sum_{j=0}^{N} |\tilde{\psi}_{k} e^{-\phi_{k}}|^{2}\right)^{1/2}.$$

Proceeding as for the proof of (6.7) we get

(6.11)
$$\int_{\mathbb{C}^m \langle r \rangle} \log \frac{|\tilde{\varphi}_{N-1}|}{|\tilde{\varphi}_N|} \sigma \leq T_{I(g)}(r, r_0) + \sum_{k=0}^N T_{\tilde{\psi}_k}(r, r_0) + O(1).$$

Now a standard technique in Value Distribution Theory and the Lemma of the Logarithmic Derivative (see Vitter [10]) give us

$$(6.12) T_{\widetilde{\psi}_k}(r, r_0) \leq o(T_g(r, r_0)).$$

Then (6.10), (6.11), (6.12 and (6.6) imply (6.8).

In order to prove (6.9), without loss of generality we may assume f is non-degenerate. Consider $\varepsilon \in \bigwedge_{N-n} \mathbb{C}^{N+1}$ such that $E(\mathbb{P}(\varepsilon)) = \text{Ker } \lambda$. Then there exist constants $c_1 > c_0 > 0$ such that

$$c_0|g_k \wedge \varepsilon| \leq |(\lambda \circ g)_k| = |u|^{k+1} ||u_k| \leq c_1 |u_k \wedge \varepsilon|$$

for $k = 0, \ldots, n$. Therefore

$$\int_{\mathbb{C}^m \langle r \rangle} \log \frac{|u_{n-1}|}{|u_n|} \sigma \leq \int_{\mathbb{C}^m \langle r \rangle} \log \frac{|g_{n-1} \wedge \varepsilon|}{|g_n \wedge \varepsilon|} \sigma + \int_{\mathbb{C}^m \langle r \rangle} \log |u| \sigma + O(1).$$

Since u is admissible for g, $N_u(r, r_0, 0) = o(T_g(r, r_0))$. Hence

(6.13)
$$Q(r, g) \leq \int_{C^m \langle r \rangle} \log \frac{|g_{n-1} \wedge \varepsilon|}{|g_n \wedge \varepsilon|} \sigma + o(T_f(r, r_0)).$$

Choose an orthonormal base e_0, \ldots, e_N in \mathbb{C}^{N+1} such that

$$\varepsilon = e_{n+1} \wedge \cdots \wedge e_N.$$

Define $\alpha_k \in (\bigwedge_N \mathbb{C}^{N+1})^*$ by

$$\alpha_k(x) = x \wedge e_k$$
 for $x \in \bigwedge_N \mathbb{C}^{N+1}$ and $k = 0, ..., N$

Set

$$h_{(k)} = g_{k-1} \wedge e_{k+1} \wedge \cdots \wedge e_N$$

and

$$h_{(k)} = \mathbf{P}(\mathbb{A}_{(k)}) \colon \mathbf{C}^m \to \mathbf{P}(\bigwedge_N \mathbf{C}^{N+1}) \simeq \mathbf{P}_N$$

Then by Ahlfors Estimate, and since f is transcendental, we get

$$\int_{\mathbb{C}^{m}\langle r\rangle} \log \frac{|\mathscr{k}_{(k)_{1}} \sqcup \alpha_{k}|}{|\mathscr{k}_{(k)} \sqcup \alpha_{k}| |\mathscr{k}_{(k)}|} \sigma \leq o(T_{f}(r, r_{0})).$$

Moreover we have (see [8] Hilfsatz 4)

$$|\mathscr{k}_{(k)_1} \sqcup \alpha_k| = |\mathscr{g}_{k-2} \wedge e_k \wedge \cdots \wedge e_N| |\mathscr{g}_k \wedge e_{k+1} \wedge \cdots \wedge e_N|.$$

Therefore we have

(6.14)
$$\int_{\mathbf{C}^{m}\langle r \rangle} \log \frac{|\mathscr{g}_{k-2} \wedge e_k \wedge \cdots \wedge e_N|}{|\mathscr{g}_{k-1} \wedge e_k \wedge \cdots \wedge e_N|} \sigma$$
$$\leq \int_{\mathbf{C}^{m}\langle r \rangle} \log \frac{|\mathscr{g}_{k-1} \wedge e_{k+1} \wedge \cdots \wedge e_N|}{|\mathscr{g}_k \wedge e_{k+1} \wedge \cdots \wedge e_N|} \sigma + o(T_f(r, r_0))$$

for k = 1, ..., N. Applying (6.14) recursively we have

(6.15)
$$\int_{\mathbb{C}^m \langle r \rangle} \log \frac{|g_{n-1} \wedge \varepsilon|}{|g_n \wedge \varepsilon|} \sigma \le Q(r, g) + o(T_f(r, r_0))$$

and by (6.13) we get (6.9), Q.E.D.

REFERENCES

- 1. L. V. AHLFORS, The theory of meromorphic curves, Acta Soc. Sci. Fenn. (Nova Ser. A), vol. 3 (1941), pp. 1-31.
- A. BIANCOFIORE, A hypersurface defect relation for a class of meromorphic maps, Trans. Amer. Math. Soc., vol. 270 (1982), pp. 47–60.
- 3. —, A defect relation for meromorphic maps, Indiana Univ. Math. J., vol. 32 (1983), pp. 393-405.
- M. COWEN and P. A. GRIFFITHS, Holomorphic curves and metrics of negative curvature, J. Analyse Math., vol. 29 (1976), pp. 93-152.
- 5. S. MORI, On the deficiencies of meromorphic mappings of Cⁿ into P^NC, Nagoya Math. J., vol. 67 (1967), pp. 165–176.
- 6 R. NEVANLINNA, Le théorème de Picard-Borel et la Théorie des Fonctions Meromorphes, Gauthier-Villars, Paris, 1929.
- B. SHIFFMAN, On holomorphic curves and meromorphic maps in projective space, Indiana Univ. Math. J., vol. 28 (1979), pp. 627-641.
- W. STOLL, Die beiden Hauptsätze der Wertverteilungs-theorie bei Funktionen mehrerer komplexer Veränderlichen I, II, Acta Math., vol. 90 (1953), pp. 1–115; vol. 92 (1954), pp. 55–169.
- 9. W. STOLL, The Ahlfors Weyl Theory of meromorphic maps on parabolic manifolds, Lecture Notes in Math., Springer-Verlag, New York, to appear.
- 10. A. VITTER, The lemma of the logarithmic derivative in several complex variables, Duke Math. J., vol. 44 (1977), pp. 89–104.
- 11. H. WEYL and F. J. WEYL, Meromorphic functions and analytic curves, Princeton University Press, Princeton, N.J., 1943.
- 12. P. WONG, Defect relations for meromorphic maps from parabolic manifolds into complex projective spaces, Thesis, Univ. of Notre Dame, 1976.

UNIVERSITY OF NOTRE DAME NOTRE DAME, INDIANA