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PROJECTIVE RESOLUTIONS OVER ARTIN ALGEBRAS
WITH ZERO RELATIONS

BY

E. L. GREEN, D. HAPPEL AND D. ZACHARIA

Introduction

The connection between categories of modules over a finite dimensional
algebra over a field and categories of representations of a finite oriented graph
satisfying a set of relations is well established. The finite oriented graph
associated to such an algebra is called the quiver of the algebra.
More recently, coverings of the quiver of an algebra are playing an increas-

ingly important role in the theory of representations of the algebra. On the
other hand, quivers whose underlying graphs are trees, form an important and
intensively studied class of such graphs.
We begin this paper by introducing a technique for computing the projective

resolutions of simple representations of (possibly infinite) trees. This is done in
Section 1. The section ends with an application to algebras whose quivers are
trees. We show that the global dimension of such an algebra is bounded by one
plus the number of relations.

In the second section we use the technique developed in Section 1 to study
zero relations algebras. Although the quiver of such an algebra need not, in
general, be a tree, there is a (possibly infinite) tree with relations that covers the
quiver. Representations of this covering satisfying the appropriate relations are
closely related to representations of the quiver of the algebra satisfying the
generating relations of the algebra. In particular, we get again an algorithm for
computing projective resolutions of the simple modules of such an algebra. We
apply this to show that if A is a zero relation algebra with N generating
relations, then either the global dimension of A is infinite, or it is bounded by
N 2 + 2. The paper ends with a result showing that if A is a zero relations
algebra of infinite global dimension, then the projective resolutions of the
simple A-modules of infinite projective dimension satisfy a certain type of
periodicity.
We assume the reader is familiar with the basic results connecting the

category of modules over an algebra with the representations of a graph with
relations [1], and also familiarity with [2] and [4] whose notation and terminol-
ogy we use freely. Throughout this paper, k will denote a fixed field.
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1. The main method

Let T be an oriented (possibly infinite) tree and let O be a set of directed
paths in T. If a is an arrow, we denote by i(et) its starting vertex and by e(ct)
its ending vertex. Similarly, if r O, i(r) and e(r) denote the starting vertex
of the directed path r (its ending vertex respectively). We recall that a
k-representation V of the tree T satisfying the relations O, assigns a k-vector
space V(v) to each vertex v of T, and a linear map V(et): V(o) V(w) if
there exists an arrow a: v w, and for every directed path r cq... a, in p,
then V(al)... V(a,) 0. Let us assume that T is locally finite, and given any
vertex v, for every infinite directed path B with i(B) v there exists an r p
whose arrows and vertices are in B. (We recall that in a directed path all the
arrows point in the same direction.)
We denote by rep(T, O) the category formed by the finite dimensional

representations of T satisfying O, i.e., by those V such that V(i) 4:0 for only a
finite number of vertices and each dimkV(i ) is finite.
The morphisms of rep(T, O) are defined in the usual way and for further

details we refer to [1].
To every vertex v of T we associate a one dimensional representation S(v),

having k assigned to v and 0 to every other vertex; for each arrow a, V(a) is
the zero map. It is well known that rep(T, O) has enough projectives and that
every finite dimensional representation has a unique projective cover. For a
vertex v in T, we denote by P(o) the projective cover of S(v). Obviously P(o)
is an indecomposable representation. We note that P(v) is isomorphic to the
representation of T such that

V(w) {ko if there is a directed path from v to w containing no r O
otherwise

and, if a is an arrow, then

V(a) / identity
0

if V(i(a))= V(e(a))= k
otherwise

DEFINITION. Let v, w be two vertices of T. Then T(o, w) in the unique
directed path (if it exists) with the property that T(v, w) is a subtree of T, the
start of T(o, w) is v and its ending vertex is w.

Now let T(o,w) be a subtree of T and let (o Xl,...,x, w} be the
vertices of T(v, w). Let X P(xx)LI LIP(x,) rep(T, O). Let us consider
the functor

ax Hom7- ( X,. ): rep( T, p ) mod End 7- ( x)P,
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where the latter is the category of the finitely generated left modules over the
finite dimensional k-algebra Endr(X)p.

Clearly modEndr(X)p is equivalent to rep(T(v,w),p’) where p’ is the
restriction of p to T(v, w). Let us denote by Q(xi) ax(P(xi)), the indecom-
posable projective T( v, w)-representations, and by U(xi)= ax(S(xi)) the
nonisomorphic simple T(v, w)-representations.
The next proposition will enable us to reduce the problem of finding the

projective resolution of the simple T-representation S(v) to the easier problem
of determining the projective resolution of a T(o, w)-simple representation.
First, we need the following:

Remarks. If a and b are two vertices of T, then Homr(P(a), P(b)) 0
implies the existence of a directed path from b to a. Moreover since there is at
most one path from b to any other vertex we see that if x is a vertex and S(x)
is the simple T-representation then S(x) is a composition factor of P(b) at
most once. More generally, consider

A An_ -- A Ao "--’ S(v) 0

be a minimal projective resolution of the simple T-resolution S(v). Then for a
given vertex x, S(x) is a composition factor of at most one A and of
multiplicity one for that A i. The reason is as follows: As above, the result is
true for Ao. If P(y) is a summand of A then there is a directed path from b to
y since Ao P(b), fl, f2,..., fi is a sequence of nonzero homomorphisms,
and, by minimality, f(P(y)) O. Now if S(x) is a composition factor of A
then S(x) is a composition factor of some P(y) which is a summand of A.
Thus there is a directed path from b to x. Since this path is unique the result
follows. The fact that for trees,

dimExt(S(v), S(w)) < 1

will be used in the next section.

Then

PROPOSITION 1.1. Let v, w be vertices in T.
(a) Assume that there exists a j and a vertex x in T(v, w) such that

(b)

Ext (o,w (V(o), o.

Extr(S(v),S(x)) * O.

Let v, w be such that for some >_ 1,

Ext(S(v),S(w)) * O.
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Then

Ext V(w)) . o.

Proof (a) Let X P(xl)I IP(x2)H llP(x,) where ( x1, X2, Xn}
are the vertices of T(v, w) with v x and w x,. Let

be a minimal projective resolution of S(v) over rep(T,o). If x
{xl,..., xn) and if P(x) is a summand of Aj. for some j, then there is a
directed path from v to x and no directed path from x to any of the x for

1,... n. Therefore by our preceding remark, Homr(X, P(x))= 0. There-
fore Homr(X, ) is a projective resolution of U(v) over T(v, w). To show its
minimality, it is enough to show that each term of Homr(X, ) is indecom-
posable. This is clear again by the remarks preceding the proposition.

(b) Let be a minimal projective resolution of S(v),

"--> A -->Am_l ---> ....-->Ao-->S(v ) "--’>0

with P(w) a direct summand of As. Then, for each j 0,..., let xj be such
that P(xj) is a summand of A and there is a nonzero homomorphism
P(xj)-- P(xj_x) with P(w)= P(xs). Then, let T(v,w) be the complete
subtree of T having (x,... x } as subset of vertices. Using the remarks made
earlier the proposition follows.

DEFINITION. Let T be a directed tree and v, w two vertices. Then, we
define v < w if there exists a directed path from v to w. Let (T, O) be a tree
with relations. We assume that the set of relations is "minimal"; that is, r p
implies that r is not a proper subpath of any s tg. We also assume that if
r p, l(r)>_ 2 and l(r)< o where l(r) denotes the length of r, i.e., the
number of arrows in r. We recall that if r p, by i(r) we denote the origin of
the directed path r and by e(r) its end.

For the remainder of this section we assume that (B, O) is a directed path
with minimal set of relations #. Again we assume that if v is any vertex of B,
then there exists r O such that o < i(r) if the subpath originating from v is
infinite. Before we go on with our next result we establish some notations that
will greatly simplify our proofs.

First, given an indecomposable representation M rep(B, tg) we write it as
a closed interval M [a, b] where S(a) M/rM where rM is the radical of
the representation and S(b)= Soc M. Given the structure of (B, p) if c is a
vertex such that Homo(P(c), M) 4:0 then a < c < b.
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Also, if M and N are indecomposable representations, we have a nonzero
homomorphism f: M--->N where M=[a,b] and N=[c,d] iff c<a<d
and b>d. In this caseKerf=0if b=d and Kerf=[d+l,b]if b>d.
Since every r p can also be expressed as an interval (x, y) it follows
immediately that an indecomposable representation M [a, b] is projective if
and only if either b is a sink (that is, there are no arrows starting at b) or there
is a relation r p such that a < i(r), e(r)= b + 1 if b is not a sink. Next,
given the structure of the indecomposable projective B-representations, it is
clear that if f 4= 0 is a morphism between two indecomposable projective
B-representations, then f is unique up to multiplication by an element of the
ground field. Since the description of such nonzero homomorphisms is obvious,
it is enough to give the terms of the minimal projective resolution of a
B-representation in order to completely describe it.

Before starting our next result, we observe that since the set of relations p is
minimal, given a vertex v and r, r’ O such that i(r) i(r’) o, then r r’.

DEFINITION. Let v0 be a vertex of a directed path B with minimal set of
relations O. We define inductively the associated sequence of relations 5" of v0
(along B): If there is no r 0 such that i(r) v0 then 5a= . Assume there is
r 0 such that i(rl)= vo. Then, let r2 be the relation r # (if it exists)
having the property that i(r1) < i(r2) < e(r) and that i(r2) is minimal satisfy-
ing this double inequality.
Assume that we have constructed r, r2,..., ri. Let

Ri+ (r ple(ri_l) < i(r) < e(ri) }.

If Ri+ 4= 0, let ri+ be such that i(r+ 1) is minimal with ri+ Ri+ 1. Then
is the sequence r1, r2, rN where N is either m if R 4= for all i, or N is
such that RN+ but Ru 4= 0.

Remark. From our definition we see that given a vertex of B, its associated
sequence of relations may be empty, finite or infinite.

THEOREM 1.2. Let ( B, p) be a directed path with minimal set of relations p.
Let vo be a vertex of B and let v be such that there exists an arrow vo v. Let
,ga= (ri)iN= be the associated sequence of relations of oo. Let x e( ri).

(a) If 5= , then 0 ---> P(ox) ---> P(oo) ---> S(vo) ---> 0 is a minimal projec-
tive resolution of the simple B-representation S(vo).

(b) Suppose 5a4= . If N < o, then

0 -’ P(XN) P(XN_I)-- -- P(Xl)-- P(vl)-- P(Vo)"- S(Vo)-- 0

is a minimal projective resolution of S(vo), and if N o then pdsS(vo)= o
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and its minimal projective resolution is

P(oo)- S(oo)-. o.

Proof. (a) Let P(vo) [v0, a]. Since there is no r p such that i(r) vo
we have the following possibilities: a is a sink (i.e., no arrow leaves a and in
this case P(Vl) vl, a]), or there is an r p such that i(r) > v0. Let r’ be
such that for every r p with i(r) > vo, vo < i(r’) < i(r). Then a e(r’) 1.
Clearly v < i(r’) so it follows again that P(vl)= [v 1, a].

Therefore 0 ---> P(vl) P(vo) S(vo) --’> 0 is a minimal projective resolu-
tion of S(vo).

(b) Induction on N. If N 1 let x e(rl). We have

P(vo) [Vo, X 1]
and so

n’(Oo)

By the minimality of p, P(vl) [v1, a] with a > x1, therefore 2(V0) [Xl, a]
and therefore P(xl) maps onto f2(v0). Assume we have proved our statement
up to the i-th step, that is r1, r2,.., ri_ exist. We have to distinguish between
two cases: when r exists and when it doesn’t. We have fli(v0) c P(xi_2) and

0 n+l(Vo) P(x_l) ni(vo) "-> 0

by the induction hypothesis. Therefore fi(vo)= [Xi_l,a where P(xi_2)=
[xi_2, a].
So fi(vo ) is projective iff either a is a sink, or there is a relation r p such

that i(r)> x_ and e(r)= a + 1. If r does not exist, then it follows
immediately that f(v0) is projective.

If ri exists, then a x and obviously, from the minimality of p and the
above comments, f(v0) is not projective. Since

ni(Vo) [Xi_l, Xi- 11 and P(x,_l)= [x,_l,b] with b > xi,

we see that fi+l(Vo) is [xi, b] and its projective cover is P(xi).

Remark. As a first application we see that if A is an artin algebra whose
quiver is given by a tree, then Proposition 1.1, together with the preceding
theorem give us an algorithm for computing the projective resolutions of the
simple A-modules.

COROLLARY 1.3. Let A be an artin algebra whose quiver is given by a tree T
together with a minimal set of relations O. Let n denote the cardinality of p. Then
gldimA<n + 1.
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Proof.
tion 1.1.

Follows immediately from the previous theorem and from Proposi-

We must remark that there are numerous examples where we have equality
in Corollary 1.3.
The next result will be useful for the next section. First we define dist(v, w)

for v < w, where v, w are two vertices of T, to be the number of arrows in the
unique directed path joining v and w.

PROPOSITION 1.4. Let T be a directed tree with a set of minimal relations p.
Let vo be a vertex of T. Assume that there is an that bounds the lengths of all the
relations in O. Let w be a vertex of T such that

Extr(S(vo),S(w)) O.

Then dist(vo, w)< (n- 1)l.

Proof. By Proposition 1.1 it is clear that it is enough to prove the proposi-
tion for the case T is a directed path containing v0 and w. Let

P(w)P(x_) P(vx)P(vo)S(vo)O

be a minimal projective resolution of S(vo) corresponding to the associated
sequence of relations to v0, as constructed in Theorem 1.2, with x e(ri) and
w x e (rn_ 1)" Since d(xi, xi+ 1) < for every i, we are done.

2. Zero relations algebras

Throughout this section we use the notations and terminology of [2] and [4].
We recall that a finite dimensional k-algebra with quiver Q, is called a zero
relations algebra if the algebra is isomorphic to kQ/I where kQ denotes the
path k-algebra associated to the oriented quiver Q and I is a two sided ideal of
kQ generated by a set of paths of length > 2 in Q.

Let A be a zero relation algebra and fix an identification of A with kQ/I
where Q is the quiver of A and I is generated by paths r,..., rv. We assume
that the set of relations p ( r,..., rv } is minimal in the sense that if I is the
ideal in kQ generated by rl,... rN, then the ideal generated by any proper
subset of p is properly contained in I. We note that since A is a finite
dimensional k-algebra we have the well known result:

LEMMA 2.1. There exists a positive integer M such that each directed path in
Q of length greater than M is in I.
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Considering (Q, p) as a graph with relations, since p consists of directed
paths, the universal cooer of (Q, p), " (, ) - (Q, p) consists of the topologi-
cal universal cover " Q Q of Q together with , the set of all paths in Q
which map via to a path in p. Thus is a tree, which, if Q contains a
(possibly non oriented) cycle, is infinite. In any case is locally finite. Let F:
rep(Q, b) rep(Q, p) be the functor induced from , mapping the category of
finite dimensional k-representations of satisfying to the category of finite
dimensional k-representations of Q satisfying p.

Recall that rep(Q, p) is equivalent to mod A, and there is a grading of A
given by the fundamental group of the underlying graph of Q, so that
rep(O, b) is equivalent to gr(A), the category of finitely generated graded
A-modules and degree 1 maps, where 1 denotes the identity element of the
fundamental group. We have a commutative diagram:

rep(O, fi) -- gr(A)

1 l
rep(Q, O) mod A,

where gr(A) mod A is the forgetful functor. Using (2.2) we identify mod A
with rep(Q, p) and gr(A) with rep(O, ). We say that an object in rep(Q, p) is
gradable if it is in the image of F. By arguments similar to those of [2], we see
immediately that the indecomposable projective and the simple A-modules are
gradable.

Moreover, if

is a minimal projective resolution in rep(O, tS), then

F(A,,)F")F(A,,_) ---) F(Ao) F)F(X) ---) 0

is a minimal projective resolution of F(X) in rep(Q, p). Thus, questions
relating to projective resolutions of simple A-modules can be "lifted" to
questions about projective resolutions of simple representations of satisfying. In regard to this, we have"

THEOREM 2.3. Let A be a finite dimensional zero relations k-algebra. Then,
the construction of the projective resolution of the simple A-modules is algorith-
mic. That is, the determination of the projective A-modules in a minimal
projective resolution of a simple A-module reduces to the construction of associ-
ated sequences in tree with relations . In particular, keeping the notations
introduced above and in 1, let S and S2 be simple A-modules. Suppose v is the
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vertex in Q associated to Si, 1, 2. Let v be a vertex in lying over vl; i.e.,
dp(v) vx. Then, for n > 2,

dim,Ext ( S1, S2 )
V (I)- (V2)

dist( v, v _< n 1) L

dimkExt(S(v),S(v))

where L is the length of the longest path in to.

Proof Let S and S2 be simple A-modules and vx and v2 the vertices of Q
associated to $1 and $2 respectively. Let v’ be a vertex in Q such that
(v’) v. Then F(S(v)) S(vx) = S and S(v2) -- $2. By the relationship
given by the covering : (, tS) --* (Q, to) we see that if is a vertex in , then
F(S()) S(v2) iff () v2. Thus for n > 0 we have

idim kExt ( S1, S2 ) dimExt (S( v’ ), S( v* ))

As noted earlier, t5 consists of all paths in which map by to a path in to.
Thus, if L is the length of the longest path in p, it follows that L also bounds
the lengths of the paths in . Therefore, applying Proposition 1.4 and 2.1, for
n > 2 we have

dimkExt ( S1, S2 )
v* -(v2)

dist( v’, v* < n 1) L

dimgExt (S( v’ ), S( v* )).

By the results of Section 1, the construction of the projective resolutions of the
simple representations is algorithmic. Furthermore, the computation of the first
n terms of the A-projective resolution of Sx for n > 2, is given by computing
the (Q, tS)-projective resolution of S(v’) which is determined by the finite full
subgraph o of with vertex set

( v*" dist(v’, v*) _< (n 1)L}
and relation set consisting of those relations of k which are paths in 0.
Therefore the computations are finite.

The next result is, in a sense, an application of the above result.

THEOREM 2.4. Let A be a finite dimensional zero relation k-algebra. Keeping
the notation of this section, let N be the number of relations in the relation set p.
Then, if there exists a simple A-module S, such that PdAS >_ N2 + 3, then
gl dim A o.
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Proof As above let " (, tS)---, (Q, p) be the universal cover of (Q, p).
Suppose that S is a simple A-module with PdAS > N2+ 3. Let v0 be the
vertex of Q associated to S and let v’ be a vertex in so that (v’) v0. By
(2.3) there exists a simple representation S(v*) of rep((,) such that
Ext2+3(S(v’), S(v*)) 4 O. By (1.1) and (1.2) there must be a path p from
to v* and an associated sequence of relations on that path r1, r2,..., rN2 / 2- Let
us consider the pairs ((ri),(ri/l)) of relations in p p, for i= 1,...,
NZ+ 1. Since the cardinality of p is N, we conclude that there must be
integers a, b such that 1 < a < b < N z such that

((ra), *(ra+x)) (d(rb) *(rb+l)).

Set o d(e(ra+l)). Now, consider the path p in 0 again. As one moves
along p from v’ to v’, one passes first through e(ra+l), then through e(rb+l).
Let Pl be the subpath of p from off to e(ra+l) and Pz be the subpath of p
from e(ra+l) to e(rb+l). Then (Pz) is an oriented cycle with origin and
terminus v (e (r + 1))- Finally consider the infinite path q in Q consisting
of first (pl) and then, following the cycle (Pz) a countable number of
times. The path q lifts uniquely to an infinite path /in Q starting at v’. Note
that f/coincides with p until at least e(rb+ 1).
Thus we get an associated sequence for 03 on c beginning with

rl, r2, ra+ l, rb+ 1.

From the definition of the associated sequence of relations along a path, we
see that to determine the (b + 2)-nd relation we only need to know the vertex
e (rb) and (rb+ 1) and the starting vertices of relations starting between (rb + 1)
and e(rb). But after Pl, /follows over various liftings of the same cycle path
from q(e(rb+l)) e(dp(ra+l)) and ra+ 2 which lies on this cycle is determined
by r and ra/ 1. From this, we conclude that if rl*, r2*,..., rt is the associated
sequence of relations for v’ along g/, then M o and ri* rg for 1,...,
b + 1 and (r/j)= t(ra+j) for ! > 1 and 0 <j < b a 1. From Theo-
rem 1.2(b) we find that PdAS c.
The fact that we were able to construct a path in where (/) is a path

in Q which eventually winds up around a fixed cycle in Q, leads to a certain
type of periodicity in the projective resolution of the simple A-module S. The
next result makes this precise.

COROLLARY 2.5. Let A be a finite dimensional zero relation k-algebra.
Suppose S is a simple A-module with infinite projective dimension. Let

be a minimal projective resolution of S. Then, there exists a sequence of
indecomposable projective A-modules P1, P2,..., Pt and a positive integer such
that P is a direct summand ofAt+mt+i for all m > 0 and 1,..., t.
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Proof. The result is a direct consequence of the proof of (2.4). Namely,
using the notation of the proof of (2.4), since PdAS > N2+ 3, we may
construct the path in with associated sequence of relations
r*,..., ra*_ , ra*, r*+ ,..., rb*. Let j. i(rla+j) for j 1,..., b- a, for > 1.
Then, by setting Pj. P(()) our result follows with b a, 1 a 1.
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