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A DEFECT RELATION FOR LINEAR SYSTEMS
ON COMPACT COMPLEX MANIFOLDS

BY

ALDO BIANCOFIORE

Introduction

In 1979 Shiffman ([7]) conjectured that if f’cm---, Pn is a non-constant
meromorphic map and if D1, Dq are distinct hypersurfaces of degree d in

Pn such that no point is contained in the support of n + 1 distinct Dj and
f(Cm) supp Dj for all j, then

q

(1) tf(Dj)
_

2n,
j=l

where diy denotes the Nevanlinna defect. To support his conjecture Shiffman
proved (1) for a class of meromorphic maps of finite order.
To extend the class that satisfies (1) we use the method of associate maps

which was introduced in 1941 by Ahlfors [1], generalized and developed by
Weyl [11-1, Stoll [8], Cowen-Griffiths [4] and Wong [12]. Namely, (1) holds
either if f(Cm) is contained in a line of P or is a projection of a "special
exponential map", i.e., an exponential map satisfying (6.1) (see Section 6).
More in general we introduce an auxiliary defect zf, which we express explic-
itly and for all meromorphic maps f: C’--, P we prove

q

(2) tf(Dj) n(1 + f).
j=l

Therefore in order to prove (1) for all meromorphic maps it would be
sufficient to prove zy < 1.
To add generality we prove (2) for meromorphic maps f:C---, X, where X

is a compact complex n-dimensional manifold and for D, D e ILl,
where L is a spanned line bundle.
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Define

1. Nevanlinna theory

17(Z) Zl 2 E ZJl 2

If r > O, we set

Define

and

where

for any z (z1, Zm) Cm.

CmEr] {g 6 cml zl < r}, Cm(r) g3CmEr].

v ddz on Cm

log z A (dd’: log z) on C {0)

Let v be a divisor on C’. For all 0 < ro < r the valence function is defined
by

N,(r, to) n(t)t- dt

where, with S cm[t] c supp ,
t-mfd,,- ifm>l

nv(t)

,v(z)s
if m 1

is the countin# function of v.
Let L be a non-negative line bundle on the compact complex manifold X,

with a hermitian metric x. Let f’C"--} X be a meromorphic map. For
r > ro > 0, define the characteristic function

Tj,(r, ro, L, x)= f*(c(L, K)) A 0 -2m

o x,dCm[t]
dt

where c(L, r) is the Chern form of L for x.
Let s F(X, L) be a global section on L and let D Dis] ILI be the

divisor associated to s. Define the valence function off for D

Nf(r, to, D) Nv (r, ro)
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for r > ro > 0 and where v =f*(D) is the pull-back divisor. If f(C’)
supp D and r > 0, then

m(r, D) c log
,<,> [’s

is the compensation function of f for D, where is a metric on F(X, L) such
that Is I1 s fl < 1. Such a metric exists since X is compact.
The First Main Theorem asserts that

(1.1) Ty(r, ro, L, x) Ny(r, to, D) + my(r, D) my(ro, D)

if r > ro > 0 and f(Cm) $; supp D.
The defect off for D 6 ILl is defined by

.m,(r, O)
6y(D) lim,_.ooinf T,(r, to, L, x)"

(1.1) implies 0 < 6y(D) < 1.
Now assume X Pn. If f: cm Pn is a meromorphic map then we recall

that u: cmc+1 is a representation for f if P u =f on Cm -1(0) 0
and the representation is said to be reduced if dim u-1(0) < m 2.

Let L H be the hyperplane section bundle on
induced by the standard metric on C"+ 1. Let

Tj.(r, to) Tj.(r, to, H,

If D Dl-g] 6 HI is a hyperplane in P, and : cm C+ is a reduced
representation off then Jensen’s formula states that

(1.2) N(r, ro, D)=c log .g .cr =fc log 1 ,a.

(1.1) and (1.2) imply

c log I,, cr c log I"’ r.(1.3) T,(r, ro)
-<,>

2. Associated maps

Let B be a holomorphic (m- 1, 0) form on C. We shall define a differen-
tial operator DB as follows. Let u: cm Cn+l be a holomorphic map. Then

’ DB: Cm--, C"+

is a holomorphic map defined by

d A B Ds dzl A Adz,..
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The differential operator D can be repeated so we can define

C./(p) D Da(D- ).

Let f: cm-+ P, be a meromorphic map and a" CI-+ C+ a representation
off. Take p O, n. Then

is the pth associated representation. Obviously

C/p: cm---- dn.p A Cn+
p+l

is a holomorphic map. (Here. (n,p is the Grassmannian cone of (p + 1)-planes
in C+ .)
We say that f is general of order p for B if and only if .%,, 0. Also f is

general for B if and only if f is general of order n for B, in which case f is
general of order p for all p 0, n. Then

fp P ap" cm--- Gn,p p(dn,p)

is a well defined meromorphic map with ap as a representation. The mero-
morphic map fp is called the pth associate map off for B.

Cn / 1) respectively on Gn pLet fp be the Fubini-Kaehler form on P(/p+
for p 0, n. Let f: Cm P. be a meromorphic map general for B. Define
the pth volume form off for B by

Hp im_mf(fp)ABAB on Cm- Ifp

where im-t (i/2om-2(m- 1)!(--1)(m-1)(m-2)/2 and Ifp is the indeterminacy
set offp. Let hp be such that Hp hpom’, then we have

(2.1) ho 112 I’e 2 2

I’1z andh-- -x I/xl for0pn.

Define

1 c log hpla.(2.2) Sp(r)
-<,>

Let f: cm---* Pn be a non-degenerate meromorphic map (i.e., f(Cm) is not
contained in any hyperplane in P). Then (see [9] Theorem 7.1) there exists a
holomorphic (m- 1, 0) form on C whose coefficients are polynomials of
degree at most n- 1 and such that f is general for B and

(2.3) ira- 1B A < (1 + r2- 2)Ore- on CmEr].



A DEFECT RELATION 535

3. General position

Let X be a projective variety of dimension no in Pn. For p 1, n, set

where E(y)_ P denotes the p-plane associated by y G,. We know that
the projection %" .’--, G, is proper and holomorphic. Therefore X
%(.(’) is a compact analytic subset of G,. For any D Dig] lSl hyper-
plane in P we define

Up(D): Xp--- R[0, 1-1
by

I t._ 1z
forp=0,...,nup(D)(x) I IZl z

and for x P() Xr Here t__ g is such that

(z L_ g, fl) (a, g A fl) for every/// (C- )*.
If Dj D[gj] are hyperplanes in Pn, j 1, q define

Cp Cp(D, D):XZ forp=0,...,n

by

Cp(X) # {j NIl, q]lup(OiXx)= 0}.

DEFINITION 3.1. Let ko, k e N such that no < k. We say that D,..., Dq
are in general position of order (ko, k) with respect to X if Co(X)<_ k for
every x X and if gig, j span a linear subspace of dimension at least
ko / 1 in (C+ )* for every choice of I < Jo <"" < Jk < q.

We observe that if D1, Dq
respect to X then

are in general position of order (ko, kl) with

(3.1) no < ko < Min (k, n)

and for any < k and 1 < Jo <"" < Jt < q then

(3.2) dim D _< (n ko) + (k t).
h=O

Now proceeding as in 13] for the proof of Lemma 3.2, for any x X we
have

(3.3) Cp(X) < 2(ko, kx, p) for p 0, n

where 2(ko, k, p) is an abbreviation for Min (kl, n- ko + k t).
Let f: Cm-, P be a meromorphic map not contained in any hyperplane in
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P,. Consider a holomorphic (m- 1, 0) form B. Assumef is general for B and
f(Cm)

_
X, then f(C)

_
X for p 0, n. So the map ckv(D) uv(D) fv is

well defined for every hyperplane D. Set

my(r, D)= f log ckv(D)a.
dc

Then we have

(3.4)

(3.5)

mo(r, D) my(r, D),

m,(r, D) 0 (since f, is constant).

From (3.4) and (3.5) we get

(3.6) (my(r, D)- my+ l(r, D))= my(r, D).
p=0

Let D1,..., D be distinct hyperplanes in P, in general position of order
(ko, k) w.r.t.X. Set

Y (un(D9- x(0)) < Xn for p 0, n.
j=l

Then, similarly as in 13] for Proposition 4.1 we have

log / 4)g +’!D’) ’ f @ +,(O)(3.7)

on C"-f(), where 0 < fl < 1.
We note that, by (2.1) and (2.2),

2(ko, k,,
p=O

kl fc log a + (kl ko) fc log

+ fc log l"-kl

10g un’7lSet Qk(r, f)
-<,> a.

tr and Q(r, f) Q(r, f).

Therefore by (1.3) we have

(3.8) 2(ko, k,, P)Sv(r
p=O

k, Ts.(r, to) + (k, ko)Q(r,f) + Qko(r,f) + 0(1).
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4. Defect relation

Before stating the theorem we fix some notations. Let g and h be real
valued functions on R(ro, oo). We write (r). h(r) if a subset E of R(ro,
with finite Lebesgue measure exists such that (r) h(r) for all r
--E.
We set

Qk(r, fzk(f) lim sup
r-* oo r, to)

and :(f).

THEOREM 4.1. (SECOND MAIN THEOREM AND DEFECT RELATION). Let f:
C---, P, be a non-degenerate, transcendental, meromorphic map. Let D,..., D
be hyperplanes in P, in general position of order (ko, k) with respect to a
projective variety X of dimension no in P,. Then

(4.1)
q

E mr(r, O) k Tf(r, ro) + (k o)Q(r, f)
j=l

+ Qo(r, f) + O(log rTy(r, ro)),

and

q

(4.2) E dif(O/) _< kt + (kt ko)zf + o(f)"
j=l

Proof. Since the proof is rather long and since it is similar to the proof of
the Second Main Theorem in [4] for m 1 and in [9] or [12] for the
general case, we shall give here only a sketch of it.
By (3.6) we have

(4.3) mf(r, Oj) (mp(r, O)- rap+ t(r, O)).
j=l j=l p=O

Let r Maxja mr(ro, D) and

1

q(T$,(r, to) + Tr)"
Since T,(r, to)-* for r--, then there exists r’ > ro such that 0 < fl(r) < 1
for all r > r’. Using (3.7) and proceeding similarly as in [9] for Lcmma 11.4
we get

q

(4.4) X(ko, kl, p)Sr(r) + (mr(r, O)- mr+ (r, O)) + 0(1)
j=l

2 ,n<r> j-- Cr(DJ) -#(r)
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Using Ahlfors Estimates (see [91 Theorem 10.3) and proceeding as in [91
for lemma 11.5 we get

Then (4.4) and (4.5) yield

q

(4.6) 2(ko, kl, p)Sp(r) + (rap(r, Dj) mp+ (r, Dj))
j=l

_< O(1og rTf(r, ro)).

Therefore by (3.8), (4.3) and (4.6) we get (4.1). Since f is transcendental, by the
definition of zf, Zk(f) and (4.1) we get

We observe that

m1.(r, DI)(f(Dj) Z lim inf
Tf(r, to)j=l j=l

< lim inf ( m,(r, Dj)
r-,oo j=l Tf(r, ro) J

<_ k + (k ko)’Cf -{- Zko(f), Q.E.D.

(4.7) Q(r, f)= Tf(r, to)- No(r, ro)

0(1)

< Tf(r, ro) + 0(1)

where 0 is the Wronskian divisor offi More generally,

Qk(r’ f) fc lg I-xl

and since (see 19] Proposition 10.6)

Sp(r) c lOg P-- c ce
,<,> Ipl

tr-
,<,> Ip+xl

_<. O(log rTf(r, to)

we have

(4.8) Qk(r, f) . kQ(r, f) + O(log rTf(r, to)).

Therefore (4.7) and (4.8) imply the following result.
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COROLLARY 4.2. With the same notations as in Theorem 4.1 we have

q

(4.9) m.(r, Dj) < (
j=l

kx(Tf(r, ro) + Q(r, f))

+ O(log rTf(r, ro)

2k Tf(r, to) + O(log rTf(r, ro)

(kl + 1)Tr(r, to) + (kl n)Q(r, f)

+ O(log rT.(r, ro)

(n + 1)T,(r, ro) + O(log rT.(r, ro))

if n= 1

if ko n

if k ko n

(4.10)

k(1 + z.)
2k if n 1

6,(D) <_
k + l + (kl n)z, ifko=n
n+ 1 ifk ko n.

Remark 4.3. If k ko n and X P. then "general position of order
(ko, kx) with respect to P." is the same as "general position". Therefore (4.10)
for ko k n is the classical result.

5. An application

First we fix some notations and recall some known results. Let Y be a
compact, complex, n-dimensional manifold. Let L be a line bundle over Y.
Set N + 1 dime F(Y, L). Let : Y Pn be the dual classification map. Then
L is spanned if and only if is a holomorphic map. In addition, if L is
spanned, we have that ,(Y) is a projective variety in Pn. If H is the hyper-
plane section bundle over Pt then *(H) L and @*: F(PN, H) F(Y, L) is
an isomorphism.

DEFINITION 5.1. Let D1, D be divisors of L. We say that Dx, D
are in leneral position if no point of Y is contained in n + 1 distinct D.
We shall need later the following general assumptions.

(A1) Let Y be a compact, complex n-dimensional manifold and L a line
bundle over Y with hermitian metric *(g) the pull-back of the metric in the
hyperplane section bundle H over Pn. Set no dim ,(Y).
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(A2) Let f: Cm--, Y be a meromorphi map. Set

of: c--, p.
Assume h is not constant.

(A3) Let P __. PN be a subspace of minimal dimension such that h(Cm)
_

Ps. Define /: cm Ps by h(z)= f(z) for every z Cm. If " P PN is the
inclusion then h h. We have h non-degenerate.

(A4) Let B be a holomorphic (m- 1, 0) form on Cm. Assume h is general
for B and ira-1B A/ < (1 + r2- 2)ore- on Cm[r].

(A5) Let D, Dq be distinct divisors of L in general position such that
f(Cm) supp Dj for j 1, q. Assume q >_ n + 1.

DEFINITION 5.2.

(5.1)

(5.2)

Assume (A1)-(A4). Then we define

Q(r, f)= Q(r, h),

THEOREM 5.3.
Then

(5.3)

and

Assume (A1)-(A5). Abbreviate Ty(r, to, L, *(x)) by Ty(r, ro).

n(Tf(r, to) + Q(r,f)) + O(log rTy(r, to))
mf(r, Dj) <. 2nry(r, to) + O(log rrf(r, to) /f s 1j=l

(5.4) :(D) <
j=l (2n /fs 1.

Proof Let/3x, ...,/ be hyperplanes in Pu such that q*(/) O. Then

Tf(r, ro)--- T(r, ro),

(5.5) Nf(r, to, Dj) N(r, ro, Ij),
mf(r, Dj)= mh(r,/j).

Moreover/x, ...,/q are in general position of order (no, n) with respect to
k(Y). Let Pj l*(j) be hyperplanes in P. Then we have that Px, Pq are
in general position of order (n, n) with respect to X if(Y)c P where
n) Max (dim X, no N + s). Since h we have

T(r, to)= T(r, to, H, )= T(r, ro, z*H, z*x)= T(r, to),

(5.6) Nh(r, ro, Oj) N(r, ro, Pj),

mh(r, j) mti(r, Pj) + O(1).
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Hence by (5.5) and (5.6) we get

T(r, to)= Ts(r, ro),

(5.7) Nf(r, to, Dj) Nn(r, ro, Pj),

mf(r, Dj) m(r, Pj) + O(1).

Applying (4.9) and (4.10) to the map h and hyperplanes P, Pq and using
(5.7) we obtain (5.3) and (5.4), Q.E.D.

6. Exponential maps

In the previous sections we found that iff: C"---} P is a meromorphic map
such that f(C") c_ pt, then

Q(r, f) < Tf(r, ro) + O(1).

Our aim, in this section, is to extend this result to a wider class of mero-
morphic maps.

Let f: C"-* P be a non-constant meromorphic map with

a (fo, ...,f.)

as reduced representation. We say that f is an exponential map if f, exp , where g, and are holomorphi functions on C for j O, n,
and there exists a holomorphi function u on C" such that if h g,u- then

j(r, to)= o(Tf(r, to)).

Wc also say that the holomorphic function u satisfying the above condition
is admissible for f.
Wc note that iff is an exponential map then f is transcendental (scc Mori

ES]).
Let (o exp bo, if, exp b,) be the reduced representation of the

exponential map f. Then we set

R(a) (exp bo, exp .)

and

I(z) (exp (- o), exp (-

Then R(f) P R(a) and I(f) P I(a) are exponential maps. We say that
f is a special exponential map (S.E.M.) if

(6.1) T.(r, ro)= Tc.(r, ro) + o(T.(r, to)).

DEFINITION 6.1. Let f: C’---} P, be a meromorphic map. We say that
f e (orf s) when the following are satisfied.
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(i) There exist an exponential map (or an S.E.M.) g: Cm--, PN and a
linear map 2: CN + C" + such that f P(2) g.

(ii) If a and are reduced representations off and g respectively and if u
is a holomorphic function on C" such that u 2 then u is admissible
for #.

(iii) g is non-degenerate.

(iv) 2(0,..., O, 1, 0,..., O) # 0 forj 0,..., N.

J

Let f then (g, ) defined above satisfying (i)-(iv) is called a decomposi-
tion off.

Let f: C" P, be a meromorphic map. We also must define Q(r, f) when f
is degenerate.

Let Pk -- P, be the subspace of minimal dimension such that f(C")
_

Pk"
Then f: C"---, Pk defined by jz) =f(z) for every z e C is non-degenerate. Let
B be a holomorphic (m- 1, 0) form on C’ whose coefficients are poly-
nomials of degree at most k- 1 and therefore satisfying (2.3). Assume jr is
general for B. Then we define

Q(r, f) Q(r, f).

Iff with (g, 2) as decomposition then jr e with (g, ,) as decomposition,
where : C+1 ck+l is defined by ,((z)= 2(z) for every z C + 1.

PROPOSITION 6.2. For everyf ts we have

(6.2) Q(r, f) <_ Tj.(r, ro) + o(Tf(r, ro)).

As a direct consequence of Proposition 6.2 we have the following result.

THEOREM 6.3.
h ls we have

Assume that (A1)-(A5) holds. Then if h(Cm) G P1 G PN or if

(6.3) ,m,(r, D) 6 2nT.(r, ro) + o(T(r, ro)),

(6.4) 6.(D) <_ 2n.
=1

Before proving Proposition 6.2 we want to show that #s is not empty. In
fact it extends the class of meromorphic maps for which Shiffman [7] proved
(6.4).

PROPOSITION 6.4. Let f: Cm-- Pn be an exponential map with

a ($o exp t#o, $n exp t#.)

as reduced representation. If one of the following conditions is satisfied then f is
an S.E.M.



A DEFECT RELATION 543

1. There exists an isometry : cm---Cn such that -cj= ddj for
j=0, n.

2. There exist a holomorphic function ck on C" and real numbers 2o, 2,
such that 2 for j 0,..., n.

Proof. If f satisfies condition 1 then since cr is invariant by isomctry we
get Ts)(r, to) To,(r, to) and therefore (6.1).

Suppose now that f satisfies condition 2. Let

(Jo, J,)

be a permutation of (0, 1, n) such that 2o <... _< 2,. Let k ;t- 2o
and a 2o. Then there exist constants c > Co > 0 such that

(6.5) Co le2*l(1 + e* 12) _< e* 12x
j=O

Therefore if h P(1, e(R)) C’--. P1 then, by (1.3),

Ty(r, to) T(r, to) + 0(1)

and

T<x)(r, ro)= . T(r, ro) + O(1).

Hence (6.1) is satisfied, Q.E.D.

Remark 6.5. (a) Condition 1 in Proposition 6.4 is clearly satisfied when all
are homogeneous polynomials of the same degree or in general when

qb =o Pk where Pk are homogeneous polynomials of degree 2h(2k + 1)
for a fixed h e Z[0, o). For example when h 0 then b are odd functions.

(b) Processed as in [2] for the proof of Proposition 6.1 it is possible to
prove that all the meromorphic maps considered in [-7] by Shiffman are in. Moreover if (, ) is a decomposition of a meromorphic map in [7] then

g P(o exp Po,..., /N exp PN)

where all P are homogeneous polynomials of the same degree. Therefore by
(a) we have that ?s extends the Shiffman class.

Proof of Proposition 6.2.
(6.1) and

Let (#, 2) be a decomposition of f. Then from

T(r, to)].. Tf(r, ro) + o(Tf(r, ro)),
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(6.7) T(a)(r, ro) . T(r, ro) + o(Tf(r, ro)),

(6.8) Q(r, O) Tta)(r, ro) + o(Tf(r, ro)),

(6.9) Q(r, f) <. Q(r, 9) + o(Tf(r, to)),

we will get (6.2). Therefore we will prove (6.6)-(6.9). First we note that (6.6) is
a direct consequence of Proposition 4.3 in [2]. Let (to exp bo,
qN exp bN) and u be reduced representations of O and f respectively and u a
holomorphic function such that uu 2 . Then if hj ki/u we have by
assumption The(r, to) o(T(r, to)). Since

R()I Ih1-2 lul -x I1

and

log hl2 tr _< The(r, to) + 0(1) _< o(T(r, ro)),
j=O j=O

and we have (6.6), we get (6.7).
Set ) u-re. Then u-{+ x)pt and

(6.10) Q(r, O) | log -
log a log

m(r) i,NI

_< 1" log
.<,> i NI

Write ) (o, N) where . h exp b for j 0, N. Then

and k) dkj exp qlj where dkj are meromorphic functions defined recursively
by

dk d,_ ,j + dk-1.j for k N and do1

Set (dij) for i, j 0, N, k (dO for 0, N 1 and j 0,
k- 1, k + 1, N and k det k(det )-1. Then it is not difficult to see
that

j=o
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Proceeding as for the proof of (6.7) we get

f log I-(6.1 1)
-<,> INI

a _< Tt)(r, to) +
k=O

Y;(r, ro) + O(1).

Now a standard technique in Value Distribution Theory and the Lemma of
the Logarithmic Derivative (see Vitter [10]) give us

(6.12) T;(r, to) o((r, to)).

Then (6.10), (6.11), (6.12 and (6.6)imply (6.8).
In order to prove (6.9), without loss of generality we may assume f is

non-degenerate. Consider e s_ Cs+ such that E(P(e))= Ker 2. Then
there exist constants c > Co > 0 such that

for k 0,..., n. Therefore

fc log’"-l fc fc*<,> ’"l , a *<,>lg I.A ’el a + -<,>lg u + 0(1).

Since u is admissible for #, N(r, to, 0) o((r, to)). Hence

(6.13) Q(r, #) fc log
A

-<,> e A el a + o(Ty(r, ro)).

Choose an orthonormal base eo, en in Cn+ such that

e en+x A" Ae.
Define g 6 ( Cs+ )* by

k(X)=XAek forxeCn+ xandk=0,...,N.
N

Set

and

(k) Ck- A ek + A.. A eN

h{,) P(AO,))" cm--’ P(/ CN+ x) = PN"

Then by Ahlfors Estimate, and since f is transcendental, we get

I, t_ ,1"<,>lg 1"’/) t_ 1 I’)1
a < o(T(r, to)).
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Moreover we have (see I-8] Hilfsatz 4)

I(k) L_ kl Ik-2AekA’"Ael IPkAek+S A’"AeI.
Therefore we have

(6.14) IPk_2AekA’.’Aesl
Ik-x AekA" Ael

<fc lg!’P’-xAek+AA"’Aesl
.<,> leAe+x Ael

a + o(Tf(r, to)

for k 1, N. Applying (6.14) recursively we have

(6.15) I log r <_ Q.(r, ) + o(7"z(r, to))

and by (6.13) we get (6.9), Q.E.D.
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