# A DEFECT RELATION FOR LINEAR SYSTEMS ON COMPACT COMPLEX MANIFOLDS ${ }^{1}$ 

BY<br>Aldo Biancofiore

## Introduction

In 1979 Shiffman ([7]) conjectured that if $f: \mathbf{C}^{m} \rightarrow \mathbf{P}_{\boldsymbol{n}}$ is a non-constant meromorphic map and if $D_{1}, \ldots, D_{q}$ are distinct hypersurfaces of degree $d$ in $\mathbf{P}_{n}$ such that no point is contained in the support of $n+1$ distinct $D_{j}$ and $f\left(\mathbf{C}^{m}\right) \nsubseteq \operatorname{supp} D_{j}$ for all $j$, then

$$
\begin{equation*}
\sum_{j=1}^{q} \delta_{f}\left(D_{j}\right) \leq 2 n \tag{1}
\end{equation*}
$$

where $\delta_{f}$ denotes the Nevanlinna defect. To support his conjecture Shiffman proved (1) for a class of meromorphic maps of finite order.

To extend the class that satisfies (1) we use the method of associate maps which was introduced in 1941 by Ahlfors [1], generalized and developed by Weyl [11], Stoll [8], Cowen-Griffiths [4] and Wong [12]. Namely, (1) holds either if $f\left(\mathbf{C}^{m}\right)$ is contained in a line of $\mathbf{P}_{n}$ or is a projection of a "special exponential map", i.e., an exponential map satisfying (6.1) (see Section 6). More in general we introduce an auxiliary defect $\tau_{f}$, which we express explicitly and for all meromorphic maps $f: \mathbf{C}^{m} \rightarrow \mathbf{P}_{n}$ we prove

$$
\begin{equation*}
\sum_{j=1}^{q} \delta_{f}\left(D_{j}\right) \leq n\left(1+\tau_{f}\right) \tag{2}
\end{equation*}
$$

Therefore in order to prove (1) for all meromorphic maps it would be sufficient to prove $\tau_{f} \leq 1$.

To add generality we prove (2) for meromorphic maps $f: \mathbf{C}^{m} \rightarrow X$, where $X$ is a compact complex $n$-dimensional manifold and for $D_{1}, \ldots, D_{q} \in|L|$, where $L$ is a spanned line bundle.

[^0]
## 1. Nevanlinna theory

Define

$$
\tau(z)=|z|^{2}=\sum_{j=1}^{m}\left|z_{j}\right|^{2} \quad \text { for any } z=\left(z_{1}, \ldots, z_{m}\right) \in \mathbf{C}^{m}
$$

If $r>0$, we set

$$
\mathbf{C}^{m}[r]=\left\{z \in \mathbf{C}^{m}| | z \mid<r\right\}, \quad \mathbf{C}^{m}\langle r\rangle=\partial \mathbf{C}^{m}[r] .
$$

Define

$$
v=d d^{c} \tau \quad \text { on } \mathbf{C}^{m}
$$

and

$$
\sigma=d^{c} \log \tau \wedge\left(d d^{c} \log \tau\right)^{m-1} \quad \text { on } \mathbf{C}^{m}-\{0\}
$$

where

$$
d^{c}=\left(\frac{i}{4 \pi}\right)(\bar{\partial}-\partial) .
$$

Let $v$ be a divisor on $\mathbf{C}^{m}$. For all $0<r_{0}<r$ the valence function is defined by

$$
N_{v}\left(r, r_{0}\right)=\int_{r_{0}}^{r} n_{v}(t) t^{-1} d t
$$

where, with $S_{t}=\mathbf{C}^{m}[t] \cap \operatorname{supp} v$,

$$
n_{v}(t)= \begin{cases}t^{2-2 m} \int_{S_{t}} v v^{m-1} & \text { if } m>1 \\ \sum_{z \in S_{t}} v(z) & \text { if } m=1\end{cases}
$$

is the counting function of $v$.
Let $L$ be a non-negative line bundle on the compact complex manifold $X$, with a hermitian metric $\kappa$. Let $f: \mathbf{C}^{m} \rightarrow X$ be a meromorphic map. For $r>r_{0}>0$, define the characteristic function

$$
T_{f}\left(r, r_{0}, L, \kappa\right)=\int_{r_{0}}^{r}\left(\int_{C_{m}[t]} f^{*}(c(L, \kappa)) \wedge v^{m-1}\right) t^{1-2 m} d t
$$

where $c(L, \kappa)$ is the Chern form of $L$ for $\kappa$.
Let $s \in \Gamma(X, L)$ be a global section on $L$ and let $D=D[s] \in|L|$ be the divisor associated to $s$. Define the valence function of $f$ for $D$

$$
N_{f}\left(r, r_{0}, D\right)=N_{v f}\left(r, r_{0}\right)
$$

for $r>r_{0}>0$ and where $v_{f}^{D}=f^{*}(D)$ is the pull-back divisor. If $f\left(\mathbf{C}^{m}\right) \nsubseteq$ $\operatorname{supp} D$ and $r>0$, then

$$
m_{f}(r, D)=\int_{C_{m}\langle r\rangle} \log \frac{|s|_{\mathrm{I}}}{|s \circ f|_{\kappa}} \sigma
$$

is the compensation function of $f$ for $D$, where $\mathfrak{I}$ is a metric on $\Gamma(X, L)$ such that $|s|_{\mathrm{I}}|s \circ f|_{\kappa}^{-1} \leq 1$. Such a metric exists since $X$ is compact.

The First Main Theorem asserts that

$$
\begin{equation*}
T_{f}\left(r, r_{0}, L, \kappa\right)=N_{f}\left(r, r_{0}, D\right)+m_{f}(r, D)-m_{f}\left(r_{0}, D\right) \tag{1.1}
\end{equation*}
$$

if $r>r_{0}>0$ and $f\left(\mathbf{C}^{m}\right) \ddagger \operatorname{supp} D$.
The defect of $f$ for $D \in|L|$ is defined by

$$
\delta_{f}(D)=\underset{r \rightarrow \infty}{\lim \inf } \frac{m_{f}(r, D)}{T_{f}\left(r, r_{0}, L, \kappa\right)}
$$

(1.1) implies $0 \leq \delta_{f}(D) \leq 1$.

Now assume $X=\mathbf{P}_{n}$. If $f: \mathbf{C}^{m} \rightarrow \mathbf{P}_{n}$ is a meromorphic map then we recall that $u: \mathbf{C}^{m} \rightarrow \mathbf{C}^{n+1}$ is a representation for $f$ if $\mathbf{P} \circ u=f$ on $\mathbf{C}^{m}-u^{-1}(0) \neq \emptyset$ and the representation $u$ is said to be reduced if $\operatorname{dim} u^{-1}(0) \leq m-2$.

Let $L=H$ be the hyperplane section bundle on $\mathbf{P}_{n}$ with the metric $\kappa$ induced by the standard metric on $\mathbf{C}^{n+1}$. Let

$$
T_{f}\left(r, r_{0}\right)=T_{f}\left(r, r_{0}, H, \kappa\right)
$$

If $D=D[\alpha] \in|H|$ is a hyperplane in $\mathbf{P}_{n}$ and $u: \mathbf{C}^{m} \rightarrow \mathbf{C}^{n+1}$ is a reduced representation of $f$ then Jensen's formula states that

$$
\begin{equation*}
N_{f}\left(r, r_{0}, D\right)=\int_{\mathbf{C}^{m}\langle r\rangle} \log |\alpha \circ u| \sigma=\int_{\mathbf{C}^{m}\left\langle r_{0}\right\rangle} \log |\alpha \circ u| \sigma . \tag{1.2}
\end{equation*}
$$

(1.1) and (1.2) imply

$$
\begin{equation*}
T_{f}\left(r, r_{0}\right)=\int_{\mathrm{C}^{m}\langle r\rangle} \log |u| \sigma-\int_{\mathrm{C}^{m}\left\langle r_{0}\right\rangle} \log |u| \sigma \tag{1.3}
\end{equation*}
$$

## 2. Associated maps

Let $B$ be a holomorphic ( $m-1,0$ ) form on $\mathbf{C}^{m}$. We shall define a differential operator $D_{B}$ as follows. Let $u: \mathbf{C}^{m} \rightarrow \mathbf{C}^{n+1}$ be a holomorphic map. Then

$$
u^{\prime}=D_{B} u: \mathbf{C}^{m} \rightarrow \mathbf{C}^{n+1}
$$

is a holomorphic map defined by

$$
d u \wedge B=D_{B} u d z_{1} \wedge \cdots \wedge d z_{m}
$$

The differential operator $D_{B}$ can be repeated so we can define

$$
u^{(p)}=D_{B}^{p} u=D_{B}\left(D_{B}^{p-1} u\right) .
$$

Let $f: \mathbf{C}^{m} \rightarrow \mathbf{P}_{n}$ be a meromorphic map and $u: \mathbf{C}^{m} \rightarrow \mathbf{C}^{n+1}$ a representation of $f$. Take $p=0, \ldots, n$. Then

$$
u_{p}=u_{p, B}=u \wedge u^{\prime} \wedge \cdots \wedge u^{(p)}
$$

is the $p$ th associated representation. Obviously

$$
u_{p}: \mathbf{C}^{m} \rightarrow \tilde{G}_{n, p} \subseteq \bigwedge_{p+1} \mathbf{C}^{n+1}
$$

is a holomorphic map. (Here $\tilde{G}_{n, p}$ is the Grassmannian cone of $(p+1)$-planes in $\mathbf{C l}^{n+1}$.)

We say that $f$ is general of order $p$ for $B$ if and only if $u_{p} \neq 0$. Also $f$ is general for $B$ if and only if $f$ is general of order $n$ for $B$, in which case $f$ is general of order $p$ for all $p=0, \ldots, n$. Then

$$
f_{p}=\mathbf{P} \circ u_{p}: \mathbf{C}^{m} \rightarrow G_{n, p}=\mathbf{P}\left(\tilde{G}_{n, p}\right)
$$

is a well defined meromorphic map with $\mu_{p}$ as a representation. The meromorphic map $f_{p}$ is called the $p$ th associate map of $f$ for $B$.

Let $\Omega_{p}$ be the Fubini-Kaehler form on $\mathbf{P}\left(\bigwedge_{p+1} \mathbf{C}^{n+1}\right)$ respectively on $G_{n, p}$ for $p=0, \ldots, n$. Let $f: \mathbf{C}^{m} \rightarrow \mathbf{P}_{n}$ be a meromorphic map general for $B$. Define the $p$ th volume form of $f$ for $B$ by

$$
H_{p}=i_{m-1} m f_{p}^{*}\left(\Omega_{p}\right) \wedge B \wedge \bar{B} \quad \text { on } \mathbf{C}^{m}-I_{f_{p}}
$$

where $i_{m-1}=(i / 2 \pi)^{m-2}(m-1)!(-1)^{(m-1)(m-2) / 2}$ and $I_{f_{p}}$ is the indeterminacy set of $f_{p}$. Let $h_{p}$ be such that $H_{p}=h_{p} v^{m}$; then we have

$$
\begin{equation*}
h_{0}=\frac{\left|u_{1}\right|^{2}}{|u|^{4}} \text { and } h_{p}=\frac{\left|u_{p-1}\right|^{2}\left|u_{p+1}\right|^{2}}{\left|u_{p}\right|^{4}} \text { for } 0<p<n . \tag{2.1}
\end{equation*}
$$

Define

$$
\begin{equation*}
S_{p}(r)=\frac{1}{2} \int_{\mathbf{C}^{m}\langle r\rangle} \log \left|h_{p}\right| \sigma \tag{2.2}
\end{equation*}
$$

Let $f: \mathbf{C}^{m} \rightarrow \mathbf{P}_{n}$ be a non-degenerate meromorphic map (i.e., $f\left(\mathbf{C}^{m}\right)$ is not contained in any hyperplane in $\mathbf{P}_{n}$ ). Then (see [9] Theorem 7.1) there exists a holomorphic ( $m-1,0$ ) form on $\mathbf{C}^{m}$ whose coefficients are polynomials of degree at most $n-1$ and such that $f$ is general for $B$ and

$$
\begin{equation*}
i_{m-1} B \wedge \bar{B} \leq\left(1+r^{2 n-2}\right) v^{m-1} \quad \text { on } \mathbf{C}^{m}[r] . \tag{2.3}
\end{equation*}
$$

## 3. General position

Let $X$ be a projective variety of dimension $n_{0}$ in $\mathbf{P}_{n}$. For $p=1, \ldots, n$, set

$$
\tilde{X}_{p}=\left\{(x, y) \in X \times G_{n, p} \mid x \in E(y)\right\}
$$

where $E(y) \subseteq \mathbf{P}_{n}$ denotes the $p$-plane associated by $y \in G_{n, p}$. We know that the projection $\pi_{p}: \tilde{X}_{p} \rightarrow G_{n, p}$ is proper and holomorphic. Therefore $X_{p}=$ $\pi_{p}\left(\tilde{X}_{p}\right)$ is a compact analytic subset of $G_{n, p}$. For any $D=D[\alpha] \in|H|$ hyperplane in $\mathbf{P}_{n}$ we define

$$
u_{p}(D): X_{p} \rightarrow \mathbf{R}[0,1]
$$

by

$$
u_{p}(D)(x)=\frac{|x L \alpha|^{2}}{|x|^{2}|\alpha|^{2}} \quad \text { for } p=0, \ldots, n
$$

and for $x=\mathbf{P}(x) \in X_{p}$. Here $x L \alpha$ is such that

$$
\left(x\llcorner\alpha, \beta)=(x, \alpha \wedge \beta) \quad \text { for every } \beta \in \bigwedge_{p}\left(\mathbf{C}^{n-1}\right)^{*}\right.
$$

If $D_{j}=D\left[\alpha_{j}\right]$ are hyperplanes in $\mathbf{P}_{n}, j=1, \ldots, q$ define

$$
c_{p}=c_{p}\left(D_{1}, \ldots, D_{q}\right): X_{p} \rightarrow \mathbf{Z} \text { for } p=0, \ldots, n
$$

by

$$
c_{p}(x)=\#\left\{j \in \mathbf{N}[1, q] \mid u_{p}\left(D_{j}\right)(x)=0\right\}
$$

Definition 3.1. Let $k_{0}, k_{1} \in \mathbf{N}$ such that $n_{0} \leq k_{1}$. We say that $D_{1}, \ldots, D_{q}$ are in general position of order $\left(k_{0}, k_{1}\right)$ with respect to $X$ if $c_{0}(x) \leq k_{1}$ for every $x \in X$ and if $\alpha_{j_{0}}, \ldots, \alpha_{j_{1} 1}$ span a linear subspace of dimension at least $k_{0}+1$ in $\left(\mathbf{C}^{n+1}\right)^{*}$ for every choice of $1 \leq j_{0}<\cdots<j_{k_{1}} \leq q$.

We observe that if $D_{1}, \ldots, D_{q}$ are in general position of order $\left(k_{0}, k_{1}\right)$ with respect to $X$ then

$$
\begin{equation*}
n_{0} \leq k_{0} \leq \operatorname{Min}(k, n) \tag{3.1}
\end{equation*}
$$

and for any $t \leq k_{1}$ and $1 \leq j_{0}<\cdots<j_{t} \leq q$ then

$$
\begin{equation*}
\operatorname{dim} \bigcap_{n=0}^{t} D_{j_{h}} \leq\left(n-k_{0}\right)+\left(k_{1}-t\right) \tag{3.2}
\end{equation*}
$$

Now proceeding as in [3] for the proof of Lemma 3.2, for any $x \in X$ we have

$$
\begin{equation*}
c_{p}(x) \leq \lambda\left(k_{0}, k_{1}, p\right) \quad \text { for } p=0, \ldots, n \tag{3.3}
\end{equation*}
$$

where $\lambda\left(k_{0}, k_{1}, p\right)$ is an abbreviation for $\operatorname{Min}\left(k_{1}, n-k_{0}+k_{1}-t\right)$.
Let $f: \mathbf{C}^{m} \rightarrow \mathbf{P}_{n}$ be a meromorphic map not contained in any hyperplane in
$\mathbf{P}_{n}$. Consider a holomorphic $(m-1,0)$ form $B$. Assume $f$ is general for $B$ and $f\left(\mathbf{C}^{m}\right) \subseteq X$, then $f_{p}\left(\mathbf{C}^{m}\right) \subseteq X_{p}$ for $p=0, \ldots, n$. So the map $\phi_{p}(D)=u_{p}(D) \circ f_{p}$ is well defined for every hyperplane $D$. Set

$$
m_{p}(r, D)=-\int_{\mathbf{C} m\langle r\rangle} \log \phi_{p}(D) \sigma .
$$

Then we have

$$
\begin{gather*}
m_{0}(r, D)=m_{f}(r, D)  \tag{3.4}\\
\left.m_{n}(r, D)=0 \quad \text { (since } f_{n} \text { is constant }\right) . \tag{3.5}
\end{gather*}
$$

From (3.4) and (3.5) we get

$$
\begin{equation*}
\sum_{p=0}^{n-1}\left(m_{p}(r, D)-m_{p+1}(r, D)\right)=m_{f}(r, D) \tag{3.6}
\end{equation*}
$$

Let $D_{1}, \ldots, D_{q}$ be distinct hyperplanes in $\mathbf{P}_{n}$ in general position of order $\left(k_{0}, k_{1}\right)$ w.r.t. $X$. Set

$$
Y_{p}=\bigcup_{j=1}^{q}\left(u_{p}\left(D_{j}\right)^{-1}(0)\right) \leq X_{p} \quad \text { for } p=0, \ldots, n
$$

Then, similarly as in [3] for Proposition 4.1 we have

$$
\begin{equation*}
\sum_{j=1}^{q} \log \left(\frac{\phi_{p+1}\left(D_{j}\right)}{\phi_{p}\left(D_{j}\right)^{1-\beta}}\right) \leq \lambda\left(k_{0}, k_{1}, p\right) \log \left(\sum_{j=1}^{q} \frac{\phi_{p+1}\left(D_{j}\right)}{\phi_{p}\left(D_{j}\right)^{1-\beta}}\right)+O(1) \tag{3.7}
\end{equation*}
$$

on $\mathbf{C}^{m}-f_{p}^{-1}\left(Y_{p}\right)$, where $0<\beta<1$.
We note that, by (2.1) and (2.2),

$$
\begin{aligned}
& -\sum_{p=0}^{n-1} \lambda\left(k_{0}, k_{1}, p\right) S_{p}(r) \\
& \quad=k_{1} \int_{C^{m}\langle r\rangle} \log |u| \sigma+\left(k_{1}-k_{0}\right) \int_{C^{m}\langle r\rangle} \log \frac{\left|u_{n-1}\right|}{\left|u_{n}\right|} \sigma \\
& \quad+\int_{C_{m}\langle r\rangle} \log \frac{\left|u_{n-k_{0}}\right|}{\left|u_{n}\right|} \sigma .
\end{aligned}
$$

Set $\quad Q_{k}(r, f)=\int_{C^{m}\langle r\rangle} \log \frac{\left|u_{n-k}\right|}{\left|u_{n}\right|} \sigma \quad$ and $\quad Q(r, f)=Q(r, f)$.
Therefore by (1.3) we have

$$
\begin{align*}
&-\sum_{p=0}^{n-1} \lambda\left(k_{0}, k_{1}, p\right) S_{p}(r)  \tag{3.8}\\
&=k_{1} T_{f}\left(r, r_{0}\right)+\left(k_{1}-k_{0}\right) Q(r, f)+Q_{k_{0}}(r, f)+O(1)
\end{align*}
$$

## 4. Defect relation

Before stating the theorem we fix some notations. Let $g$ and $h$ be real valued functions on $\mathbf{R}\left(r_{0}, \infty\right)$. We write $g(r) \leq h(r)$ if a subset $E$ of $\mathbf{R}\left(r_{0}, \infty\right)$ with finite Lebesgue measure exists such that $g(r) \leq h(r)$ for all $r \in \mathbf{R}\left(r_{0}, \infty\right)$ - E.

We set

$$
\tau_{k}(f)=\underset{r \rightarrow \infty}{\lim \sup } \frac{Q_{k}(r, f)}{T_{f}\left(r, r_{0}\right)}
$$

and $\tau_{f}=\tau_{1}(f)$.
Theorem 4.1. (Second Main Theorem and Defect Relation). Let $f$ : $\mathbf{C}^{m} \rightarrow \mathbf{P}_{n}$ be a non-degenerate, transcendental, meromorphic map. Let $D_{1}, \ldots, D_{q}$ be hyperplanes in $\mathbf{P}_{n}$ in general position of order $\left(k_{0}, k_{1}\right)$ with respect to a projective variety $X$ of dimension $n_{0}$ in $\mathbf{P}_{n}$. Then

$$
\begin{align*}
\sum_{j=1}^{q} m_{f}\left(r, D_{j}\right) \leq & k_{1} T_{f}\left(r, r_{0}\right)+\left(k_{1}-k_{0}\right) Q(r, f)  \tag{4.1}\\
& +Q_{k_{0}}(r, f)+O\left(\log r T_{f}\left(r, r_{0}\right)\right)
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{q} \delta_{f}\left(D_{j}\right) \leq k_{1}+\left(k_{1}-k_{0}\right) \tau_{f}+\tau_{k_{0}}(f) \tag{4.2}
\end{equation*}
$$

Proof. Since the proof is rather long and since it is similar to the proof of the Second Main Theorem in [4] for $m=1$ and in [9] or [12] for the general case, we shall give here only a sketch of it.

By (3.6) we have

$$
\begin{equation*}
\sum_{j=1}^{q} m_{f}\left(r, D_{j}\right)=\sum_{j=1}^{q} \sum_{p=0}^{n}\left(m_{p}\left(r, D_{j}\right)-m_{p+1}\left(r, D_{j}\right)\right) \tag{4.3}
\end{equation*}
$$

Let $\gamma_{p}=\operatorname{Max}_{1 \leq j \leq q} m_{p}\left(r_{0}, D_{j}\right)$ and

$$
\beta(r)=\frac{1}{q\left(T_{f_{p}}\left(r, r_{0}\right)+\gamma_{p}\right)}
$$

Since $T_{f_{p}}\left(r, r_{0}\right) \rightarrow \infty$ for $r \rightarrow \infty$ then there exists $r^{\prime}>r_{0}$ such that $0<\beta(r)<1$ for all $r>r^{\prime}$. Using (3.7) and proceeding similarly as in [9] for Lemma 11.4 we get

$$
\begin{align*}
\lambda\left(k_{0}, k_{1}, p\right) S_{p}(r)+\sum_{j=1}^{q}( & \left.m_{p}\left(r, D_{j}\right)-m_{p+1}\left(r, D_{j}\right)\right)+O(1)  \tag{4.4}\\
& \leq \frac{\lambda\left(k_{0}, k_{1}, p\right)}{2} \int_{C_{m}\langle r\rangle} \log \left(\sum_{j=1}^{q} \frac{\phi_{p+1}\left(D_{j}\right)}{\phi_{p}\left(D_{j}\right)^{1-\beta(r)}} h_{p}\right) \sigma .
\end{align*}
$$

Using Ahlfors Estimates (see [9] Theorem 10.3) and proceeding as in [9] for lemma 11.5 we get

$$
\begin{equation*}
\int_{C m\langle r\rangle} \log \left(\sum_{j=1}^{q} \frac{\phi_{p+1}\left(D_{j}\right)}{\phi_{p}\left(D_{j}\right)} h_{p}\right) \sigma \leq O\left(\log r T_{f}\left(r, r_{0}\right)\right) \tag{4.5}
\end{equation*}
$$

Then (4.4) and (4.5) yield

$$
\begin{align*}
\lambda\left(k_{0}, k_{1}, p\right) S_{p}(r)+\sum_{j=1}^{q}\left(m_{p}\left(r, D_{j}\right)-m_{p+1}\left(r, D_{j}\right)\right) &  \tag{4.6}\\
& \leq O\left(\log r T_{f}\left(r, r_{0}\right)\right) .
\end{align*}
$$

Therefore by (3.8), (4.3) and (4.6) we get (4.1). Since $f$ is transcendental, by the definition of $\tau_{f}, \tau_{k}(f)$ and (4.1) we get

$$
\begin{aligned}
\sum_{j=1}^{q} \delta_{f}\left(D_{j}\right) & =\sum_{j=1}^{q} \lim \inf \frac{m_{f}\left(r, D_{j}\right)}{T_{f}\left(r, r_{0}\right)} \\
& \leq \underset{r \rightarrow \infty}{\lim \inf }\left(\sum_{j=1}^{q} \frac{m_{f}\left(r, D_{j}\right)}{T_{f}\left(r, r_{0}\right)}\right) \\
& \leq k_{1}+\left(k_{1}-k_{0}\right) \tau_{f}+\tau_{k_{0}}(f)
\end{aligned}
$$

Q.E.D.

We observe that

$$
\begin{align*}
Q_{n}(r, f) & =T_{f}\left(r, r_{0}\right)-N_{\theta}\left(r, r_{0}\right)  \tag{4.7}\\
& =O(1) \\
& \leq T_{f}\left(r, r_{0}\right)+O(1)
\end{align*}
$$

where $\theta$ is the Wronskian divisor of $f$. More generally,

$$
Q_{k}(r, f)=\sum_{s=n-k+1}^{n} \int_{\mathbf{c} m\langle r\rangle} \log \frac{\left|u_{s-1}\right|}{\left|u_{s}\right|} \sigma
$$

and since (see [9] Proposition 10.6)

$$
\begin{aligned}
S_{p}(r) & =\int_{C_{m}\langle r\rangle} \log \frac{\left|u_{p-1}\right|}{\left|u_{p}\right|} \sigma-\int_{C^{m}\langle r\rangle} \frac{\left|u_{p}\right|}{\left|u_{p+1}\right|} \sigma \\
& \leq O\left(\log r T_{f}\left(r, r_{0}\right)\right)
\end{aligned}
$$

we have

$$
\begin{equation*}
Q_{k}(r, f) \leq k Q(r, f)+O\left(\log r T_{f}\left(r, r_{0}\right)\right) \tag{4.8}
\end{equation*}
$$

Therefore (4.7) and (4.8) imply the following result.

Corollary 4.2. With the same notations as in Theorem 4.1 we have

$$
\sum_{j=1}^{q} m_{f}\left(r, D_{j}\right) \leq\left\{\begin{array}{rr}
k_{1}\left(T_{f}\left(r, r_{0}\right)+Q(r, f)\right) \\
& +O\left(\log r T_{f}\left(r, r_{0}\right)\right)  \tag{4.9}\\
2 k_{1} T_{f}\left(r, r_{0}\right)+O\left(\log r T_{f}\left(r, r_{0}\right)\right) & \\
\left(k_{1}+1\right) T_{f}\left(r, r_{0}\right)+\left(k_{1}-n\right) Q(r, f) & \\
+O\left(\log r T_{f}\left(r, r_{0}\right)\right) & \\
(n+1) T_{f}\left(r, r_{0}\right)+O\left(\log r T_{f}\left(r, r_{0}\right)\right) & \text { if } k_{0}=n \\
& \text { if } k_{1}=k_{0}=n
\end{array}\right.
$$

$$
\sum_{j=1}^{q} \delta_{f}\left(D_{j}\right) \leq \begin{cases}k_{1}\left(1+\tau_{f}\right) & \text { if } n=1  \tag{4.10}\\ 2 k_{1} & \text { if } k_{0}=n \\ k_{1}+1+\left(k_{1}-n\right) \tau_{f} & \text { if } k_{1}=k_{0}=n \\ n+1 & \end{cases}
$$

Remark 4.3. If $k_{1}=k_{0}=n$ and $X=\mathbf{P}_{n}$ then "general position of order ( $k_{0}, k_{1}$ ) with respect to $\mathbf{P}_{n}$ " is the same as "general position". Therefore (4.10) for $k_{0}=k_{1}=n$ is the classical result.

## 5. An application

First we fix some notations and recall some known results. Let $Y$ be a compact, complex, $n$-dimensional manifold. Let $L$ be a line bundle over $Y$. Set $N+1=\operatorname{dim}_{\mathbf{C}} \Gamma(Y, L)$. Let $\psi: Y \rightarrow \mathbf{P}_{N}$ be the dual classification map. Then $L$ is spanned if and only if $\psi$ is a holomorphic map. In addition, if $L$ is spanned, we have that $\psi(Y)$ is a projective variety in $\mathbf{P}_{N}$. If $H$ is the hyperplane section bundle over $\mathbf{P}_{N}$ then $\psi^{*}(H)=L$ and $\psi^{*}: \Gamma\left(\mathbf{P}_{N}, H\right) \rightarrow \Gamma(Y, L)$ is an isomorphism.

Definition 5.1. Let $D_{1}, \ldots, D_{q}$ be divisors of $L$. We say that $D_{1}, \ldots, D_{q}$ are in general position if no point of $Y$ is contained in $n+1$ distinct $D_{j}$.

We shall need later the following general assumptions.
(A1) Let $Y$ be a compact, complex $n$-dimensional manifold and $L$ a line bundle over $Y$ with hermitian metric $\psi^{*}(\kappa)$ the pull-back of the metric in the hyperplane section bundle $H$ over $\mathbf{P}_{N}$. Set $n_{0}=\operatorname{dim} \psi(Y)$.
(A2) Let $f: \mathbf{C}^{m} \rightarrow Y$ be a meromorphic map. Set

$$
h=\psi \circ f: \mathbf{C}^{m} \rightarrow \mathbf{P}_{N}
$$

Assume $h$ is not constant.
(A3) Let $\mathbf{P}_{s} \subseteq \mathbf{P}_{N}$ be a subspace of minimal dimension such that $h\left(\mathbf{C}^{m}\right) \subseteq$ $\mathbf{P}_{s}$. Define $\tilde{h}: \mathbf{C}^{m} \rightarrow \mathbf{P}_{s}$ by $h(z)=\tilde{h}(z)$ for every $z \in \mathbf{C}^{m}$. If $\imath: \mathbf{P}_{s} \hookrightarrow \mathbf{P}_{N}$ is the inclusion then $h=\imath \circ \tilde{h}$. We have $\tilde{h}$ non-degenerate.
(A4) Let $B$ be a holomorphic ( $m-1,0$ ) form on $\mathbf{C}^{m}$. Assume $\tilde{h}$ is general for $B$ and $i_{m-1} B \wedge \bar{B} \leq\left(1+r^{2 s-2}\right) v^{m-1}$ on $\mathbf{C}^{m}[r]$.
(A5) Let $D_{1}, \ldots, D_{q}$ be distinct divisors of $L$ in general position such that $f\left(\mathbf{C}^{m}\right) \nsubseteq \operatorname{supp} D_{j}$ for $j=1, \ldots, q$. Assume $q \geq n+1$.

Definition 5.2. Assume (A1)-(A4). Then we define

$$
\begin{align*}
Q(r, f) & =Q(r, \tilde{h})  \tag{5.1}\\
\tau_{f} & =\tau_{\tilde{h}} \tag{5.2}
\end{align*}
$$

Theorem 5.3. Assume (A1)-(A5). Abbreviate $T_{f}\left(r, r_{0}, L, \psi^{*}(\kappa)\right)$ by $T_{f}\left(r, r_{0}\right)$. Then

$$
\sum_{j=1}^{q} m_{f}\left(r, D_{j}\right) \leq\left\{\begin{array}{l}
n\left(T_{f}\left(r, r_{0}\right)+Q(r, f)\right)+O\left(\log r T_{f}\left(r, r_{0}\right)\right)  \tag{5.3}\\
2 n T_{f}\left(r, r_{0}\right)+O\left(\log r T_{f}\left(r, r_{0}\right)\right) \quad \text { if } s=1
\end{array}\right.
$$

and

$$
\sum_{j=1}^{q} \delta_{f}\left(D_{j}\right) \leq\left\{\begin{array}{l}
n\left(1+\tau_{f}\right)  \tag{5.4}\\
2 n \quad \text { if } s=1
\end{array}\right.
$$

Proof. Let $\tilde{D}_{1}, \ldots, \tilde{D}_{q}$ be hyperplanes in $\mathbf{P}_{N}$ such that $\psi^{*}\left(\tilde{D}_{j}\right)=D_{j}$. Then

$$
\begin{align*}
T_{f}\left(r, r_{0}\right) & =T_{h}\left(r, r_{0}\right), \\
N_{f}\left(r, r_{0}, D_{j}\right) & =N_{h}\left(r, r_{0}, \tilde{D}_{j}\right),  \tag{5.5}\\
m_{f}\left(r, D_{j}\right) & =m_{h}\left(r, \tilde{D}_{j}\right) .
\end{align*}
$$

Moreover $\tilde{D}_{1}, \ldots, \tilde{D}_{q}$ are in general position of order $\left(n_{0}, n\right)$ with respect to $\psi(Y)$. Let $P_{j}=\iota^{*}\left(\tilde{D}_{j}\right)$ be hyperplanes in $P_{s}$. Then we have that $P_{1}, \ldots, P_{q}$ are in general position of order ( $n_{0}^{\prime}, n$ ) with respect to $X=\psi(Y) \cap \mathbf{P}_{s}$ where $n_{0}^{\prime}=\operatorname{Max}\left(\operatorname{dim} X, n_{0}-N+s\right)$. Since $h=i \circ \tilde{h}$ we have

$$
\begin{align*}
T_{h}\left(r, r_{0}\right) & =T_{h}\left(r, r_{0}, H, \kappa\right)=T_{\hbar}\left(r, r_{0}, \imath^{*} H, \imath^{*} \kappa\right)=T_{\tilde{h}}\left(r, r_{0}\right), \\
N_{h}\left(r, r_{0}, \tilde{D}_{j}\right) & =N_{\hbar}\left(r, r_{0}, P_{j}\right)  \tag{5.6}\\
m_{h}\left(r, \tilde{D}_{j}\right) & =m_{\tilde{h}}\left(r, P_{j}\right)+O(1)
\end{align*}
$$

Hence by (5.5) and (5.6) we get

$$
\begin{align*}
T_{f}\left(r, r_{0}\right) & =T_{h}\left(r, r_{0}\right) \\
N_{f}\left(r, r_{0}, D_{j}\right) & =N_{\hbar}\left(r, r_{0}, P_{j}\right)  \tag{5.7}\\
m_{f}\left(r, D_{j}\right) & =m_{\tilde{n}}\left(r, P_{j}\right)+O(1)
\end{align*}
$$

Applying (4.9) and (4.10) to the map $\tilde{h}$ and hyperplanes $P_{1}, \ldots, P_{q}$ and using (5.7) we obtain (5.3) and (5.4), Q.E.D.

## 6. Exponential maps

In the previous sections we found that if $f: \mathbf{C}^{\boldsymbol{m}} \rightarrow \mathbf{P}_{n}$ is a meromorphic map such that $f\left(\mathbf{C}^{m}\right) \subseteq \mathbf{P}_{1}$, then

$$
Q(r, f) \leq T_{f}\left(r, r_{0}\right)+O(1)
$$

Our aim, in this section, is to extend this result to a wider class of meromorphic maps.

Let $f: \mathbf{C}^{m} \rightarrow \mathbf{P}_{n}$ be a non-constant meromorphic map with

$$
u=\left(f_{0}, \ldots, f_{n}\right)
$$

as reduced representation. We say that $f$ is an exponential map if $f_{j}=$ $\psi_{j} \exp \phi_{j}$, where $\psi_{j}$ and $\phi_{j}$ are holomorphic functions on $\mathbf{C}^{m}$ for $j=0, \ldots, n$, and there exists a holomorphic function $u$ on $\mathbf{C}^{m}$ such that if $h_{j}=\psi_{j} u^{-1}$ then

$$
T_{h j}\left(r, r_{0}\right)=o\left(T_{f}\left(r, r_{0}\right)\right)
$$

We also say that the holomorphic function $u$ satisfying the above condition is admissible for $f$.

We note that if $f$ is an exponential map then $f$ is transcendental (see Mori [5]).

Let $u=\left(\psi_{0} \exp \phi_{0}, \ldots, \psi_{n} \exp \phi_{n}\right)$ be the reduced representation of the exponential map $f$. Then we set

$$
R(u)=\left(\exp \phi_{0}, \ldots, \exp \phi_{n}\right)
$$

and

$$
I(u)=\left(\exp \left(-\phi_{0}\right), \ldots, \exp \left(-\phi_{n}\right)\right)
$$

Then $R(f)=\mathbf{P} \circ R(u)$ and $I(f)=\mathbf{P} \circ I(u)$ are exponential maps. We say that $f$ is a special exponential map (S.E.M.) if

$$
\begin{equation*}
T_{I(f)}\left(r, r_{0}\right)=T_{R(f)}\left(r, r_{0}\right)+o\left(T_{f}\left(r, r_{0}\right)\right) \tag{6.1}
\end{equation*}
$$

Definition 6.1. Let $f: \mathbf{C}^{m} \rightarrow \mathbf{P}_{n}$ be a meromorphic map. We say that $f \in \mathscr{R}$ (or $f \in \mathscr{R}_{S}$ ) when the following are satisfied.
(i) There exist an exponential map (or an S.E.M.) $g: \mathbf{C}^{m} \rightarrow \mathbf{P}_{N}$ and a linear map $\lambda: \mathbf{C}^{N+1} \rightarrow \mathbf{C}^{n+1}$ such that $f=\mathbf{P}(\lambda) \circ g$.
(ii) If $u$ and $g$ are reduced representations of $f$ and $g$ respectively and if $u$ is a holomorphic function on $\mathbf{C}^{m}$ such that $u_{u}=\lambda \circ g$ then $u$ is admissible for $g$.
(iii) $g$ is non-degenerate.
(iv) $\lambda(0, \ldots, 0,1,0, \ldots, 0) \neq 0$ for $j=0, \ldots, N$.

Let $f \in \mathscr{R}$ then $(g, \lambda)$ defined above satisfying (i)-(iv) is called a decomposition of $f$.

Let $f: \mathbf{C}^{m} \rightarrow \mathbf{P}_{n}$ be a meromorphic map. We also must define $Q(r, f)$ when $f$ is degenerate.

Let $\mathbf{P}_{k} \subseteq \mathbf{P}_{n}$ be the subspace of minimal dimension such that $f\left(\mathbf{C}^{m}\right) \subseteq \mathbf{P}_{k}$. Then $\tilde{f}: \mathbf{C}^{m} \rightarrow \mathbf{P}_{k}$ defined by $\tilde{f}(z)=f(z)$ for every $z \in \mathbf{C}^{m}$ is non-degenerate. Let $B$ be a holomorphic ( $m-1,0$ ) form on $\mathbf{C}^{m}$ whose coefficients are polynomials of degree at most $k-1$ and therefore satisfying (2.3). Assume $\tilde{f}$ is general for $B$. Then we define

$$
Q(r, f)=Q(r, \tilde{f})
$$

If $f \in \mathscr{R}$ with $(g, \lambda)$ as decomposition then $\tilde{f} \in \mathscr{R}$ with $(g, \tilde{\lambda})$ as decomposition, where $\tilde{\lambda}: \mathbf{C}^{N+1} \rightarrow \mathbf{C}^{k+1}$ is defined by $\tilde{\lambda}(z)=\lambda(z)$ for every $z \in \mathbf{C}^{N+1}$.

Proposition 6.2. For every $f \in \mathscr{R}_{S}$ we have

$$
\begin{equation*}
Q(r, f) \leq T_{f}\left(r, r_{0}\right)+o\left(T_{f}\left(r, r_{0}\right)\right) \tag{6.2}
\end{equation*}
$$

As a direct consequence of Proposition 6.2 we have the following result.
Theorem 6.3. Assume that (A1)-(A5) holds. Then if $h\left(\mathbf{C}^{m}\right) \subseteq \mathbf{P}_{1} \subseteq \mathbf{P}_{N}$ or if $h \in \mathscr{R}_{s}$ we have

$$
\begin{gather*}
\sum_{j=1}^{q} m_{f}\left(r, D_{j}\right) \leq 2 n T_{f}\left(r, r_{0}\right)+o\left(T_{f}\left(r, r_{0}\right)\right)  \tag{6.3}\\
\sum_{j=1}^{q} \delta_{f}\left(D_{j}\right) \leq 2 n \tag{6.4}
\end{gather*}
$$

Before proving Proposition 6.2 we want to show that $\mathscr{R}_{S}$ is not empty. In fact it extends the class of meromorphic maps for which Shiffman [7] proved (6.4).

Proposition 6.4. Let $f: \mathbf{C}^{m} \rightarrow \mathbf{P}_{n}$ be an exponential map with

$$
u=\left(\psi_{0} \exp \phi_{0}, \ldots, \psi_{n} \exp \phi_{n}\right)
$$

as reduced representation. If one of the following conditions is satisfied then $f$ is an S.E.M.

1. There exists an isometry $\alpha: \mathbf{C}^{m} \rightarrow \mathbf{C}^{n}$ such that $-\phi_{j}=\phi_{j} \circ \alpha$ for $j=0, \ldots, n$.
2. There exist a holomorphic function $\phi$ on $\mathbf{C}^{m}$ and real numbers $\lambda_{0}, \ldots, \lambda_{n}$ such that $\phi_{j}=\lambda_{j} \phi$ for $j=0, \ldots, n$.

Proof. If $f$ satisfies condition 1 then since $\sigma$ is invariant by isometry we get $T_{R(f)}\left(r, r_{0}\right)=T_{I(f)}\left(r, r_{0}\right)$ and therefore (6.1).

Suppose now that $f$ satisfies condition 2. Let

$$
\left(j_{0}, \ldots, j_{n}\right)
$$

be a permutation of $(0,1, \ldots, n)$ such that $\lambda_{j_{0}} \leq \cdots \leq \lambda_{j_{n}}$. Let $\alpha_{k}=\lambda_{j_{k}}-\lambda_{j_{0}}$ and $a=\lambda_{j_{0}}$. Then there exist constants $c_{1}>c_{0}>0$ such that

$$
\begin{align*}
c_{0}\left|e^{2 \alpha \phi}\right|\left(1+\left|e^{\phi}\right|^{2}\right)^{\alpha_{n}} & \leq \sum_{j=0}^{n}\left|e^{\phi}\right|^{2 \lambda_{j}}  \tag{6.5}\\
& \leq c_{1}\left|e^{2 \alpha \phi}\right|\left(1+\left|e^{\phi}\right|^{2}\right)^{\alpha_{n}} .
\end{align*}
$$

Therefore if $h=\mathbf{P}\left(1, e^{\Phi}\right): \mathbf{C}^{m} \rightarrow \mathbf{P}_{1}$ then, by (1.3),

$$
T_{R(f)}\left(r, r_{0}\right)=\alpha_{n} T_{h}\left(r, r_{0}\right)+O(1)
$$

and

$$
T_{I(f)}\left(r, r_{0}\right)=\alpha_{n} T_{h}\left(r, r_{0}\right)+O(1) .
$$

Hence (6.1) is satisfied, Q.E.D.

Remark 6.5. (a) Condition 1 in Proposition 6.4 is clearly satisfied when all $\phi_{j}$ are homogeneous polynomials of the same degree or in general when $\phi_{j}=\sum_{k=0}^{\infty} P_{j k}$ where $P_{j k}$ are homogeneous polynomials of degree $2^{h}(2 k+1)$ for a fixed $h \in \mathbf{Z}[0, \infty)$. For example when $h=0$ then $\phi_{j}$ are odd functions.
(b) Processed as in [2] for the proof of Proposition 6.1 it is possible to prove that all the meromorphic maps considered in [7] by Shiffman are in $\mathscr{R}$. Moreover if $(g, \lambda)$ is a decomposition of a meromorphic map in [7] then

$$
g=\mathbf{P}\left(\psi_{0} \exp P_{0}, \ldots, \psi_{N} \exp P_{N}\right)
$$

where all $P_{j}$ are homogeneous polynomials of the same degree. Therefore by (a) we have that $\mathscr{R}_{S}$ extends the Shiffman class.

Proof of Proposition 6.2. Let $(g, \lambda)$ be a decomposition of $f$. Then from (6.1) and

$$
\begin{equation*}
T_{g}\left(r, r_{0}\right) \mid \leq T_{f}\left(r, r_{0}\right)+o\left(T_{f}\left(r, r_{0}\right)\right) \tag{6.6}
\end{equation*}
$$

$$
\begin{gather*}
T_{R(g)}\left(r, r_{0}\right) \leq T_{g}\left(r, r_{0}\right)+o\left(T_{f}\left(r, r_{0}\right)\right)  \tag{6.7}\\
Q(r, g) \leq T_{I(g)}\left(r, r_{0}\right)+o\left(T_{f}\left(r, r_{0}\right)\right)  \tag{6.8}\\
Q(r, f) \leq Q(r, g)+o\left(T_{f}\left(r, r_{0}\right)\right) \tag{6.9}
\end{gather*}
$$

we will get (6.2). Therefore we will prove (6.6)-(6.9). First we note that (6.6) is a direct consequence of Proposition 4.3 in [2]. Let $g=\left(\psi_{0} \exp \phi_{0}, \ldots\right.$, $\left.\psi_{N} \exp \phi_{N}\right)$ and $u$ be reduced representations of $g$ and $f$ respectively and $u$ a holomorphic function such that $u_{u}=\lambda \circ g$. Then if $h_{j}=\psi_{i} / u$ we have by assumption $T_{h_{j}}\left(r, r_{0}\right)=o\left(T_{g}\left(r, r_{0}\right)\right)$. Since

$$
|R(g)| \leq\left(\sum_{j=1}^{N}\left|h_{j}\right|^{-2}\right)^{1 / 2}|u|^{-1}|g|
$$

and

$$
\int_{\mathrm{C} m\langle r\rangle} \log \left(\sum_{j=0}^{N}\left|h_{j}\right|^{2}\right)^{1 / 2} \sigma \leq \sum_{j=0}^{N} T_{h_{j}}\left(r, r_{0}\right)+O(1) \leq o\left(T_{g}\left(r, r_{0}\right)\right),
$$

and we have (6.6), we get (6.7).
Set $\tilde{g}=u^{-1} g$. Then $\tilde{g}_{k}=u^{-(k+1)} g_{k}$ and

$$
\begin{align*}
Q(r, g) & =\int_{C_{m\langle r\rangle}} \log \frac{\left|g_{N-1}\right|}{\left|g_{N}\right|} \sigma  \tag{6.10}\\
& =\int_{C_{m}\langle r\rangle} \log \frac{\left|\tilde{g}_{N-1}\right|}{\left|\tilde{g}_{N}\right|} \sigma-\int_{\mathbf{C}_{m\langle r\rangle}} \log |u| \sigma \\
& \leq \int_{\mathbf{C}^{m}\langle r\rangle} \log \frac{\left|\tilde{g}_{N-1}\right|}{\left|\tilde{g}_{N}\right|} \sigma .
\end{align*}
$$

Write $\tilde{g}=\left(\tilde{g}_{0}, \ldots, \tilde{g}_{N}\right)$ where $\tilde{g}_{j}=h_{j} \exp \phi_{j}$ for $j=0, \ldots, N$. Then

$$
\tilde{g}^{(k)}=\left(\tilde{g}_{0}^{(k)}, \ldots, \tilde{g}_{N}^{(k)}\right)
$$

and $\tilde{g}_{j}^{(k)}=d_{k j} \exp \phi_{j}$ where $d_{k j}$ are meromorphic functions defined recursively by

$$
d_{k j}=d_{k-1, j}^{\prime}+\phi_{j}^{\prime} d_{k-1, j} \text { for } k \in \mathbf{N} \quad \text { and } \quad d_{0 j}=h_{j} .
$$

Set $\Phi=\left(d_{i j}\right)$ for $i, j=0, \ldots, N, \Phi_{k}=\left(d_{i j}\right)$ for $i=0, \ldots, N-1$ and $j=0, \ldots$, $k-1, k+1, \ldots, N$ and $\tilde{\psi}_{k}=\operatorname{det} \Phi_{k}(\operatorname{det} \Phi)^{-1}$. Then it is not difficult to see that

$$
\left|\tilde{g}_{N-1}\right|\left|\tilde{g}_{N}\right|^{-1}=\left(\sum_{j=0}^{N}\left|\tilde{\psi}_{k} e^{-\phi_{k}}\right|^{2}\right)^{1 / 2} .
$$

Proceeding as for the proof of (6.7) we get

$$
\begin{equation*}
\int_{C m\langle r\rangle} \log \frac{\left|\tilde{g}_{N-1}\right|}{\left|\tilde{g}_{N}\right|} \sigma \leq T_{I(g)}\left(r, r_{0}\right)+\sum_{k=0}^{N} T_{\tilde{\psi}_{k}}\left(r, r_{0}\right)+O(1) . \tag{6.11}
\end{equation*}
$$

Now a standard technique in Value Distribution Theory and the Lemma of the Logarithmic Derivative (see Vitter [10]) give us

$$
\begin{equation*}
T_{\widetilde{\psi}_{k}}\left(r, r_{0}\right) \leq o\left(T_{g}\left(r, r_{0}\right)\right) . \tag{6.12}
\end{equation*}
$$

Then (6.10), (6.11), (6.12 and (6.6) imply (6.8).
In order to prove (6.9), without loss of generality we may assume $f$ is non-degenerate. Consider $\varepsilon \in \bigwedge_{N-n} \mathbf{C}^{N+1}$ such that $E(\mathbf{P}(\varepsilon))=\operatorname{Ker} \lambda$. Then there exist constants $c_{1}>c_{0}>0$ such that

$$
c_{0}\left|g_{k} \wedge \varepsilon\right| \leq\left|(\lambda \circ g)_{k}\right|=|u|^{k+1}| | u_{k}\left|\leq c_{1}\right| u_{k} \wedge \varepsilon \mid
$$

for $k=0, \ldots, n$. Therefore

$$
\int_{C_{m}\langle r\rangle} \log \frac{\left|u_{n-1}\right|}{\left|u_{n}\right|} \sigma \leq \int_{C^{m}\langle r\rangle} \log \frac{\left|g_{n-1} \wedge \varepsilon\right|}{\left|g_{n} \wedge \varepsilon\right|} \sigma+\int_{C_{m}\langle r\rangle} \log |u| \sigma+O(1)
$$

Since $u$ is admissible for $g, N_{u}\left(r, r_{0}, 0\right)=o\left(T_{g}\left(r, r_{0}\right)\right)$. Hence

$$
\begin{equation*}
Q(r, g) \leq \int_{C_{m\langle r\rangle}} \log \frac{\left|g_{n-1} \wedge \varepsilon\right|}{\left|g_{n} \wedge \varepsilon\right|} \sigma+o\left(T_{f}\left(r, r_{0}\right)\right) \tag{6.13}
\end{equation*}
$$

Choose an orthonormal base $e_{0}, \ldots, e_{N}$ in $\mathbf{C}^{N+1}$ such that

$$
\varepsilon=e_{n+1} \wedge \cdots \wedge e_{N}
$$

Define $\alpha_{k} \in\left(\bigwedge_{N} C^{N+1}\right)^{*}$ by

$$
\alpha_{k}(x)=x \wedge e_{k} \quad \text { for } x \in \bigwedge_{N} \mathbf{C}^{N+1} \text { and } k=0, \ldots, N .
$$

Set

$$
h_{(k)}=g_{k-1} \wedge e_{k+1} \wedge \cdots \wedge e_{N}
$$

and

$$
h_{(k)}=\mathbf{P}\left(h_{(k)}\right): \mathbf{C}^{m} \rightarrow \mathbf{P}\left(\bigwedge_{N} \mathbf{C}^{N+1}\right) \simeq \mathbf{P}_{N} .
$$

Then by Ahlfors Estimate, and since $f$ is transcendental, we get

$$
\int_{\left.C_{m} / r\right\rangle} \log \frac{\mid h_{(k)_{1}}\left\llcorner\alpha_{k} \mid\right.}{\mid h_{(k)}\left\llcorner\alpha_{k}| | h_{(k)} \mid\right.} \sigma \leq o\left(T_{f}\left(r, r_{0}\right)\right) .
$$

## Moreover we have (see [8] Hilfsatz 4)

$$
\mid h_{(k)_{1}}\left\llcorner\alpha_{k}\left|=\left|g_{k-2} \wedge e_{k} \wedge \cdots \wedge e_{N}\right|\right| g_{k} \wedge e_{k+1} \wedge \cdots \wedge e_{N} \mid .\right.
$$

Therefore we have

$$
\begin{align*}
\int_{\mathrm{C} m\langle r\rangle} \log \frac{\left|g_{k-2} \wedge e_{k} \wedge \cdots \wedge e_{N}\right|}{\mid g_{k-1}} \wedge & \wedge e_{k} \wedge \cdots \wedge e_{N} \mid  \tag{6.14}\\
& \leq \int_{\mathrm{C} m\langle r\rangle} \log \frac{\left|g_{k-1} \wedge e_{k+1} \wedge \cdots \wedge e_{N}\right|}{\left|g_{k} \wedge e_{k+1} \wedge \cdots \wedge e_{N}\right|} \sigma+o\left(T_{f}\left(r, r_{0}\right)\right)
\end{align*}
$$

for $k=1, \ldots, N$. Applying (6.14) recursively we have

$$
\begin{equation*}
\int_{\mathbf{C} m\langle r\rangle} \log \frac{\left|g_{n-1} \wedge \varepsilon\right|}{\left|g_{n} \wedge \varepsilon\right|} \sigma \leq Q(r, g)+o\left(T_{f}\left(r, r_{0}\right)\right) \tag{6.15}
\end{equation*}
$$

and by (6.13) we get (6.9), Q.E.D.

## References

1. L. V. Ahlfors, The theory of meromorphic curves, Acta Soc. Sci. Fenn. (Nova Ser. A), vol. 3 (1941), pp. 1-31.
2. A. Biancofiore, $A$ hypersurface defect relation for a class of meromorphic maps, Trans. Amer. Math. Soc., vol. 270 (1982), pp. 47-60.
3. -_, A defect relation for meromorphic maps, Indiana Univ. Math. J., vol. 32 (1983), pp. 393-405.
4. M. Cowen and P. A. Griffiths, Holomorphic curves and metrics of negative curvature, J. Analyse Math., vol. 29 (1976), pp. 93-152.
5. S. Mori, On the deficiencies of meromorphic mappings of $\mathbf{C}^{n}$ into $\mathbf{P}^{N} \mathbf{C}$, Nagoya Math. J., vol. 67 (1967), pp. 165-176.
6 R. Nevanlinna, Le théorème de Picard-Borel et la Théorie des Fonctions Meromorphes, Gauthier-Villars, Paris, 1929.
6. B. Shiffman, On holomorphic curves and meromorphic maps in projective space, Indiana Univ. Math. J., vol. 28 (1979), pp. 627-641.
7. W. Stoll, Die beiden Hauptsätze der Wertverteilungs-theorie bei Funktionen mehrerer komplexer Veränderlichen I, II, Acta Math., vol. 90 (1953), pp. 1-115; vol. 92 (1954), pp. 55-169.
8. W. Stoll, The Ahlfors Weyl Theory of meromorphic maps on parabolic manifolds, Lecture Notes in Math., Springer-Verlag, New York, to appear.
9. A. Vitter, The lemma of the logarithmic derivative in several complex variables, Duke Math. J., vol. 44 (1977), pp. 89-104.
10. H. Weyl and F. J. Weyl, Meromorphic functions and analytic curves, Princeton University Press, Princeton, N.J., 1943.
11. P. Wong, Defect relations for meromorphic maps from parabolic manifolds into complex projective spaces, Thesis, Univ. of Notre Dame, 1976.

University of Notre Dame<br>Notre Dame, Indiana


[^0]:    Received March 22, 1982.
    ${ }^{1}$ This research was partially supported by a grant of the Consiglio Nazionale delle Ricerche (Italy).

