WEIERSTRASS POINTS AND MODULAR FORMS

BY
David E. Rohrlich ${ }^{1}$

Let X be a compact Riemann surface of genus g. A point $x \in X$ is called a Weierstrass point if there is a regular differential on X, different from 0 , which vanishes at x to order at least g. The concept of Weierstrass weight refines this notion: Given a point $x \in X$, let $\left\{\omega_{1}, \ldots, \omega_{g}\right\}$ be a basis for the regular differentials on X such that

$$
0=\operatorname{ord}_{x} \omega_{1}<\operatorname{ord}_{x} \omega_{2}<\cdots<\operatorname{ord}_{x} \omega_{g}
$$

where ord ${ }_{x}$ denotes order at x. The Weierstrass weight of x is the nonnegative integer

$$
\sum_{1 \leq j \leq g}\left(\operatorname{ord}_{x} \omega_{j}+1-j\right)
$$

Since $\operatorname{ord}_{x} \omega_{j} \geq j-1$, this sum is 0 if and only if $\operatorname{ord}_{x} \omega_{j}=j-1$ for all j; one deduces that x is a Weierstrass point if and only if its Weierstrass weight is positive. Furthermore, it is known that the sum of the Weierstrass weights of all points on X is $(g-1) g(g+1)$. Thus for $g \geq 2$ the set of Weierstrass points is a nonempty and finite set of intrinsically distinguished points on X.

Now let p be a prime, and put

$$
\Gamma_{0}(p)=\left\{\gamma \in S L_{2}(\mathbf{Z}): \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), c \equiv 0(\bmod p)\right\}
$$

where $S L_{2}(\mathbf{Z})$ denotes the group of 2×2 matrices with integer coefficients and determinant 1. The group $\Gamma_{0}(p)$ acts on the upper half-plane H by fractional linear transformations, and the quotient space $\Gamma_{0}(p) \backslash H$ is a Riemann surface of finite type. Adding two cusps to $\Gamma_{0}(p) \backslash H$, we obtain a compact Riemann surface $X_{0}(p)$, which for $p \geq 23$ has genus ≥ 2. The location of the Weierstrass points on $X_{0}(p)$ is largely a mystery. For the known facts (including some known Weierstrass points), the reader may consult the papers of Atkin [1], Newman-Lehner [3], and Ogg [4], [5]. The point of departure of the present note is the remark (cf. [6]) that the Weierstrass points of $X_{0}(p)$ are essentially

[^0]the zeros of a certain modular form W for $\Gamma_{0}(p)$. This fact suggests that we should try to determine the modular form W more explicitly. The object of this note is to take a step in this direction by calculating W as a modular form $\bmod p$ in the sense of Serre and Swinnerton-Dyer. As a corollary of the calculation we recover the theorem of Atkin (see [5]) that the cusps of $X_{0}(p)$ are not Weierstrass points. It should be noted, however, that this derivation of Atkin's theorem provides less information than the proof given by Ogg.

In this paper, a modular form for $\Gamma_{0}(p)$ of integral weight k is a holomorphic function f on H which satisfies

$$
(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right)=f(z)
$$

for every matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{0}(p)
$$

and which has the property that $f(z)$ and $z^{-k} f(-1 / z)$ are represented by absolutely convergent Fourier series of the form

$$
f(z)=\sum_{n \geq 0} a(n) e^{2 \pi i n z}
$$

and

$$
z^{-k} f(-1 / z)=\sum_{n \geq 0} b(n) e^{2 \pi i n z / p}
$$

respectively. If $a(0)$ and $b(0)$ are both 0 , then f is called a cusp form. For further facts and definitions pertaining to modular forms, the reader is referred to Shimura [8], Serre [7], and Swinnerton-Dyer [9].

1. Definition of W

Fix a prime p and let g be the genus of $X_{0}(p)$. We shall be concerned with a function W which we might call the Wronskian of $X_{0}(p)$. It is a modular form of weight $g(g+1)$ for $\Gamma_{0}(p)$ with the following properties:
(i) Given a basis $\left\{f_{1}, \ldots, f_{g}\right\}$ for the space of cusp forms of weight 2 on $\Gamma_{0}(p)$, put

$$
W\left(f_{1}, \ldots, f_{g}\right)(z)=\left|\begin{array}{ccc}
f_{1}(z) & \cdots & f_{g}(z) \\
\frac{d f_{1}}{d z} & \ldots & \frac{d f_{g}}{d z} \\
\cdot & \cdot & \cdot \\
\left(\frac{d}{d z}\right)^{g-1} f_{1} & & \left(\frac{d}{d z}\right)^{g-1} f_{g}
\end{array}\right|
$$

Then $W\left(f_{1}, \ldots, f_{g}\right)=c W$ for some nonzero constant c.
(ii) The Fourier expansion of W at infinity has the form

$$
\sum_{n \geq n_{0}} c(n) e^{2 \pi i n z}
$$

with $c\left(n_{0}\right)=1$.
(iii) Let H^{*} denote the union of H and the two cusps of $\Gamma_{0}(p)$. The Weierstrass weight of a point of $X_{0}(p)$ represented by $z_{0} \in H^{*}$ is the order of vanishing of $W(z)(d z)^{g(g+1) / 2}$ at z_{0}, measured in a local parameter for $\Gamma_{0}(p)$ at z_{0}.
(iv) The Fourier coefficients $c(n)$ in (ii) are rational.

Properties (i) and (ii) constitute the definition of W. Indeed, (i) determines W up to multiplication by a nonzero constant, and the normalization (ii) makes W unique. Elementary rules of differentiation and properties of determinants then show that W is a modular form. As regards (iii), it is apparent from the definitions that the Weierstrass points of $X_{0}(p)$ are precisely the zeros of $W(z)(d z)^{g(g+1) / 2}$. For a proof of the sharper statement given in (iii), and for detailed proofs of the other facts just mentioned, see [2, pp. 82-85]. All these results belong to the general theory of Riemann surfaces. Property (iv), by contrast, depends on the fact that the space of cusp forms of weight 2 for $\Gamma_{0}(p)$ has a basis consisting of forms with rational (or even integral) Fourier coefficients at ∞ [8, p. 85]. If $\left\{f_{1}, \ldots, f_{g}\right\}$ is such a basis, then the Fourier coefficients of $W\left(f_{1}, \ldots, f_{g}\right)$ are rational multiples of $(2 \pi i)^{g(g-1) / 2}$, whence the Fourier coefficients of W are rational.

Example. If $p=23$, then $g=2$, and the Weierstrass points of $X_{0}(23)$ are the six fixed points of the hyperelliptic involution of $X_{0}(23)$. The hyperelliptic involution is the automorphism of $X_{0}(23)$ induced by the map $z \mapsto-1 / 23 z$ on H. Using these facts, one can show that

$$
W=D^{3} G
$$

where

$$
D(z)=e^{2 \pi i z} \prod_{n \geq 1}\left(1-e^{2 \pi i n z}\right)\left(1-e^{2 \pi i 23 n z}\right)
$$

and

$$
G(z)=1-1 / 24 \sum_{n \geq 1}\left(\sum_{d \mid n}\left(\frac{d}{23}\right)\left(d^{2}+23(n / d)^{2}\right)\right) e^{2 \pi i n z}
$$

The functions D and G are modular forms of weight 1 and 3 respectively with Nebentypus character equal to the Legendre symbol (/23). (See [7, p. 231]
for the definition of a modular form of Nebentypus.) The Fourier coefficients of D and of G are integral, hence so are those of W.

2. Calculation of $W \bmod p$

As is customary, we identify a modular form for $\Gamma_{0}(p)$ with a formal power series in an indeterminate q by putting

$$
f=\sum_{n \geq 0} a(n) q^{n}
$$

if

$$
f(z)=\sum_{n \geq 0} a(n) e^{2 \pi i n z}
$$

We let Δ denote the unique normalized cusp form of weight 12 for $S L_{2}(\mathbf{Z})$, and if k is an even integer ≥ 4, we let E_{k} be the normalized Eisenstein series of weight k for $S L_{2}(\mathbf{Z})$. Thus

$$
\Delta=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}
$$

and

$$
\begin{equation*}
E_{k}=1-\frac{2 k}{B_{k}} \sum_{n \geq 1} \sigma_{k-1}(n) q^{n} \tag{1}
\end{equation*}
$$

where B_{k} is the k-th Bernoulli number and $\sigma_{t}(n)=\Sigma_{d \mid n} d^{t}$. If

$$
f=\sum_{n \geq 0} a(n) q^{n} \quad \text { and } \quad h=\sum_{n \geq 0} b(n) q^{n}
$$

are modular forms with rational, p-integral Fourier coefficients at ∞, then we write $f \equiv h(\bmod p)$ to denote that $a(n) \equiv b(n)(\bmod p)$ for every n.

Henceforth we assume that $p \geq 23$. If we write $p+1=12 g+r$, then $r=0,6,8$, or 14 . We define E_{0} to be 1 .

Theorem. The Fourier coefficients of W are p-integral, and

$$
W \equiv \Delta^{g(g+1) / 2} E_{r}^{g} E_{14}^{g(g-1) / 2} \quad(\bmod p)
$$

Proof. Let M be the \mathbf{Z}-module of cusp forms of weight $p+1$ for $S L_{2}(\mathbf{Z})$ with integral Fourier coefficients, and let N be the Z-module of cusp forms of weight 2 for $\Gamma_{0}(p)$ with integral Fourier coefficients at ∞. Both M and N have rank g. The reduction map $\mathbf{Z}[[q]] \rightarrow \mathbf{Z} / p \mathbf{Z}[[q]]$ provides embeddings

$$
M / p M \rightarrow \mathbf{Z} / p \mathbf{Z}[[q]] \text { and } N / p N \rightarrow \mathbf{Z} / p \mathbf{Z}[[q]]
$$

and a theorem of Atkin and Serre ([7], p. 228) implies that $M / p M$ and $N / p N$ have the same image in $\mathbf{Z} / p \mathbf{Z}[[q]]$. It follows that if $\left\{F_{1}, \ldots, F_{g}\right\}$ is a basis for M over \mathbf{Z}, then there exists a basis $\left\{f_{1}, \ldots, f_{g}\right\}$ for N over \mathbf{Z} such that

$$
\begin{equation*}
F_{j} \equiv f_{j}(\bmod p), \quad j=1, \ldots, g \tag{2}
\end{equation*}
$$

If $\delta: A \rightarrow A$ is a derivation of a commutative ring A and h_{1}, \ldots, h_{g} are elements of A, we put

$$
W_{\delta}\left(h_{1}, \ldots, h_{g}\right)=\left|\begin{array}{ccc}
h_{1} & \cdots & h_{g} \\
\delta h_{1} & \cdots & \delta h_{g} \\
\cdot & \cdot & \cdot \\
\delta^{g-1} h_{1} & \cdots & \delta^{g-1} h_{g}
\end{array}\right|
$$

In particular, consider Ramanujan's derivation $\theta: \mathbf{C}[[q]] \rightarrow \mathbf{C}[[q]]$, given by $\boldsymbol{\theta}=q d / d q$. If $\left\{f_{1}, \ldots, f_{g}\right\}$ is a \mathbf{Z}-basis for N as above, then

$$
(2 \pi i)^{-g(g-1) / 2} W\left(f_{1}, \ldots, f_{g}\right)=W_{\theta}\left(f_{1}, \ldots, f_{g}\right)
$$

because on modular forms, $d / d z=2 \pi i \theta$. Thus $c W=W_{\theta}\left(f_{1}, \ldots, f_{g}\right)$ for some $c \in \mathbf{Z}$, and by (2), we have

$$
\begin{equation*}
c W \equiv W_{\theta}\left(F_{1}, \ldots, F_{g}\right) \quad(\bmod p) \tag{3}
\end{equation*}
$$

Following Ramanujan, put $P=E_{2}$, where E_{2} is the power series defined by formula (1) for $k=2$ (this is not a modular form). Let ∂ be the derivation of the graded ring of modular forms for $S L_{2}(\mathbf{Z})$ which on a form of weight k is given by the formula

$$
\begin{equation*}
\partial F=(12 \theta-k P) F \tag{4}
\end{equation*}
$$

(see [9, p. 20]). We claim that

$$
\begin{equation*}
W_{\partial}\left(F_{1}, \ldots, F_{g}\right)=W_{12 \theta}\left(F_{1}, \ldots, F_{g}\right) \tag{5}
\end{equation*}
$$

i.e., that

$$
\begin{equation*}
W_{\partial}\left(F_{1}, \ldots, F_{g}\right)=12^{g(g-1) / 2} W_{\theta}\left(F_{1}, \ldots, F_{g}\right) \tag{6}
\end{equation*}
$$

To see this, first note that for $n \geq 0$ and any form F of weight k, we have

$$
\begin{equation*}
\partial^{n} F=(12 \theta)^{n} F+\sum_{m=0}^{n-1} h_{m} \theta^{m} F \tag{7}
\end{equation*}
$$

where h_{m} is a polynomial in $P, \theta P, \ldots, \theta^{m-1} P$ which depends on n and k but not on F. Indeed, (7) follows by induction from the Leibniz rule and formula (4). Putting $F=F_{1}, \ldots, F_{g}$ in (7) we see that the $(n+1)$-th row in the matrix defining $W_{\partial}\left(F_{1}, \ldots, F_{g}\right)$ is equal to the $(n+1)$-th row in the matrix defining $W_{12 \theta}\left(F_{1}, \ldots, F_{g}\right)$ plus a linear combination of the preceding n rows in the latter matrix. Since a determinant is an alternating multilinear function of its rows, (5) follows, and therefore also (6). Combining (6) with the congruence (3), we see that for any \mathbf{Z}-basis $\left\{F_{1}, \ldots, F_{g}\right\}$ of M we have

$$
\begin{equation*}
c^{\prime} W \equiv W_{\partial}\left(F_{1}, \ldots, F_{g}\right) \quad(\bmod p) \tag{8}
\end{equation*}
$$

with $c^{\prime} \in \mathbf{Z}$.
Now put

$$
F_{j}=E_{r} E_{4}^{3(j-1)} \Delta^{g-j+1}, \quad 1 \leq j \leq g .
$$

Then $\left\{F_{1}, \ldots, F_{g}\right\}$ is a \mathbf{Z}-basis for M, and we have

$$
\partial^{m} F_{j}=\Delta^{g-j+1} \partial^{m} E_{r} E_{4}^{3(j-1)}
$$

because $\partial \Delta=0$. It follows that

$$
W_{\partial}\left(F_{1}, \ldots, F_{g}\right)=\Delta^{g(g+1) / 2} W_{\partial}\left(E_{r}, E_{r} S, \ldots, E_{r} S^{g-1}\right)
$$

with $S=E_{4}^{3}$. Now if $\delta: A \rightarrow A$ is any derivation of a commutative ring A and h, h_{1}, \ldots, h_{g} are elements of A, then

$$
\begin{equation*}
W_{\delta}\left(h h_{1}, \ldots, h h_{g}\right)=h^{8} W_{\delta}\left(h_{1}, \ldots, h_{g}\right) \tag{9}
\end{equation*}
$$

(cf. [2, p. 82, equation 5.8.4]). Therefore

$$
\begin{equation*}
W_{\partial}\left(F_{1}, \ldots, F_{g}\right)=\Delta^{g(g+1) / 2} E_{r}^{g} W_{\partial}\left(1, S, \ldots, S^{g-1}\right) \tag{10}
\end{equation*}
$$

To evaluate the right-hand side of (10), we note that

$$
\begin{aligned}
W_{\partial}\left(1, S, \ldots, S^{g-1}\right) & =W_{\partial}\left(\partial S, 2 S \partial S, \ldots,(g-1) S^{g-2} \partial S\right) \\
& =(\partial S)^{g-1}(g-1)!W_{\partial}\left(1, S, \ldots, S^{g-2}\right)
\end{aligned}
$$

by (9). Applying induction, we obtain

$$
W_{\partial}\left(1, S, \ldots, S^{g-1}\right)=\left(\prod_{j=1}^{g-1} j!\right)(\partial S)^{g(g-1) / 2}
$$

Since $\partial S=3 E_{4}^{2} \partial E_{4}=-12 E_{4}^{2} E_{6}=-12 E_{14}$, substitution in (10) gives

$$
W_{\partial}\left(F_{1}, \ldots, F_{g}\right)=c^{\prime \prime} \Delta^{g(g+1) / 2} E_{r}^{g}\left(E_{14}\right)^{g(g-1) / 2}
$$

with

$$
c^{\prime \prime}=(-12)^{g(g-1) / 2} \prod_{j=1}^{g-1} j!
$$

Now p does not divide $c^{\prime \prime}$, because $1 \leq g-1<12 g+r-1=p$. Thus the congruence (8) implies

$$
\begin{equation*}
c^{\prime}\left(c^{\prime \prime}\right)^{-1} W \equiv \Delta^{g(g+1) / 2} E_{r}^{g} E_{14}^{g(g-1) / 2} \quad(\bmod p) \tag{11}
\end{equation*}
$$

To complete the proof of the theorem, let $q^{n_{0}}$ be the smallest power of $q=e^{2 \pi i z}$ which occurs with a nonzero coefficient in the Fourier expansion of W at ∞ (cf. (ii) in the definition of W in Section 1). Making the substitutions $q=e^{2 \pi i z}, d q / q=2 \pi i d z$, we see that

$$
\operatorname{ord}_{\infty} W(z)(d z)^{g(g+1) / 2}=n_{0}-g(g+1) / 2
$$

Thus the Weierstrass weight of the cusp ∞ is $n_{0}-g(g+1) / 2$; in particular, $n_{0} \geq g(g+1) / 2$. On the other hand, by (11), the coefficient of $q^{g(g+1) / 2}$ in $c^{\prime}\left(c^{\prime \prime}\right)^{-1} W$ is congruent to $1(\bmod p)$, and is therefore not equal to 0 . We conclude that n_{0} is equal to $g(g+1) / 2$ and that $c^{\prime}\left(c^{\prime \prime}\right)^{-1}$ is congruent to 1 $(\bmod p)$; the theorem now follows from (11). At the same time we have recovered Atkin's theorem that the cusp ∞ (hence also the conjugate cusp 0) is not a Weierstrass point of $X_{0}(p)$.

Finally, we remark that our congruence can be written in the more concise form

$$
W \equiv \Phi_{s}^{g} \Phi_{26}^{g(g-1) / 2} \quad(\bmod p)
$$

where $s=r+12$ and $\Phi_{j}(j=12,18,20$, or 26$)$ denotes the unique normalized cusp form for $S L_{2}(\mathbf{Z})$ of weight j.

References

1. A.O.L. Atkin, Weierstrass points at cusps of $\Gamma_{0}(N)$, Ann. of Math., vol. 85 (1967), pp. 42-45.
2. H.M. Farkas and I. Kra, Riemann surfaces, Graduate Texts in Math., vol. 71, Springer, New York, 1980.
3. J. Lehner and M. Newman, Weierstrass points of $\Gamma_{0}(N)$, Ann. of Math., vol. 79 (1964), pp. 360-368.
4. A.P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France, vol. 102 (1974), pp. 449-462.
5. \qquad , On the Weierstrass points of $X_{0}(N)$, Illinois J. Math., vol. 22 (1978), pp. 31-35.
6. D.E. Rohrlich, "Some remarks on Weierstrass points" in Number theory related to Fermat's last theorem, Birkhauser, Boston, 1982.
7. J.-P. Serre, "Formes modulaires et fonctions zêta p-adiques" in Modular functions of one variable III, Lecture Notes in Math., vol. 350, Springer, New York, 1973.
8. G. Shimura, Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten and Princeton University Press, Princeton, 1971.
9. H.P.F. Swinnerton-Dyer, "On l-adic representations and congruences for coefficients of modular forms" in Modular functions of one variable III, Lecture Notes in Math., vol. 350, Springer, New York, 1973.

Rutgers University
New Brunswick, New Jersey

[^0]: Received November 12, 1982.
 ${ }^{1}$ Alfred P. Sloan Research Fellow.

