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CONVEXITY AND CYLINDRICAL TWO-PIECE PROPERTIES

BY

SHEILA CARTER AND ALAN WEST

Let f: M R be a smooth immersion of a compact manifold. In particu-
lar we say that f is trivial if M is diffeomorphic to Sn-1 and f embeds M as a
round hypersphere.
The idea of k-cylindrical tautness and the related k-cylindrical weak and

strong two-piece properties were discussed in [2]. It was shown that the weak
(n 2)-cylindrical two-piece property is sufficient to imply that f is trivial. It
was also shown that the weak 1-cylindrical two-piece property implies that f
embeds S as a tight hypersphere and the comment was made that if f is
1-cylindrically taut then it is trivial. This fact is proved here.
We also consider the case k 2. We show that the weak and strong versions

of the two-piece property are distinct by giving an embedding of S S-2 in
R which has the weak 2-cylindrical two-piece property and by showing that if

f has the strong version and dimM n I then f embeds S- as a tight
hypersphere. We also prove that f is trivial if it is 2-cylindrically taut and
dimM n 1. There remains the possibility of nontrivial 2-cylindrically taut
immersions of codimension 2 which must have very restrictive curvature
properties.
To prove these results we need some theorems about convex sets which seem

of interest in themselves.

1. Preliminary notations and results

Throughout this paper M will be a smooth, compact, connected m-dimen-
sional manifold without boundary and f: M---, Rn will be a smooth im-
mersion into n-dimensional Euclidean space. If II R is a k-plane, not
necessarily through the origin, we define the solid k-cylinder with axis the
k-plane II and radius r > 0 to be the set C (x R: d(x, II) < r ) where
d(x, H) is the Euclidean distance from x to II. We write for the closure of
R \ C. Let us repeat for reference the definitions given in [2].

DEFINITION 1.1. The immersion f: M R is k-cylindrically taut if there
exists some field F such that, for all solid k-cylinders C with axis I-I, inclusion
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induces monomorphisms

for all Z / where tech homology is taken with coefficients in F.

DEFINITION 1.2. We say that an immersion f: M- R has the k-cylin-
drical weak two-piece property (k-cylindrical WTPP) if for all solid k-cylinders
C with axis I-I, f-() is connected, and, if f-l(II) 0, f-(C) is connected.
We say it has the strong two-piece property (k-cylindrical STPP) if in

addition when f-(H) 4:0 every component of f-(C) intersects f-(II).

In previous work it has been proved that k-cylindrically taut immersions are
tight and satisfy the above two conditions [2].

Definitions (1.1) and (1.2) can be reinterpreted in terms of the number of
critical points of cylindrical functions where the k-cylindrical function Cn"
M R+ is defined by setting Cn(p) to be the square of the Euclidean
distance from f(p) to 1-I. This interpretation is usually more convenient when
discussing actual examples. In this paper we will only need the interpretation
of the cylindrical 2-piece properties as discussed in [4]. First it is easy to see
that the set of solid k-cylinders C with axis 1-I such that both C and II are
transversal to f is an open dense set in the set of all k-cylinders (with the
obvious topology). Further, if one of the conditions holds for all these
k-cylinders then it holds for the rest of them. These cylinders correspond to
k-cylindrical functions which have only a finite number of critical points
outside f-:(I-l). The k-cylindrical WTPP just says that such cylindrical func-
tions have one maximum and, if f-l(1-I) is empty, one minimum. The
k-cylindrical STPP requires, in addition, that if f-l(1-I) is not empty there are
no minimum points outside it.

In the rest of this paper we will suppose that f is substantial, that is, f(M)
does not lie in any hyperplane of Rn. The reason we make this assumption lies
in the following proposition.

PROPOSITION 1.3. (a) Let f: M R be a k-cylindrically taut immersion
and suppose that there is some (n r)-plane H c R such that f(M) c H and
r < n k. Let ok: H R-r be an isometry. Then the immersion cko f
M R-r is l-cylindrically taut for any > 0 such that k r < < k.

(b) The same result holds if cylindrical tautness is replaced throughout by the
appropriate cylindrical WTPP or STPP.

Proof. We only have to observe that with the dimensions in the theorem
any solid /-cylinder in H can be represented as C n H for some solid
k-cylinder in Rn.
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The particular case we use in this paper is when k 2 and r 1. If f is not
substantial and has one of the 2-cylindrical properties we obtain an immersion
with the appropriate 1-cylindrical property which gives us much more informa-
tion. In particular the 1-cylindrical WTPP is enough to show that the immer-
sion is substantial. In fact we get:

COROLLARY 1.4. Let f: M - R have the 2-cylindrical WTPP and supposef
is not substantial. Then M is homeomorphic to Sn-2 andf is tight.

Proof. This follows directly from Proposition 1.3 above with k 2, r 1,
1 and Theorem 3.4 of [2].

Actually we will obtain a stronger result in this paper which will show that if

f is 2-cylindrically taut but not substantial then f is a trivial embedding of
Sn 2 in a hyperplane.
From now on f: M R will always be a substantial immersion.

2. Convex hulls and convex envelopes

Let A c R be any bounded subset. Then ’A will denote the closed convex
hull of A. This may lie in a k-plane, say ’A c II c R; if k is minimal the
convex envelope tg,"A is the boundary of "A as a subset of H. We will need
a few results about convex hulls and convex envelopes which we will collect
together here.

THEOREM 2.1. Let E be an open subset of R which is the disjoint union of
the sets (Ex: X A }, Ex N E, 0 if q: . Suppose each Ex is convex, has
non-empty interior and is closed in E. Then Ex is also open for each A.

Proof. Take any x Ex0 for some ’0 A. We can find an open ball
B c E with centre at x. Take any straight line through x and let L be its
intercept with B. Then L is homeomorphic to R. For any , A, Ex N L is
convex and closed in L. Thus it is an interval, or a singleton set or is empty. In
any case we can talk about the end-points of Ex N L, it will have at most two.
Let C be the collection of all end-points as runs over A. We will show that if
C is not empty it is a perfect set. Suppose then that it is not empty.

First observe that L \ C is the union of the interiors (as subsets of L) of the
intervals Ex L, , A. So C is closed in L. Now take any u C then u is
the end-point of some interval, Ex N L, or it could be that { u } Ex tq L. In
any case, any open interval I about u contains points outside Ex tq L. But if
v 1 E, L, / , then since E, L is an interval and u E, L,
v E, L we must have an end-point of E 3 L between u and v. This
end-point will lie in I since I is an interval, so I N C { u ). That is, u is not
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an isolated point of C. Thus C is a perfect set and therefore it is uncountable.
However since R and hence E is second-countable it only admits a countable
number of disjoint open sets. Since each Ex has non-empty interior this
implies that A is countable. Since each Ex contains at most two points in C
this implies that C is countable. This is a contradiction.
We deduce that C is empty and thus since x Exo N L L Exo N L. Now

if x Exo this means L c Exo and since h o is fixed and L is arbitrary this
means that B c Exo and hence Exo is open.
Our next theorem depends on the idea of a supportingflag. This is essentially

the same idea as that of a topg-set introduced by Kuiper [3]. A flag is a
sequence of planes (H k H,_ 2 H_I) such that for each
n k,..., n 2, n 1, H is a hyperplane in Ht+ 1- In particular H_ is a
hyperplane in R. It supports A if for each l, Ht is a supporting hyperplane to

Ht+ N A in Ht+ 1. At the moment we only require the case k 2.

THEOREM 2.2. Let A R be compact and suppose that for every flag
(H,_ 2 Hn- 1) which supports A,

H_ A H_2
=:* nn-1 0 A is convex.

Then for any x A \A there is a unique hyperplane H through x which
supports A. Further, O,a(A 0 H) is homeomorphic to Sn- 2 and belongs to A.

Proof. First take any x tgCtA with x A. Then there is a supporting
hyperplane H to A at this point. H A cannot lie in any (n- 2)-plane,
otherwise we would be able to find a flag (H’ Hx) which supports A with
H N A H’ and this would mean that

H’ Cq A =,’(H’ N A).

Since H ’A ,(Hx A) this would imply that

x H,n,A =,/F(H’ hA)= H’ nA

which contradicts the choice of x A. Also H must be unique otherwise we
could again find a flag (H,_ 2 c Hn_ 1) supporting A with H A c H,_ 2

and x H,_ 2. By the same argument this would contradict the choice of
x A. Thus for any x Og’A, x ti A there is a unique supporting hyper-
plane H and H S’A is closed, convex and has non-empty interior as a
subset of Hx. We fix on some point, which we may as well take as the origin in
R, lying in the interior of g’A. We may assume that such a point exists
otherwise A would lie in a hyperplane and no element in Og’A would have a
unique supporting hyperplane and hence, by the above, OA c A. We then
let C denote the cone with vertex at the origin and with cross-section
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H, n ae’A. That is

C, {tz: z H nYA, R+}.

Clearly such a cone is closed, convex and has non-empty interior in R". Also
if y 0o’A, y A, either H Hy and hence C Cy or H n Hy n .A c
A. So if we let

D= (tz: zA n Oa’A,tR+}

either Cx= Cy or CxnCycD. Thus if we put E=R"\D and let
{ Ex: , A } be the collection of sets { E n C: x OYd’A \A } relabelled so
that Ex E if , #:/ we see that E is an open set in R" which is the disjoint
union of the sets (Ex: A } where each Ex is dosed, convex and has
non-empty interior in E. Hence, from (2.1) every Ex is also open.
Thus if H is a supporting hyperplane of A and x af’A n H, x A,

then C \ D (Ex: A } and so x lies in the interior of Cx. This implies
that x lies in the interior of A n H as a subset of H and, in particular,
x q O’(A n H). This proves that O,gg’(A n H) c A.

3. 2-cylinder two-piece property

THEOREM 3.1. Let f: M ---) R" be a substantial immersion with the 2-cylin-
drical WTPP, n > 4. Let S ae’f(M). Then either S c f(M), so dimM
n 1, or, for every x S \f(M) there is a unique hyperplane H through x
which supports S and a(H n S) c f(M), where a(H n S) is homeomorphic to
Sn-2, so dimM=n- lorn-2.

Proof. Let (H,_ 2 c Hn_ t) be any flag which supports S. Suppose

H,,_tnf(M) cH,_2.

Then we claim that H,_ n f(M) must be convex because otherwise we could
find a line in H,_ 2 which intersected f(M) in a disconnected set. Then we
could find a 2-plane II c H,_ which intersected H,_ 2 in the line and hence
also intersected f(M) in a disconnected set. Then we could find a solid
2-cylinder C with axis parallel to l-I, which did not intersect S, or f(M) and
such that C n f(M)= II n f(M) is not connected. This contradicts (1.2).
Thus f(M) satisfies the conditions in (2.2).

It is not difficult to prove that if f(M) contains a homeomorphic image of
S then dim M > r. Thus, observing that since f is substantial S is a
homeomorphic image of S"-, and applying Theorem (2.2) with f(M)= A,
S .e’A we obtain the required conclusion.
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THEOREM 3.2. Let f: M Rn be an immersion with the 2-cylindrical STPP,
n > 4 and dim M n 1. Then M is diffeomorphic to S-1 and f is a tight
embedding.

Proof. We can find a nondegenerate height function Hz. If H has only
critical points of index 0 or n 1 then M is diffeomorphic to S and there
is nothing more to prove. So suppose p M is a critical point of H with
index not 0 or n- 1. Then Y0 =f(P)ti S and if N is the normal line
corresponding to p and passing through Y0 f(P), we know that all the focal
points of f with base point p lie on N (there are none at oo). The point Y0 on
N separates N into two parts and if n > 4 there must be at least one part
which contains two focal points. Take a point Yl on the other part so that there
are no focal points between Y0 and Yl and at least two on the other side of Y0
to Yl. These two focal points have corresponding directions of curvature which
determine a 2-plane II’ in the tangent space to M at p. Let II c R be a
2-plane through Yl parallel to 1-I’, or more exactly, parallel to df(II’). Let C
be the solid 2-cylinder with axis II and radius Ily0 yl II. We claim that Yo is
an isolated point in C N f(M) or, equivalently, p is a nondegenerate critical
point of index 0 for the 2-cylindrical function Cn.

In fact, we can choose co-ordinates in R so that Yo becomes the origin and
locally f is given by u (u, g(u)) where u R- 1, g: R R. We can
take dg0 0 and by choosing the directions of curvature to be along the axes
arrange that the quadratic d2go at the origin is represented by the diagonal
matrix

diag(k1, k 2, k 1)

where kl, k2,..., k_ are the curvatures corresponding to the directions of
the axes. If 1-I is given by x x_ 0, x, -d then by hypothesis
kl, k2 are positive, all the curvatures are non-zero and greater than 1/d. The
2-cylindrical function Cn is then given by u3

2 + + 2 + (g(u)+ d) 2Un_
and so the hessian of Cri is represented by the diagonal matrix

2 diag(kld, k2d, 1 + kad, 1 + k4d,..., 1 + kn_ ld).

All these diagonal terms are non-zero and positive, so p is a nondegenerate
critical point of index 0.
However this means that f-l(yo) is a component of f-l(C) which doesn’t

intersect f-l(II). Let us show that f-l(I[) is non-empty. Since Y0 belongs to
the interior of a"S certainly II f3 S is non-empty, but if x II S, x f(M),
we can find a hyperplane H through x supporting S and cg(H tq S) f(M)
so x belongs to the interior of the convex set H C as a subset of H. Then
II H is a line through x and this must intersect O(H S) f(M). Hence
1-I intersects f(M). Thus C is a solid 2-cylinder with axis 1-I which intersects
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f(M), yet f- l(c) has a component which does not intersect f- l(YI). This
contradicts (1.2).
We deduce that f(M) c S. Since dim M dim S n 1 we can then use

the theorem on invariance of domain to deduce that f(M) is open and closed
in S. Hence f(M)= S and S must be smooth. Since f is a local diffeomor-
phism and M is compact, f is a covering map and so, in fact, a diffeomor-
phism. Thus f is a tight embedding of a hypersphere.
The method of (3.2) shows that if dim M n 2 and f has the 2-cylin-

drical STPP then any point p M for which f(p)q S must have the
following property. If N is a line through f(p) which is normal at p then there
are at most two focal points on N, the others are at infinity. Further they have
multiplicity 1 and are separated by f(p). This is a very stringent restriction on
the curvature. One can get restrictions on the curvature for points p with
f(p) S by the same method. However this method definitely requires the
strong version of the two-piece property.

Let us give an example to show that (3.2) is no longer true if we only require
that f has the 2-cylindrical WTPP. We first consider Sn-2 embedded as a
round sphere in a hyperplane of Rn, n > 5. Let 1-I be any 2-plane. Then the
critical points of the 2-cylindrical function C1 are the end-points of mutual
normals between S"-2 and II. Let N be a line normal to S"-2 at p and
normal to II at x. Then if is the axis of S"-2, that is, the line through the
centre of S 2 and perpendicular to the hyperplane containing Sn- 2, and N
must intersect at a focal point z of multiplicity n 2. In this case p will be a
critical point of Cri with index n 2 if x lies between p and z; index 1 or 2 if
z lies between x and p, and index 0 if p lies between x and z.
We want to show that if 1-I does not contain and does not touch S, then

Cri has only one critical point of index 0 and one of index n 2 (plus some of
index 1 or 2 maybe).

Suppose Cri has two critical points Pl, P2 either both of index 0 or both of
index n 2. Thus there are normal fines N1, N2 through Pl, P2 intersecting
at zl, z2 and intersecting 1-I perpendicularly at x, x2. We really only need to
consider the 3-plane which contains l, N and N2. The line joining x to x2

lies in II and so is perpendicular to both N and N2. Hence IIx x211 is the
distance between N1 and N2. Now it is easy to check that this is impossible if,
either Pi lies between xi and z for 1, 2 (in this case it is easy to see that
IlPx P211 < Ilxx x211), or if x lies between Pi and z for 1,2. In fact we
can also see that if x Pl then by the same argument IlXl- x211 is the
distance from x--p to N2 and if P2 lies between x2 and z2 this is
impossible since IlXl- x211 > IIP- P211. Thus Cri has only one maximum
point and only one minimum point unless II intersects S"-2 and in the last
case all the minimum points lie on II. In other words S"-2 has the 2-cylin-
drical STPP.
Now let M be a round tube about S"-2. More specifically M is the

boundary of an e-neighbourhood of S"-2 for e sufficiently small. Thus M is a
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smooth embedding of sn-2x S as a hypersurface in Rn. We consider a
2-plane II but we want to consider both the corresponding cylindrical function
Cn on M and the corresponding cylindrical function on Sn-2 which we will
call CI*I. The critical points of Crt and C are closely related. In fact if ql is a
critical point of Cri then the normal to M through ql is a line N which
intersects 1 at a point z, intersects S-2 at a point p and is a normal there to
Sn-E, intersects M again normally at a point q2 and intersects H perpendicu-
larly at a point x. We may suppose for definiteness that ql lies between p and
z and, of course, p must lie between ql and q2. Now z is a focal point of
multiplicity n 2 and p is a focal point of multiplicity I for both ql and q2 in
M. So ql can never be a maximum point for Cn and q2 will be a maximum
point if both p and z lie between q2 and x. In particular this means that p is
a maximum point for C. We have seen that there is only one such point for
almost all I-l. Now let us consider minimum points of Crt when II does not
intersect M. This means that x cannot lie between ql and q2. Now ql cannot
be a minimum point Cn because it is easy to see that x would have to lie
between ql and z and then there would always be one direction in the tangent
plane to M at q which was a principal direction for the focal point z and was
parallel to II. In this direction Cn would be decreasing. So the only possibility
is that q2 is a minimum point and this means q2 lies between x and p so that
p is a minimum point for CIr. We have shown that there is only one such point
so that again for almost all II which do not intersect M, Cn can have only one
minimum point. Thus M has the 2-cylindrical WTPP. However theorem (3.2)
shows that it cannot have the 2-cylindrical STPP.
Note that if we embedded Sn-2 S in R as a round tube about S, lying

in a 2-plane, then it would not even have the 2-cylindrical WTPP since it
would not satisfy the conclusions of (3.1).

4. Cylindrically taut convex envelopes

Although we have so far only used cylindrical two-piece properties, we will
now consider k-cylindrically taut embeddings. The final step in showing that
there exist only trivial 1-cylindrically taut immersions is a consequence of a
more general result. We first prove two results which link k-cylindrical tautness
with (k + 1)-cylindrical tautness to some extent.

PROPOSITION 4.1. Let f: M - R be an immersion and let k < n 2. Iffor
every solid (k + 1)-cylinder C,, f-(,) is connected then for every solid
k-cylinder C, f-1() is connected.

Proof. We will, in fact, prove that if f-l(t) is not connected, then there is
a solid (k + 1)-cylinder C, with f-l(t,) not connected. We let C have axis
the k-plane H, and let p, q be points which lie in different components of
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f-l((). Let x, y II be the feet of the perpendiculars from p and q
respectively. Then the vectors p x and q y are both perpendicular to II.
Now we can take a (k + 1)-plane H* with II c H* such that p x and
q y are both perpendicular to II* also. This is because k < n 2. If z II*
is the unit vector perpendicular to H then the height function H is given by
Hz(p) (f(p). z) and Cn, Cn (Hz d)2 where d is a constant given
by H(p)= Hz(q)= d. Thus Crt,(P)= Crt(P) and Cri,(q)= Cn(q). So if
we let C, be the solid (k + 1)-cylinder with axis II* and the same radius as C
clearly p, q C and f- l(t,) c F- l(t). Hence f- l(t,) is not connected.

COROLLARY 4.2. Let f: M R" have the k-cylindrical WTPP then for every
closed ball B c Rn, letting be the closure of Rn \ B, f-1() is connected.

Proof Notice that a closed ball B is a solid 0-cylinder. The corollary
follows by finite induction.

THEOREM 4.3. Let f: Sn-1 - R be a k-cylindrically taut immersion, k <_
n 2. Then for every closed ball B c Rn, f- I(B) is connected.

Proof We will, in fact, prove that if B is a closed ball with f-l(B) not
connected then there exists a solid k-cylinder C with axis H such that
inclusion does not induce a monomorphism

Since f must be tight [2], it is in fact a diffeomorphism onto S where S is a
convex envelope, that is, S OS. To simplify notation we will ignore f and
replace it by the inclusion S R".

Suppose then that B is a closed ball such that S B is not connected. We
claim that there exists a ball B’ with centre in Int g’S such that S tq B’ is
disconnected. To see this observe that B \ S consists of at least three con-
nected components, one of which is B Int ’S. If the centre of B is x and
x Int tS, then suppose x U where U is a component of B \’g’S. We
choose y in another component of this set and observe that the segment xy
must intersect Int ’S. Take the centre of B’ to be on xy N Int ’S and choose
its radius so that (x, y } c B’ B. Then B’ intersects three distinct compo-
nents of B \ S and hence S B’ is not connected.
By replacing B by B’ if necessary we can suppose that we have a closed ball

B with centre x Int ,S and S ( B disconnected. Let L be the usual
distance function defined by L,(y)= IIY xll 2 for y S. We can take two
points p and q which lie in different components of S B and give an
absolute minimum value to L on their respective components. Then the lines
joining p to x and q to x are normal to S at p and q.
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Take an (n k)-plane H through p, q and x and let II be a k-plane which
is complementary to H and intersects II at x. Then for a point u S N H
and vS(3II there is a unique 2-plane A through u, v and x which
intersects S in a simple, closed, convex curve. The line II (3 A will intersect
this curve in v and another point, say v’. We define arc(uv) to be the arc of the
curve S NII with end-points u, v which doesn’t contain v’. In this way we get
for any subset EcHNS, a set (arc(uv); uE, vIItqS} which is
homeomorphic to the join (II S). E. Since II (3 S is homeomorphic to
Sk-1 we will identify this with the k-th suspension and call it ,kE. Thus S
itself will also be called ,k(H f’) S) and II S will be called 2go.

Let f (p, q) and let C be the solid k-cylinder with axis II such that
fc CH=BNH. Taking uHS, o1-IS and the2-planeA as
above we see that A C is a band lying between two lines parallel to the line
II A which passes through o and x. The line H q A goes through u and is
perpendicular to II 3 A. Thus if the line H N A is normal to the curve S A
at u then the whole convex curve must lie in this band; S A c C. Thus
taking u p and u q we see that 2kfl c C.

Let A B H S so that p, q lie in different components of A.
We now apply the relative version of the suspension theorem successively

k-times to obtain a commutative diagram:

s),

Ho(U) Ho(A) Ho(H S).

Then H0(f) has two independent generators which map into two independent
generators of Ho(A) whereas Ho(H (3 S) has only one independent generator.
Thus there is an element a Hk(,k’2,kO) which maps into a non-zero
element in Hk(XkA, XkO) but maps into the zero element in Hg(S, II S).
The object is to show that a also represents a non-zero element in Hg(C S,
II N S) under the inclusion k’ C C f") S but that this element maps into the
zero dement in Hk(S, II S). This is done by describing a continuous map
,: S 0 C Y,k.,4 such that the diagram

StqC

is homotopy commutative.
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Since S C ( H IntA A c S H, as subsets of H, we can find a
continuous function #: S H I, where I [0, 1] is the unit interval, such
that S q C q H c #-(1) and (S H)\A c #-1(0). Observe that for any
u (S H)\ C, v S II, C arc(uv) is a connected arc with one end at
v but not containing u. We define

arc(uv) C n arc(uv)

by keeping v fixed and multiplying the arc-length by/(0). We can define , to
be the identity on C n arc(uv) if u C n H S and v S II since in this
case /(u)= 1. This defines a continuous map ,: S C S n C. But the
image is in fact in Y. kA because if u A, /(u) 0 so (C n arc(uv)) (v }
c Z, kA and otherwise arc(uv) E kA. So we have in fact defined a continuous
map : C S EkA. It is easy to obtain a homotopy between the composi-
tion

incoX: C O S Z, kA S

and the inclusion C S c S by simply replacing/x by t + (1 t)/ 0 where
I and/o: S n H I is the constant map with image 1. Since restricted

to Ekf is the identity we have defined so that the diagram above is

homotopy commutative. It is easy to deduce that the image of a

Hk(Ekf], Ek0) in Hg(C ( S, H ( S) is a non-zero element of the kernel of the
homomorphism

u (c s, n s) -, u (s, n s)

induced by inclusion. This contradicts the condition that S c R is k-cylin-
drically taut and so proves the theorem.

THEOREM 4.4. Let f: S
taut.

R be k-cylindrically taut, k < n 2, then f is

Proof. We know that f is tight so the image of f is a convex hypersphere
and f is an embedding. So we can apply (4.3) and (4.2) to show that f has the
spherical two-piece property, that is, it is taut so f embeds S as a round
hypersphere [1 ].

THEOREM 4.5. Let f: M Rn be a 1-cylindrically taut immersion. Then M
is diffeomorphic to S andf embeds S as a round hypersphere.

Proof. We know that f has the 1-cylindrical WTPP and so by (3.4) of [2],
M is diffeomorphic to S- 1. The result then follows from (4.4).
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THEOREM 4.6. Let f: M R be a 2-cylindrically taut immersion with
dim M n- 1. Then M is diffeomorphic to S-1 and f embeds S- as a
round hypersphere.

Proof. We know that f has the 2-cylindrical STPP and so by (3.2), M is
diffeomorphic to S"-. The result then follows from (4.4).
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