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I. Introduction

Let M denote an arbitrary space-time, by which we mean a smooth con-
nected time oriented Lorentzian manifold of dimension n > 2 having signa-
ture (- +... + ). Causality conditions have played an important role in the
development of the global theory of Lorentzian geometry (e.g., see Beem and
Ehrlich [1]). One such condition which, for instance, ensures the geodesic
connectivity of causally related points in M is global hyperbolicity. (For defi-
nitions and basic results in the causal theory of space-time, see, for example,
Penrose [8-1 or Hawking and Ellis [6]. For a short exposition of the subject
we recommend the excellent review article by Geroch and Horowitz [5].) A
classical theorem of the causal theory due to Geroch [4-1 says that a space-
time M is globally hyperbolic if and only if it admits a Cauchy surface. (A
subset S of M is a Cauchy surface if and only if each inextendible timelike
curve in M intersects S once and only once. A Cauchy surface for M is
necessarily a codimension one topological submanifold of M.) In this paper
we present a general result which establishes necessary and sufficient condi-
tions on a subset S of M to be Cauchy. Its advantage over a related result of
Geroch [4] (which is discussed in the next section) is that it does not require
that S be achronal (i.e., that each timelike curve in M intersect S at most
once). This general result is then used to obtain Cauchy criteria in more
specific situations. In particular we obtain a technical improvement of the
result of Budic et. al. [2] that a C spacelike hypersurface S in a globally
hyperbolic space-time is necessarily Cauchy. (Besides its use in the definition
of a spacelike hypersurface, the C differentiability assumption is used in
their proof at one point to invoke the inverse function theorem.) Our version
removes in a natural way the differentiability assumption on S (and, in par-
ticular, requires a weakening of the notion of "spacelike").
We also obtain a result concerning the topological structure of a certain

class of space-times M. If S is a Cauchy surface for M then, as is well known,
M must be homeomorphic to R x S. Here we determine the topology of
those space-times M admitting a hypersurface S which is not Cauchy but
which satisfies a certain subset of our general Cauchy criteria.
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2. The results

There are minor differences in the development of the causal theory pre-
sented in the two standard references, [6] and [8]. We will primarily adhere
to the notation and terminology of the latter. (Thus, for instance, the domain
of dependence is defined in terms of timelike, rather than nonspacelike,
CUI’VeS.)

Let M be an arbitrary space-time. A subset S of M is said to be locally
acausal (or, in the terminology of Seifert [9], spacelike) if there exists an open
neighborhood U of S such that S is acausal in U, i.e., such that any non-
spacelike curve in U interesects S at most once. This definition of a spacelike
subset generalizes the usual notion of a spacelike hypersurface, since a C
hypersurface in M with spacelike tangents is spacelike in the sense defined
above. (A rigorous proof of this plausible result is presented in the appendix
of [2].) Similarly, a subset S of M is said to be locally achronal (or
nontimelike) if there exists an open neighborhood U of S such that S is ach-
ronal in U, i.e. such that any timelike curve in U intersects S at most once.
All of the results presented in this paper shall refer to locally achronal S.
One of the basic techniques for establishing that a (globally) achronal

subset S of M is Cauchy (D(S)= M) is to show that it has no Cauchy
horizon (H(S)= 0). Using this technique Geroch [4] proved the following
slightly modified version of an earlier result due to Penrose [8]. If S is a
closed achronal subset of M such that each inextendible null geodesic in M
intersects and then re-emerges from S then S is a Cauchy surface. (The re-
emergence condition is satisfied if, for example, S is locally acausal). We shall
prove the following related result, in which the global requirement of achron-
ality is weakened.

THEOREM 1. Let S be a connected closed locally achronal edgeless subset of
M which obeys the following conditions.

(a) For any point p in J+(S) (respectively, (J-(S)), any past (resp. future)
inextendible null geodesic issuing from p must intersect and re-emerge from S.

(b) There exists a point q in M and an inextendible nonspacelike curve
: [a, b)- M issuing from q such that intersects S for only finitely many
parameter values.

Then S is a Cauchy surface.

Remarks. (i) For any achronal subset S of M, the intersection condition
of Geroch’s theorem (henceforth referred to as condition (G)) easily implies
(and, in fact, is equivalent to) the intersection condition (a) of Theorem 1.
Hence condition (a) may replace condition (G) in Geroeh’s theorem.
However if S is merely locally achronal these conditions are not equivalent.
In fact, the statement of Theorem 1 with condition (a) replaced by condition
(G) is false as the following example illustrates. Construct a cylinder "closed
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in time" by taking the region Itl < 1 in a 2-dimensional Minkowski space
and identifying for each x the points (x, -1) and (x, 1). Let M be this space-
time with the point (x, t)= (0, 1/2) removed. Let S be the line 0. Condition
(G) holds in this space-time as do all the assumptions of Theorem 1 except
condition (a). (The assumption edge S is discussed in Remark (ii)).

(ii) The usual definition of edge S assumes that S is achronal. This defini-
tion may be extended to locally achronal S in the following way. If S is
achronal in U then edge S {x U: every neighborhood W of x in U con-
tains points y and z and two timelike curves from y to z just one of which
meets S}. (This definition is easily seen to be independent of the open set U
in which S is achronal.) It then follows, for example, from Proposition 5.8 in
18] that a locally achronal edgeless subset of M is a continuously embedded
topological submanifold (without boundary) of codimension one in M.

Thus, in Theorem 1, the assumption that S is edgeless can be replaced by
the assumption that S is a continuously embedded hypersurface without
boundary (since this latter assumption, together with the assumption that S
is closed, implies that S is edgeless). As some of the examples to be presented
in this paper will illustrate, a locally achronal edgeless subset S needn’t be
closed as a subset of M (although it will be closed relative to any open set in
which it is achronal).

(iii) The conditions of Theorem 1 are necessary as well as sufficient for S
to be Cauchy. Furthermore, each of the conditions on S is essential in that if
any one of them is omitted the theorem is false. The example in Figure 1
illustrates how Theorem 1 can fail when S is not edgeless, even though it is a
submanifold (with boundary) of codimension 1. S-edge S is a submanifold of
codimension 1 without boundary, but is not closed as a subset of M. The
example in Figure 2 illustrates how Theorem 1 can fail when all of the condi-
tions except the assumption that S be closed are met. In this example,

M R2 (0, 0), ds2 dr2 + r4 dO2,

where r and 0 are polar coordinates. The null geodesics are described by the
polar equations, r-l+ 0 const. Each null geodesic enters from infinity
along some asymptotic direction and then spirals into the origin. S consists
of the null geodesic, r 1/0, 0 > n/2 and a curve from (r, 0)= (2/r, /2)
which asymptotically winds around the circle r 1/2.

Proof of Theorem 1. As discussed in Remark (ii), S is a continuously
imbedded topological submanifold of codimension 1 in M. The local achron-
ality of S and the time orientability of M imply that S has a future side and
a past side. Indeed, let T be a smooth future pointing unit timelike vector
field on M. T is tranverse to S in the sense that each integral curve of T in
U (an open set in which S is achronal) intersects S exactly once. The future
side of S is the side into which T along S points, and the past side of S is the
side into which -T points.
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FItR
M is a flat torus obtained by taking a suitable rectangular subset of 2-dimensional Min-

kowski space and identifying opposite sides. S satisfies all of the conditions of Theorem except
the condition that it be edgeless. S is a submanifold with boundary of codimension 1; S-edge S
is boundaryless, but is not closed as a subset of M.

S

typical
light ray

FIGURe. 2
M l2- (0, 0) with metric d$ -dr + r4 dO2, where r and 0 are polar coordinates. The

null geodesics are hyperbolic spirals, described by the polar equations r-1

_
0 eonst. S obeys

all the conditions of Theorem except the condition that it be closed.



CAUCHY SURFACE CRITERIA IN LORENTZIAN GEOMETRY

This two-sidedness enables the construction of a certain covering manifold
of M which we now describe. Take an infinite number of copies of M, {M’
an integer}. Each M contains a copy of S which is denoted by St. Pro-
ceeding in a fashion analogous to the construction of a Riemann surface,
make a "cut" along each St and identify the past edge of the cut in M with
the future edge of the cut in M+ 1. Hence, M and M/ are joined along a
copy of $, call it g. Let r )z M (with the cuts and identifications just
described). If S separates M into two components, then the above construc-
tion simply yields a countable number of disconnected copies of M. Suppose,
however, that S is not achronalo Then ]r is connected. Define the map n’

M by the requirement that [u be the natural identification of points
in M with points in M. It is easily verified that (r, n) is a covering manifold
of M with the property that each component g of n-1(S) is homeomorphic
to S (with rt Is," g S being a homeomorphism). (The assumption that S is
closed is needed here.) Lift the metric g on M via the covering map to obtain
a Lorentz metric on r with respect to which n is a local isometry. It
follows immediately from the construction of/r that each g is achronal. In
fact, the covering manifold described here is isomorphic to a covering mani-
fold introduced by Geroch [3].
We claim, assuming that the hypotheses of Theorem 1 hold, that each

component g gK of r-1(S) is a Cauchy surface in . It suffices to show
that

=/-/+ O.
Suppose that H+(r) =/: O. Let be a past inextendible null geodesic generator
of H+(g). (Since g is edgeless, never leaves H+(g) as it is extended into the
past.) The future end point of can be chosen so that does not intersect
g for all > K. Now, r/= () is a past inextendible null geodesic in M with
future end point p () 6 J+(S) (since e J +(g)). By condition (b) of
Theorem 1, r/ intersects and re-emerges from S. Thus it follows that inter-
sects and re-emerges from some component of -1(S), which, by our choice of, must be g. This conclusion, together with the fact that I+(r), contra-
dicts the achronality of g. Thus, H+(g) 0 and, similarly, H-(g)= 0. There-
fore, each component of n-(S) is a Cauchy surface.
Now, according to condition (b) there exists a point p e M and an inexo

tendible nonspacelike curve " [0, b)--, M which intersects S only finitely
many times. Let be a point in which covers p and let be the unique lift
of y starting at . Then, since each g is Cauchy, intersects all components
of r-1(S) in the future (or in the past) of . But that means that --r
intersects S infinitely often. Thus, the assumption that S is not achronal,
which allowed the construction of r, leads to a contradiction. Hence, S is
achronal. The same argument used to show that H(g)= 0 can be used to
show that H(S) 0. Thus, S is a Cauchy surface. |

As our first corollary to Theorem 1, we obtain (a slightly generalized
version of) the theorem of Budic et. al. discussed in the introduction.
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COROLLARY 1. Let S be a compact connected locally achronal ed0eless
subset of a llobally hyperbolic space-time M. Then S is a Cauchy surface.

Proof. It suffices to show that conditions (a) and (b) of Theorem 1 hold.

Condition (a) holds. Let r/ be any past inextendible null geodesic with
future end point p J/(S). We first show that r/ intersects S. Suppose
l c J/(S). Then r/ is contained in J+(S) c J-(p) which, by the corollary on
p. 207 in [6-1, is compact. Hence, by Proposition 6.4.7, p. 195 in [6], there
must be a strong causality violation, contradicting the global hyperbolicity of
M. Thus r/must leave J /(S).

Let x be the first point at which /leaves J/(S). Now,

x dJ+(S)= J+(S)- I+(S)

(since J/(S) is closed and int J/(S) I /(S)). If x S we are done. Suppose
x S. Then, since x 6 J /(S), there is a nonspacelike curve z from S to x. Let
U be an open neighborhood of S in which S is achronal, and let D(S, U) and
H(S, U) be the domain of dependence and Cauchy horizon, respectively, of S
relative to U. Since U is strongly causal and S is compact, a null geodesic
generator of H(S, U) cannot be imprisoned in S. Such a generator would
have to leave S at an edge point. But, by assumption, S is edgeless. It follows
that H(S, U) c S , and, hence, S cint D(S, U). Thus, z intersects
int D(S, U), and it easily follows that x e I+(S), which is a contradiction.
Hence r/intersects S. Furthermore /must re-emerge from S (for, otherwise it
would be past imprisoned in a compact set, and, hence, there would be a
strong causality violation).
The above argument and its time reverse show that condition (a) is satis-

fied.
Condition (b) holds. Let 7: [0, b)--- M be any future inextendible timelike

curve issuing from some point p M. Suppose 7 intersects S for infinitely
many parameter values < t2 <"" Since S is compact, the sequence of
points {q} (qz 7(ti)) has a convergent subsequence qjq S. Clearly,
strong causality is violated at q. |

Theorem 1 may also be used to establish the following.

COROLLARY 2. Let St and S2 be two Cauchy surfaces in a space-time M,
with S in the past of $2. Let S be a connected closed locally achronal edteless
subset of M. If S lies between S and $2, i.e., if S J+(S) J-(S2) then S is

itself a Cauchy surface.

Remark.
omitted as
x2 + y2 1,

The assumption that S be a closed subset of M cannot be
the following example illustrates. Let M be the cylinder,- < < , in Euclidean (x, y, t)-space; equipped with the
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locally Minkowskian metric ds2 -dr2 + dO2, where 0 is the polar coordi-
nate. Let S be the "compressed helix"

u (cos u, sin u, tan- u).

S is bounded between the Cauchy surfaces St (t -n/2) and $2 (t n/2) but
is not itself a Cauchy surface.

Proof of Corollary 2. Again apply Theorem 1.

Condition (a) holds. First we show that J+(S) and J-(S) are closed. (In
general J+/-(S) are not closed even if M is globally hyperbolic and S is closed.)
Suppose

q J+(S) J+(S) c dI+(S).
Let r/be a past inextendible null geodesic generator on the achronal bound-
ary 1/(S) with future end point q. Since J /(S) c J /(St) and J /(St) is closed,
q J+(St). Thus r/must intersect St and enter into I-(St). Hence,

I- (St) c J + (St) :::’ I- (S t) I + (S) :/: O,

which contradicts the achronality of St. Therefore J/(S) and, similarly, J-(S)
are closed.
Now, let p J /(S) and let r/be any inextendible null geodesic with future

end point p. Since J /(S) J /(St), r/ must leave J /(S), for, otherwise, r/
J+(St), which is impossible (since St is Cauchy). Now one can argue just as
in the proof of Corollary 1 that the point at which r/ leaves J/(S) is in S.
Thus /intersects $, and must re-emerge (or, otherwise, r/ J+(S)).

Condition (b) holds. Any future inextendible timelike curve issuing from a
point p in I+(S) cannot enter into J-(S) and, hence, cannot meet $. |

If S is a Cauchy surface for M then the topology of M is known up to the
topology of S. Indeed, as is well known, M is homeomorphic to R S. If a
subset S of M is closed, achronal and satisfies the intersection condition (a)
of Theorem 1 then S is Cauchy. Our next result describes the topology of M
when M admits a connected closed locally achronal edgeless subset S which
satisfies condition (a) of Theorem 1, but which is not achronal. It follows as a
consequence of Theorem 1 that for such a subset S, any timelike curve
issuing from a point of S reaches S again. Let T be any timelike vector field
on M. Associate with T the map Or: S S defined as follows: For each
q S, 0r(q) is the first point in S reached by traveling along the integral
curve of T through q. The map Or defines a homeomorphism of S onto itself.
As a further bit of notation, if X is any topological space and " X X

any homeomorphism, then by [0, 1-1 x X/ we mean the space obtained from
the product space I-0, 11 x X by identifying the points (0, q) and (1, (q)) for
each q X.
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THEOREM 2. Let S be a connected closed locally achronal edteless subset of
M which satisfies condition (a) of Theorem 1. If S is not achronal then for any
timelike vector field T on M, M is homeomorphic to [0, 1-] x SLOT.

Examples. 1. Let M be the cylinder "closed in time", constructed by
taking the region -1 < < 1 in 2-dimensional Minkowski space and iden-
tifying for each x the points (x, -1) and (x, 1). Let S be the line 0. For
T g/cOt, OT id and [0, 1] x S/OT [0, 1] x R/id S x R which is the
topology of M.
A slightly less trivial example is the following.
2. Let M be the cylinder "closed in space" discussed in the remark fol-

lowing the statement of Corollary 2. Let S be the helix u (cos u, sin u, u).
For T c3/dt, OT is a translation and [0, 1] x S/OT [0, 1] x R/trans. a
cylinder.

3. Let M be the Moebius strip constructed by taking the region
-1 _< < 1 in 2-dimensional Minkowski space and identifying the points (x,
-1) and (-x, 1) for each x. Let S be the line 0. For T c3/c3t, OT --id.
This example shows that the topology of [0, 1] x SlOT needn’t be a product
topology.

Proof of Theorem 2. Let T be any timelike vector field on M. Assume for
definiteness that T is future pointing (Only monor modifications are required
if T is past pointing.) Let (2r, r) be the covering manifold of M introduced in
the proof of Theorem 1. Lift T to/r via the covering map to obtain a future
pointing timelike vector field on

Consider the subset Mo of ]r with boundary consisting of the disjoint
copies of S, go and gl. (Here we are making use of the notation introduced
in the proof of Theorem 1). We first show that Mo is homeomorphic to
[0, 1] x S. As follows from the proof of Theorem 1, go and g are Cauchy
surfaces for/r. It follows that each point Mo is on a unique integral curve of
the past directed vector field -" from to o. Furthermore -" can be
smoothly rescaled so that to travel from gl to o along any integral curve
takes parameter time exactly one. Let q" [0, 1]-- Mo be the integral curve
of -(appropriately rescaled) issuing from q . Define the map p: [0, 1]
x gl Mo by, p(t, q)= q(t). Let rcl" 1-- S be the restriction of
Then the map if: [0, 1] x S--* Mo defined by

(t, q)= p(t, z(q))
is the desired homeomorphism.

Let : g go be the natural identification of the points of g with the
points of go. (The map 0 is determined by the covering map via the equa-
tion, r(())= ()). Let Mo/ be the space obtained by identifying the
boundary points of g and /o in the natural way, i.e., by identifying and
0() for each g. By the very construction of/r, Mo/ is homeomorphic
to M. Let fl: o-- be the map defined by p- ]Jo, i.e., fl maps the
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point go to the point in gl reached by traveling along the integral curve
of through q. Identifying the boundary points and 0() in Mo corre-
sponds, via the homeomorphism , to identifying the boundary points
(0, zr()) and (1, zr o/3 ()) in [0, 1] x $. Carry out this latter identification
to obtain the space [0, 1] x S/7. (where n o/3 o/gll), which is homeo-
morphic to Mo/o, and, hence is homeomorphic to M.
One easily verifies from the properties of the covering and the definitions

of the maps involved that the following diagram is commutative:

OT

Tracing through the diagram one sees that ;g Or, and the proof is com-
pleted. |

We close the paper with the following corollary, which generalizes Corol-
lary 1.

COROLLARY 3. Let S be a connected compact locally achronal edgeless
subset of M which satisfies condition (a) of Theorem 1. If there are no closed
timelike curves passing through S then S is a Cauchy surface.

Proof. Suppose S is not achronal. Then according to Theorem 2, M has
topology [0, 1] x S/Or and, hence, is compact since S is. But compact space-
times necessarily admit closed timelike curves (e.g., see I-1], p. 23). Thus, there
is a closed timelike curve in M, which, by assumption, does not pass through
S. Consequently condition (b) of Theorem 1 is also satisfied and, hence, S is
Cauchy. But this contradicts the assumption that S is not achronal. There-
fore, S must be achronal and, hence, is Cauchy by Theorem 1.
Example 2 following Theorem 2 shows that Corollary 3 is false if the

assumption that S is compact is dropped or replaced by the assumption that
S is closed.
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