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0. Introduction

Let G be a locally compact group. Let VN(G) (resp. C’(G)) denote the
closure of the linear span of the left translation operators on L-(G) with
respect to the weak operator topology (resp. norm topology). It is not hard to
see that (Proposition 3.2) if VN(G) contains a non-zero compact operator,
then G is compact. In this case, the rank-one operator E on L2(G) defined by
E(f) (ff(x)dx)l is in VN(G).

In this paper, we are concerned with the following problem: Does there exist
an infinite compact group such that E C*(G)?
Dunkl and Ramirez prove in [1] that if G is an infinite compact group which

is amenable as discrete, then E qt G(G).
In this paper, we prove (Corollary 1.2), among other things, that if G is a

compact group containing a dense subgroup with Kazhdan’s property (T)
(e.g., SO(n, R), n > 5), then E C*(G). We also prove (Theorem 2.4) that if
Cd’(G) contains a non-zero compact operator in VN(G), then C(G) must
contain all compact operators in VN(G).

1. Compact groups with property (A)

Let G be an infinite compact group with normalized Haar measure/ and let
h be the left regular representation of G on L2(G): for each x in G, ,(x) is
the isometry on L2(G) defined by (X(x)g)(y) g(x-ly), g L2(G), y G.
Let C’(G) be the C*-algebra generated by h(x), x G and let E be the
rank one operator g---, (fg(x)dx). 1 on L2(G) where 1 denotes the
constant one function on G. We say G has property (A) if E C(G). In this
section we are concerned with the following natural question: does there exist a
G with property (A)? Quite surprisingly, this question has a positive answer.
However, it is easy to see that if G is abelian, then G does not have property
(A).
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Indeed, let G be an infinite compact abelian group. Then its dual group ( is
infinite and discrete. By Plancherel’s Theorem, the map f-, f, where f(y)=
ff(y)y(y) d#(y), y , f LE(G), defines a linear isometry of LE(G) onto
/2(). Hence the operator Y’.=lciA(xi), c C, x G, on LE(G), corre-
sponds to multiplication on /2() by the trigonometrical function

E’=tci(, x;-1). Since l(() can be identified with multiplication operators on
/2(G) by functions in l((), it follows that C’(G) can be identified with
AP(), the algebra of almost periodic functions in G, by density of trigono-
metrical polynomials in AP(). On the other hand the operator E is identified
with the function 60 on ( where B0(Y)= 1 if y 0 and 60(Y)= 0 if ), q: 0.
Since B0 AP(), E Cd().
A stronger result is known: in [1] Dunkl and Ramirez proved that if Gd, G

considered as a discrete group, is amenable, then G does not have property
(A).

Let r be a unitary representation of a discrete group N on a Hilbert space
H. We say that ,r contains the trivial representation of N weakly if there exists
a net (v} in H, IIll 1, such that

limllr(x)’, 11 0 for each x N.

The following is our main result of this section.

THEOREM 1.1. Let G be an infinite compact group. Then the following two
conditions are equivalent:

(a) G has property (A).
(b) The left regular representation of Gd on

0)
does not weakly contain the trivial representation.

Proof. (a) (b). Suppose G has property (A). Then there exist X1,... X

G and c,..., c C such that
(1) liE Y’.=cyX(xy)ll e < 1/2.

Let M suPlcil. Pick > 0 such that 1 e > 1/2. We claim that
(2) if g L(G), Ilgl12-- 1 then IIg- X(xj)gll2 > 6/nM for some 1 < j

Note that (2) implies (b). To prove (2), note first that by (1) we have

E(16)- Y’.cj,(xj)16 1- Ecj <e
j----I 2 j----1

and hence
(3) IF.__lCjl > 1 e.
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If (2) were not true, then there would exist g
IIg X(x)gllz < 6/nM for all j. Then by (1) we would have

1 such that- > >_ e(g)- c.X(.)g
j=l 2

Thus we have reached a contradiction.
(b) (a). If (b) holds then there exist Yl,-.-, Y G and e > 0 such that

for all g L20(G), Ilgll= 1, for some i, 1 < < M,

Let xl
Let

e, the identity of G, x2 yl,...,XM+I

1 N

A E X(x).
k--1

=YM and let N=M+ 1.

We claim that IIA IILg(G> < 1. That is, there exists 6, 0 < 6 < 1, such that for
all g L(G), Ilh(g)ll2 < (1 6)llgll_. If not, then there exists a sequence
{ gn} in Lg(G), IIgll_ 1, such that IIa(g)ll_ - 1. Therefore,

IIA(g,,)ll22 <A( gn), A( g,))

1 N

i,j=l

Since for each i, j, <,(xf xi)g,, g,) < 1, we conclude that

Re< ( x- lx ) gn gn > --’ 1.
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But then

IIX(x,)g- X(x)g, ll2z 2 2 Re(X(xjx,)g, g,) 0

as n---> o0. In particular, since x e and Xk+ =Yk, k 1,...,M, we
conclude that limnll)(yk)g gnl12 0 for each k, 1 < k < M. This clearly
contradicts the choice of Yx,---, YM. Thus, IIA II < 1, as claimed.

Fix a positive integer m. For each g L2(G),

g)gll_ IlAm(g- E(g))ll

< IIAmllz<)llg- E(G)II2 (since g- E(g) L(G))

Therefore IIAm Ell -< 2(IIAIIL()) o. That is E C(G). rq

A discrete group N is said to have Kazhdan’s property (T) if any unitary
representation of N which weakly contains the trivial representation has a
1-dimensional invariant subspace. From the definitions, it is clear, as pointed
out by Margulis [6] and Sullivan [10] independently, that if G has a dense
subgroup with property (T), then G satisfies (b) of Theorem 1.1. Therefore we
have the following:

COROLLARY 1.2. Let G be an infinite compact group containing a dense
subgroup with property (T). Then G has property (A).

According to Margulis [6, Proposition 4] (see also Sullivan [10]), if a
connected simple compact Lie group G is not locally isomorphic to SO(3, R)
or SO(4, R), then G contains a dense subgroup with property (T). Hence if
n > 5, then SO(n, R) has property (A). Margulis has kindly communicated to
one of us the interesting fact that SO(n), n 3, 4 and SU(2) do not contain a
dense subgroup with property (T). However, we are unable to decide whether
or not these three groups have property (A). Note that it is important for us to
know if these three groups have property (A). For if they do, then there is a
unique invariant mean on L(G) of these groups G (see Proposition 1.3), and
this is very closely related to solving the Banach-Ruziewicz problem in S 2 and
S 3 (see [7] and [10] for more details).
A linear functional m on L(G) is called a left invariant mean on L(G) if

Ilmll 1, m > 0 and m(xf)= m(f) for f L(G) and x G where xf
L(G) is defined by xf(y) f(x-ly). Note that the normalized Haar measure
/x of G is a left invariant mean of L(G). Granirer [3] and Rudin [8] have
proved independently that if Gd is amenable then L(G) has more than one
left invariant mean (see also Lemma 3.3 of Stafney [9] for G second countable
and abelian). For quite a while it was unknown whether there exists an infinite
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compact group G such that L(G) has a unique left invariant mean. The
following result is a direct consequence of results in Rosenblatt [7] and, in
slightly different form, is also contained in [6] and [10].

PROPOSITION 1.3.
invariant mean.

If G has property (A), then L(G) has a unique left

Proof. If L(G) has more than one left invariant mean, then by Theorem
1.3 and Lemma 3.1 of [7], there exists a net { ge} in L(G), IIgll2 1, such
that limellA(x)g -gell2 0 for each x G. That is, G does not satisfy
condition (b) of Theorem 1.1. E3

Remark 1.4. (a) The only known infinite compact groups G for which
L(G) has a unique left invariant mean are the ones containing a dense
subgroup with property (T).

(b) If G has property (A), then Gd is not amenable (by Proposition 1.3 and
Theorem 4.1 in [8]). But it is possible that Gd is not amenable, and G fails to
have property (A). For example, take G H T, H compact but arbitrary, T
is the circle group. Then G has more than one left invariant mean on Loo(G),
but Gd is not amenable when Ha is not amenable.

2. Property (A) and compact operators

In this section, G will again denote an infinite compact group. We will
prove, among other things, that if C’(G) contains a non-zero compact
"operator", then G has property (A). But first of all we will need some
notations and preliminary results in harmonic analysis on compact groups.

Let VN(G) be the von Neumann subalgebra of (L2(G)), the algebra of
bounded operators on L2(G), generated by {A(x);x G), or equivalently,
the von Neumann subalgebra generated by (h(f);f LI(G)} where the
operator ,(f) on L2(G) is defined by A(f)(g) f g. Note that VN(G) also
equals the commutant of the right convolution operators; i.e.,

VN(G) ( T (LE(G))" T(g* f ) T(g)* f g LE(G), f LI(G))

(cf. Eymard [2]). Let C(G) be the C*-algebra generated by )(f), f LI(G).
If G is abelian, then C(G) can be identified with C0((), the space of
(continuous) functions on G which vanishes at infinity. Since AP() tq Co()

(0),.C**(G) {0).
Let G be the dual of the compact group G; i.e., G is the equivalence classes

of irreducible continuous unitary representations of G. For each a G, choose
I-Ie a. Denote the coefficient functions of Fie by u 1 < i, j < d where
d is the dimension ofl-I Let V be the 2

e- de-dimensional space generated by



APPROXIMATION OF COMPACT OPERATORS 345

the u." ’s. Then by the Peter-Weyl theorem, V is right and left translationt,j

invariant and

L2(G)

_
( V" a r ) (Hilbert sum).

Denote the linear span of t.J(V: a (} by Trig G, the trigonometrical
polynomials of G. Then Trig G is dense in C(G) and L2(G). The following
lemma is more or less known. For completeness, we present a proof here.

LEMMA 2.1. Let T VN(G). Then T is offinite rank if and only if T ,(u)
for some u Trig G.

Proof If u Trig G, then there exists a finite set F c_ ( such that

uE(V’aF}.

Then for g L2(G), X(u)(g) u, g E(Va: a F } (cf. Hewitt and Ross
[4; p. 11]). Thus ,(u) is of finite rank.

Conversely, assume that T VN(G) is of finite rank. Since T(V,) c_ 1/ for
each a, there exists a finite set F

_
G such that T(V) {0} if a F. Denote

the trace of a ( by X. Let

Then both X and T(X) belong to Trig G. By [4, p. 14], we have

= ifaFX * Uij Uij

and

Therefore,

and

=0 ifaF.X*Uij

T(X)* U. T(X * U.) T(ui. ) ifaF

T(x)*ui= T(0)=0 ifaF.

But if a q F, T(uj) 0. So T(uij) T(X)* ui for a ( and 1 < i, j < d.
Thus T-- X(T(x)).

PROPOSITION 2.2. If G is compact, then

C(G) { T VN(G)" Tis a compact operator on L2(G)}.
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Proof If T is a compact operator in VN(G) and T U[ T is the polar
decomposition of T, then U, IT[ VN(G) and TI is compact. Therefore by
the spectral theorem, there exists a sequence of finite rank operators S, in
VN(G) such that S IT[ in operator norm topology. Then T U- S, is a
sequence of finite rank operators in VN(G) such that II T- TII 0. By the
above lemma, each T, )(u,,) C(G), for some u Trig G. So T
C(G).
The converse is well known (see for example [11, p. 47]; we thank the referee

for pointin this out to us). rq

Remark 2.3. The fact that each )(f), f LI(G), is compact can be viewed
as a generalization of the Riemann Lebesgue lemma for (compact) abelian
groups. Indeed, if G is abelian, then )k(f) corresponds to the multiplication by
f (the Fourier transform of f) operator on 12((). But a bounded function h
on 0 viewed as a multiplication operator on /2(0) is compact if and only if
h Co(O).
The predual of VN(G) can be realized as an algebra of continuous functions

on G, namely, A(G), the Fourier algebra of G. Indeed, each u A(G) can be
written as h 7 where h, k L2(G), 7(x) k(x-), x G. For T VN(G),
and u h, 7 A(G), (T, ) equals the inner product of T(h) and k in
Lg-(G) where A(G) is defined by u(x)= u(x-1). A(G) with pointwise
multiplication and the norm

Ilull -inf{llhll.llkll2" u- h, 7,h,k Lg-(G)}

is a commutative Banach algebra. Further, VN(G) is an A(G)-module where
for u w= A(G), T VN(G), u T is defined by u T, o) T, uo), o A(G).
For more details on the algebras A(G) and VN(G), see Eymard [2]. Note that
if f = LI(G), x G and u A(G), then u. h(f)= (uf) and u-(x)=
u(x)(x). Hence, as easily checked, C(G) and C(G) are both A(G)-sub-
modules of VN(G).
We are now ready to give the main result of this section.

THEOREM 2.4. Let G be a compact group. The following are equivalent:
(a) G has property (A).
(b) C(G) contains a non-zero compact operator.
(c) C’(G) contains all compact operators in VN(G).
(d) C(G) Cg(G).
(e) C(G) fh C’(G) 4: (0).

Proof That (a) (b) is clear.
(b) (c). If C(G) contains a non-zero compact operator, then it contains a

nonzero positive compact operator. By the spectral theorem for compact
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normal operators, we see that Cd(G) contains a nonzero operator T of finite
rank. By Lemma 2.1, there exists u0 Trig G

___
A(G), uo 4: O, such that

T X(Uo).
Let I (u A(G): A(u) C*(G)}. We claim that I is a closed ideal of

A(G). Indeed, if o A(G) and u I, then v X(u) C*(G); but v A(u)
A(vu) and hence ouI. Thus I is an ideal. If uI, uA(G) and
Ilu ull(a) O, then, since

II,(u)- ,(u)ll Ilu=- Ulll Ilun- ulloo Ilu=-

we conclude that X(u) C’(G) and hence u I.
Let x G. Since u0 4: 0, there exists x0 G such that Uo(Xo) 4: O. Now if

y Xox-l, then

k(yUO) k(XoX-1)k(Uo) (- c(a);

i.e., yU0
(3. I. But yUo(X) Uo(Xo) 4: O. Thus we conclude that for each x G

there exist u I such that u(x)4: O. By the generalized Wiener’s Tauberian
theorem (cf. Eymard [2, p. 223]), we see that I A(G), or, X(A(G))

_
C(G).

Since X(A(G)) is dense in X(LI(G)), we conclude that C(G) is contained in
C(G).

(c) (d) and (b) (e) follow from Proposition 2.2, and (d) (a) is clear.

Remark 2.5. That (a) = (d) in Theorem 2.4 can be proved directly. Indeed,
if u A(G), then u. E u. h(1)= h(u); i.e., h(u) Cd*(G). Since A(G) is
LX-dense in Li(G), if f Li(G) and e > 0 are given, then there exists
u A(G) such that Ilu -fill < e. So

IIX(f)-)k(u)ll IIf-Ulll < e.

Therefore X(f) Cd*(G). This implies that C(G)
_

C’(G).
What we are interested in here in studying property (A) is getting at the

operators Ei=laiA(xi)= T, where a,..., a C and Xl,..., x G, as they
act on L-(G) or on the appropriate parts of the dual (. For example, we have:

PROPOSITION 2.6. G has property (A) /f and only if for each e > 0 and
), Cl, C C, al,.. aa c= there exists T _,i=lCik(ai G such that

II TII vo > 1 e and II TII v. <- e for all r , 4: a.

Proof If G has property(A), let e>0, aG be fixed. Let P be the
orthogonal projection of L2(G) onto V. Then P, is compact. Also since V
and its orthogonal complement E{V," 4: a,, (} are both translation
invariant, P,, commutes with right translations on L2(G). Hence P, VN(G).
In particular, P C(G) by Theorem 2.4. Choose T= }2i=ciX(ai),
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c ,% C and al,...,a,, G, such that IIP- TII < e. Then for each

]lP(g)- T(g)ll2 < e or Ilg- T(g)ll2 < e.

Hence IlT(g)ll2 > 1 e; i.e., [[TI[, > 1 e. Also, if g V, a #= "r, [[g[[2 1,

][T(g)]]2 IlP(g)- T(g)ll2 < .
So II TII , < e.

To prove the converse, let 0 < e < 1/2 and a be the trivial representation of
G. Then V, (c1o; c C}. Choose

T ciX(xi),
i=1

Cl, C E. C, x1, x E. G,

such that 1[ TII > 1 e and II TII , -< e for all z G, z a. Since

II TII vo T(cla)l for some c C, Icl 1,

we have

C
i=1

Ci
i=1

T(cla)l IITII v. > 1 e.

Also, V= L(G). So IITIIL(a)= suP(llTIIv.; G; : a) _< e. Hence if
g L(G), Ilgll2 1, IIE,"=xcX(%)gll2 -< e < "1/2. An argument similar to that
of Theorem 1.1 (a)= (b) shows that condition (b) of Theorem 1.1 holds.
Hence G has property (A) by Theorem 1.1. []

PROPOSITION 2.8. Let K be a closed normal subgroup of G. If G has property
(A), then G/K also have property (A).

Proof. Let j: L2(G/K) L2(G) be defined by j(h’) h’a, where a is the
canonical homomorphism of G onto G/K, (G, H and G/K equipped with the
normalized Haar measure). Then J is a linear isometry of L2(G/K) onto

L-functions on G which are constant on cosets. LetL:(G), the space of 2

T VN(G), h’ L2(G/K). Then T(j(h’)) L2K(G). Define ](T) VN(G)
by j’(T)(h’) (j- T j)(h’) (see Eymard [2, p. 217]). Then ] is continuous,
j’(X(x)) X(x), x G, and ](h(f))= X(f’), f L(G), where f’
Li(G/K) is defined by

f’(x) ff(xt) d#K (t).
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Thus

c

In particular, if E A(la) C’(G), then j(E)= ,(l/r) is in C’(G/K);
i.e., G/K has property (A) also. []

Remark 2.9. It follows from above that SO(5) T does not have property
(A). This also follows from the fact that L(SO(5) T) has more than one
left invariant mean (see Proposition 1.3).

3. Non-compact groups

Let G be a locally compact group with a fixed left Haar measure and with
modular function A. For each x G, define the right translation operator
r(x) on L2(G) by r(x)g(t)= A(x)l/2g(tx), G, g L2(G). We need the
following result due to Lau [5, Theorem 4.6].

LEMMA 3.1. If G is non-compact and K is non-empty compact convex subset
of L2(G) such that r(x)(K) c Kfor each x K, then K (0).

The spaces VN(G), C’(G), Cd’(G) and A(G) can be defined for any locally
compact group G. But we have the following:

PROPOSITION 3.2. If G is locally compact group and if VN(G) contains a
non-zero compact operator T, then G is compact.

Proof. Let K (T(g): g L2(G) and Ilgll2 -< 1). Then K is a relatively
compact convex subset of L2(G) and K {0}. Furthermore, if x G,

r(x)(T(g)) T(r(x)(g)),

since T commutes with right translations on L2(G), g K. Therefore
r(x)(K) _c K. Hence G is compact by Lemma 3.1. []

While VN(G) contains no non-zero compact operators if G is non-compact,
it is still interesting to ask: for what kind of non-compact non-discrete group G
is C(G) N C’(G) (0}? (Compare with Theorem 2.4.) It is known that if G
is a non-discrete locally compact group and if Gd is amenable, then C’(G) N
Cd(G) (0}. (See Dunkl and Ramirez [1].) However, when Gd is not amena-
ble, C(G) C’(G) can be non-zero for non-discrete and non-compact G. In
fact, let H be a non-discrete compact group with property (A). Let Z be the
integer group and let G H Z. Let f ln.(0}. Then h(f). h =p is the
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function on G defined by

p(g,m)= fn hduc, h LE(G).

Let T, be a sequence consisting of linear combinations of left translates on
L2(H) such that IIT- ,(ln)ll 0. If

let ]’n Ein---lCi(xi, O) Then, as is readily checked, I1- (f)ll 0. In
particular C(G) N C(G) 4: (0}.
The following questions seem to be interesting:
(1) If a nondiscrete locally compact group G contains a dense subgroup

with property (T) (as a discrete group), does it follow that C(G) C’(G) 4:

(0)?
(2) If C(G) Cd(G) 4: (0), does it follow that C(G) c_ Ca*(G)?
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