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1. Introduction

Let A denote the open unit disc of the complex plane. In this paper we
study, for 0 < p < 1, the space h p of complex valued functions u harmonic on
A, for which

(1) Ilull sup
0<r<l

f’lu(re*e)l dO/2r < oe.

If p > 1 then the functional II lip is a norm which makes h p into a Banach
space. But if 0 < p < 1 it is instead the p-norm II Ilee which is subadditive,
and used to induce the translation-invariant metric. In either case metric
convergence implies uniform convergence on compact subsets of A, so even if
0 < p < 1, the space h P is complete, has enough continuous linear functionals
to separate points; and its topology is "natural" for harmonic functions.
For p > 1 the h p spaces are well known objects with many desirable

properties. For example [5; Chapters 2, 3, and 4]:
(i) The Poisson integral establishes an isometric isomorphism between h p

and a classical Banach space: LP(OA) if p > 1, and the space of complex
Borel measures on 0A if p 1.

(ii) Each function in h has a finite non-tangential limit at almost every
point of 0A.

(iii) The conjugate function operator u is well behaved. If 1 < p < ,
the M. Riesz theorem asserts that h p is "self-conjugate", that is, if u is in h P,
then so is its harmonic conjugate . This is not true for h1, but here
Kolmogorov’s theorem provides a substitute: if u h then h p for all
p<l.
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The spaces h p for 0 < p < 1 have also been in the literature for a long time,
used mostly to provide counterexamples to possible extensions of the results
mentioned above. In fact the best known feature of these spaces seems to be
the following result of Hardy and Littlewood ([19], [9; Section 4.3, page 471],
[10; Chapter 10, Section 6]): there exists u in (hP: 0 < p < 1) for which
belongs to no h P.
The results of this paper show that when 0 < p < 1, this sort of behavior is

forced on h ’ by linear topological phenomena having no counterpart in either
h P for p > 1, or in the holomorphic Hardy spaces Hp when p > 0. Our work
continues in the general direction inspired by the paper [6] of Duren, Romberg,
and Shields, who discovered unusual linear topological properties of Hp when
0 < p < 1, and related these properties to interesting questions about analytic
functions. Subsequently Duren and Shields [7] noted some of the basic
properties of h (0 < p < 1) and suggested a study of these spaces modelled
after their earlier work on H’. We will see here that, just as with Hp, such a
study involves an interesting interplay between classical and functional analy-
sis. But the main point is that when 0 < p < 1 the spaces h p are of interest not
because their linear topological properties resemble those of Hp, but because
they are in fact completely different.
We begin to pursue this theme seriously in Section 3, after devoting a section

to preliminary definitions and results. In Section 3 we explore some conse-
quences of the most immediate difference between h p and H’: when 0 < p < 1
the space Hp is separable, but h p is not. This result, already implicit in the
work of Hardy and Littlewood [9], focuses attention on a natural separable
subspace: the closure in h p of the harmonic polynomials. Although this
subspace, which we denote by h P(), contains many familiar closed subspaces
Hp and 12, for example--it also contains a strikingly different one: the
rotation-invariant subspace

This subspace, which is nontrivial only when 0 < p < 1--which we assume
from now on without further comment--is in fact infinite dimensional: it
contains all Poisson integrals of singular measures on OA. We show in Section
3 that, except for the trivial subspace {0}, no rotation invariant subspace of h
can be locally convex. Nevertheless we will see that local convexity shows up
everywhere in h: every infinite dimensional closed subspace of hop has a
further subspace isomorphic to the sequence space c0. We use this result to
prove that no infinite dimensional closed subspace of h can be mapped into
h p by the conjugate function operator, and we obtain some further results on
the pathology of conjugate functions for subspaces of h 0

p.
We close Section 3 by observing that h is weakly dense in hP(); that is,

among the continuous linear functionals on hP(), only the zero functional
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annihilates hop. Such failures of the Hahn-Banach theorem play an essential
role in the theory of F-spaces (complete, metrizable topological vector spaces)
which are not locally convex. This phenomenon was first observed in p by
N.T. Peck [20]; in Hp by Duren, Romberg, and Shields [6; Theorem 14, page
56]; and in other settings by Shapiro [25], [26] and Kalton [11], [13]. In
particular Kalton [11; Corollary 5.3, page 162] showed that the qualitative
extension form of the Hahn-Banach theorem must fail in every F-space which
is not locally convex, and he later showed that whenever such a space obeys a
mild (but necessary) additional hypothesis then it also contains a proper,
closed, weakly dense subspace [13]. The survey paper [28] contains an exposi-
tion of some of these matters.

Since h is weakly dense in hP(,.), the quotient space hP(,.)/h has trivial
dual. In Section 4 we identify this quotient as the space LP(OA). We use the
method of A.B. Aleksandrov [1] to construct the isomorphism from the Poisson
integral. The method also yields an approximation theorem" h is the closure
in h p of the linear span of the rotates of the Poisson kernel; and the theorem
itself yields additional linear topological information about the relationship
between h and h p(9).

I wish to thank Professor Nigel Kalton for some helpful conversations about
the material of this paper.

2. Preliminaries

Unless otherwise noted we always take 0 < p < 1. In this section we
establish our notation and state some basic results about h P. We show that h p

is a complete metric space, and that h is a closed subspace of h P().

2.1 Notation. Recall that A denotes the open unit disc. We write T for the
unit circle, and A for the closed unit disc. Normalized Lebesgue measure on T
will be denoted by m. If u is a continuous complex valued function on A, then
for each w A we define the dilate u by

(1) Uw(Z)=u(wz) ([z[ < 1/[w[).

Note that if u h p then u hP(), and [[Uw[[p <_ [[Ul[p.
If p > 0 and 0 _< r < 1, for u harmonic in A we write

(2) Mff( u; r) fT[urlP din.

Thus h P is the space of complex harmonic functions u on A for which

[[UI[ p sup{Mp(u; r)’O < r < 1} <



314 JOEL H. SHAPIRO

and h is the collection of u in h p for which

limMp(u; r) O (r l -).

The Hardy space Hp is the closed subspace of h p consisting of functions
holomorphic on A.
Each function u harmonic in A has a series expansion

(3) u(rei) _, ft(n)rlnlein

which converges absolutely and uniformly on compact subsets of A. For u as
above we define to be the harmonic conjugate of u which vanishes at the
origin. That is,

(4) t(reia) _, nfl(n)rlnlei

where 0,= -i if n > 0,0if n =0, and +i if n <0; so u+it isholomor-
phic in A.

2.2 Growth estimates. There exists a positive constant C, which depends
only on p, such that for every u in h ’,

(a) lu(z)l -< Cllullp(1 Izl) -1/p (z in A)
and

(b) [f(n)l -< CIlullp(lnl / l)(1/p)-1 (n Z).
These estimates were first obtained for 0 < p < 1 by Hardy and Littlewood

[9; Theorem 1, page 410] who actually obtained them for the holomorphic
completion of u, which need not lie in h p. An easier proof was recently
provided by Fefferman and Stein [8; Lemma 2, page 172]. Growth estimate
2.2 (a) shows that for each z in A, the evaluation functional u u(z) is
continuous on h P, so h P has enough continuous linear functionals to separate
points. It also shows that h p convergence implies uniform convergence on
compact subsets of A, which immediately implies the next result, whose proof
we omit.

2.3 PROPOSITION.

2.4 PROPOSITION.

h p & complete in the metric

d(u, Ilu (u,

h ) is closed in h P.

Proof Consider the functional N defined on h p by

N(u) limsupMpP(u;r) (u hP).
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Then N is sub-additive, and < II I1 on h p

Therefore h N- 1(0) is closed in h P.
so it is continuous on h ’.

The next result shows that h is infinite dimensional.

2.5 PROPOSITION. If tt is a complex Borel measure on T, singular with
respect to m, then the Poisson integral of belongs to h ) for every 0 < p < 1.

Proof. Let u P[#] be the Poisson integral of/x. For 0 < r < 1 we regard
the dilate u as a function defined only on T. Then the family (Ur: 0 < r < 1 }
is bounded in LX(T), and

lim ur=0 a.e.[m]
rl

[21; Chapter 11]. Thus the functions ]Urlp (0 _< r < 1) form a uniformly
integrable family which tends a.e. [m] to zero as r 1- so by Vitali’s
theorem [21; Chapter 6, problems 10 and 11]

lim fr u [P dm O,

which shows that u h/, as desired.

2.6 PROPOSITION.
harmonic polynomials.

h is contained in h p( ), the closure in h p of the

Proof Fix u in h and e > 0. We must find a harmonic polynomial v
which approximates u within e. Choose p(e) > 0 so that

M(u; 19) < el4

whenever p(e) < p < 1. Since u
0

u uniformly on compact subsets of A as
p I we can choose o(e) > p(e)/2 such that whenever o(e) < p < I we
have

lup(z) u(z)[ < (e/2)/p

for all Izl p(e)1/2. We claim that

(1) Ilu- upll < e/2

whenever o(e) < 19 < 1. To see this, fix such a t9, and consider two cases. First
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suppose p(e)t/g < r < 1. Then rp > V/p(e)o(e) > p(e), so

u; r) _< W(uo; r)+ pP(U; ,)

Pp (u; ro) + pP(u; )
< e/4 + e/4

e/2.

The only other possibility is 0 _< r < io(e)1/2, in which case our choice of o(e)
guarantees that MpP(up u; r) < e/2. This completes the proof of (1).

Since up is harmonic in a neighborhood_ of A, its series expansion 2.1 (3)
converges to up uniformly on A, and it therefore converges to up in h p. Let v
be a symmetric partial sum of this series, chosen so that Ilup- o llg < e/2.
Then o is a harmonic polynomial and II u o ll e, as desired.

2.7 PROPOSITION.
into h p( ).

If u h P() then the map w - u takes A continuously

Proof. The result is true if u is a harmonic polynomial. For general u in
hP() it follows from this special case by a standard e/3-argument and the
fact that dilation is linear and "norm"-decreasing on h P. We omit the details.

2.8 co and 1. We denote by the Banach space of bounded complex
sequences, taken in the supremum norm:

Ilall suplo,,I, x- (tn) E .
n

co is the closed subspace of consisting of sequences which converge to zero.

2.9 Isomorphism. We call two F-spaces isomorphic if there is a linear
homeomorphism taking one onto the other. A linear homeomorphism is called
an isomorphism.

2.10 p-norms and quasinorms. Suppose X is a real or complex vector space
and II II is a non-negative function on X which vanishes precisely at O. We
call this functional a p-norm if it is sub-additive and p-homogeneous"

Ilaxll--lalllxll

for every x X and scalar a. If, on the other hand the functional is (1 )
homogeneous and quasi-subadditive,

IIx + yll -< C(llxll + Ilyll) (x, y X)
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where C < oo is independent of x and y, then we call it a quasinorm. For
X h P, the functional II lip is a quasinorm, while II I1, is a p-norm.

3. hf and some of its subspaces

We begin this section by proving that {0} is the only rotation-invariant
locally convex subspace of h. However if the requirement of rotation-invari-
ance is dropped, then matters are different" every infinite dimensional closed
subspace of h contains a further closed subspace isomorphic to c0. Our proof
yields in addition the existence of subspaces in h p, and hence the
nonseparability of h p. We show how the co subspaces force the conjugate
function operator to behave badly; and we close the section by showing that
h is weakly dense in h p().

3.1 THEOREM. The zero subspace is the only rotation-invariant linear sub-
space of h ) that is locally convex.

Proof Suppose that X 4= {0} is a rotation-invariant linear subspace of
hP() which is locally convex. We will show that X cannot be contained in
h . There is no loss of generality in assuming that X is closed" for the closure
of X is a rotation-invariant locally convex subspace of hP() which would be
contained in h (since h is closed) if this were true of X.
Choose u in X, u 0. Then there exists an integer n such that f(n) 4= 0.

Let

(1) e.(rei) rl’lei’.

For each oa in T the rotate u belongs to X, and Proposition 2.7 guarantees
that the map 0 u, takes T continuously into X. Since X is locally convex, it
is isomorphic to a Banach space, and since X c h’(a), it is separable. Thus
the right side of the formula

(2) f(n)e,(z) fru,o(z)’dm
valid for all z in A, can be regarded as the Bochner integral of the X-valued
continuous function 0 uo," ( T) [30; Chapter 5, Sections 4 and 5].
With this interpretation, formula (2) above can be rewritten as

ft(n)e, fru"am (oa),

where the right-hand side belongs to X. Since ft(n)4= 0 this implies that
e, X, so X q: h/, and the proof is complete.
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3.2 Remarks. (a) Theorem 3.1 shows, in particular, that every non-trivial
rotation-invariant subspace of h is infinite dimensional. To get examples
different from h, choose a complex Borel measure / on T, singular with
respect to m, whose Fourier-Stieltjes transform has support E :# Z, and let X
be the closure in h ’ of the linear span of the rotates of P[/] (the Poisson
integral of/). By Propositions 2.4 and 2.5, X c h. Growth estimate 2.2 (b)
shows that the coefficient functionals

u (n) (u h p)

are all continuous on h p, so if uX and nSE, then f(n)=0. Thus
X h, as desired. Note that Riesz products [31; Vol. I, Chapter 5, Section 7]
provide examples of singular measures/ with rather thin spectra: E can even
be a set of density zero.

(b) In contrast to h, the larger space hP(#) has many locally convex
rotation-invariant subspaces, both finite and infinite dimensional. For example,
let E be any subset of Z, and let Xe denote the closure in h p of the linear
span of the functions { en: n E }, where en is defined by equation 3.1 (1).
Then Xe is a closed, rotation-invariant subspace of hP() which is firiite
dimensional if and only if E is a finite set. If E is infinite, but "thin", then XE
can still be locally convex. For example if E is an infinite Hadamard sequence
of positive integers (E { n,} where inf n k+ /n, > 1) then it is a standard
fact of Fourier analysis [31; Vol. I, Chapter 5, Theorem 8.20, page 215] that
there is a positive constant c c(p, E) such that for each u in Xe and
0<r<l,

M2(u; r) < CMl(U; r),

so Ilul12 cllull for every u in X. Since Ilull < Ilull2 for every harmonic
function, it follows that X is isomorphic to a closed subspace of the Hilbert
space h2; hence X is itself isomorphic to a Hilbert space.

(c) The proof of Theorem 3.2 shows that if X is a dosed, rotation-invariant
subspace of h’() which is locally convex, and if E (n Z: (n) : 0 for
some u X}, then X Xe. It would be interesting to characterize those sets
E c Z for which Xe is locally convex. For example, (a) above shows that such
an E cannot contain the spectrum of a singular measure.
We turn next to the construction of co and subspaces in hoe. The next

lemma provides the crucial step.

3.3 LEMMA. Suppose (u) is a sequence in h which converges to zero
uniformly on compact subsets of A, and suppose that Ilullp I for all n. Then
for each e > 0 there is a subsequence

Ok Unk n k
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such that for every a (ak) in , the series ,akvk converges uniformly on
compact subsets of A to a function u h P, and

Proof By induction choose positive integers n < n 2 <
0 r0 < r < r2 1 such that if v Un,, then

and numbers

M(v; r) < el2’
for r [0, 1)\[rk_l, rk). Suppose a (ak) and fix 0 < r < 1. Let j be
the unique index for which 5-1 < r < ). Then

k k

_< lalPMf(o; r) + la, lPe/2
k

It follows from this inequality and growth estimate 2.2 (a) that the partial sums
of the series Eakv, form a sequence that is Cauchy uniformly on compact
subsets of the open disc (Izl < r }. Since r is arbitrary, the series converges
uniformly on compact subsets of A to a harmonic function u, and the last
inequality implies also that Ilu I1 < (1 / e)llall p

In the other direction, suppose > 0 with e < XP < 1; and choose an index
j so that I%.1 > ,llall oo. By the choice of uj., there exists r [Fj_l, rj) such that
Mp(Vj; r) 1. Then

IlullPp > M;(u; r)
>_ r) E r)

kcj

> lajlp- Ilall e/2’
k=l

>- (,P e)llll.

Letting , 1 and re-adjusting e properly we get the desired result.

3.4 THEOREM. Every infinite dimensional closed subspace of h contains a

further closed subspace isomorphic to co.

Proof Suppose X is an infinite dimensional closed subspace of h. Let
denote the restriction to X of the topology of uniform convergence on compact
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subsets of A. Growth estimate 2.2 (a) shows that x is weaker than the
hP-topology on X. In fact it is strictly weaker, since otherwise the closed unit
ball of X, which is a normal family, and therefore x-sequentially relatively
compact, would also be r-closed and therefore compact in the h p topology
(which we are assuming equals the r-topology on X). But this forces X to be
finite dimensional [22; Theorem 1.22, page 17], which it is not.
Thus there exists a sequence (un) in X which is both bounded and

bounded away from zero in the h’-topology, but which converges to zero
uniformly on compact subsets of A. By replacing un with u/llullp we may
assume Ilullp---1 for all n. Fix e > 0 and apply Lemma 3.3 to get the
sequence (Ok). Define the linear operator S: 1 ---, h p by

Sol EOlkOk"

By Lemma 3.3 (inequality (1)), S is an isomorphism taking into h P. We will
be done if we show that S(co) c h.

Fix a in co. By the fight side of inequality (1) of Lemma 3.3 we have

Z kVn _< (1 + e)suplhl,
k--n+1 p k>n

and the last expression tends to zero as n --, oo, since a c0. Thus the series

EakOk converges in h, so u co and the proof is complete.
In the course of the proof we also obtained the following result, essentially

due to Hardy and Littlewood [9; sec. 4.4, page 417].

3.5 THEOREM. h " contains closed subspaces isomorphic to 1. In particular,
h p is not separable.

Results similar to Theorems 3.4 and 3.5 have also been obtained by Alec
Matheson (private communication) for spaces of harmonic functions satisfying
a growth restriction, and by Walter Rudin [23] for the Lumer-Hardy spaces in
the unit ball of C", n > 1.
To get a feeling for the next result, observe that hP() contains infinite

dimensional subspaces isomorphic to closed subspaces of Lebesgue spaces. For
example it contains Hp, which is isometrically embedded in LP(T) by the
radial limit map [5; Chapters 2 and 3]; and by Remark 3.2 (b) it contains a
closed subspace isomorphic to separable Hilbert space, hence to L2(T).
Theorem 3.4 implies that nothing like this can happen in h p0"

3.6 THEOREM. Suppose # is a positive measure and 0 < r < oo. Then no

infinite dimensional closed subspace of h is isomorphic to a closed subspace of
Lr(lx).
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Proof By Theorem 3.4 it is enough to prove that Lr(p,) contains no closed
subspace isomorphic to c0. This is a well known fact, but for completeness we
present a proof. Suppose X is a closed subspace of L’(l) isomorphic to c0.
Then there is a sequence (xn) in X and a constant c > 0 such that for every
a in co the series Y’.anX,, converges in X, and

(1) c-lllalloo II a,,xllr clllloo,

where here the symbol II II, denotes the L quasinorm. Let (e) denote the
sequence of Rademacher functions on [0,1]. Then by successively applying (1),
Fubini’s theorem, Kintchine’s inequality [31; Vol. I, Chapter 5, Theorem 8.4,
page 213], and the orthonormality of the Rademacher functions on [0,1], we
obtain

f(follZe(t)ax]

Af ( Y’.la,,121x,,12 )r/2dl,
where A is the constant in Kintchine’s inequality; A A(r) independent of a
and (xn). Applying this inequality to a consisting of l’s in the first N positions
and zero elsewhere, and then letting N , we see that

Thus the series Elxl )- converges in Lr/2(l), so in particular x 0 in Lr(IJ,).
But this contradicts the left side of inequality (1), so X cannot be isomorphic to
co The proof is complete.

The next two results use Theorem 3.6 to "explain" why the conjugate
function operator behaves so badly on h P.

3.7. THEOREM. Every closed infinite dimensional subspace of h contains a

function whose harmonic conjugate does not belong to h.
Proof. Suppose X is a closed subspace of h mapped into h p by the

conjugate function operator. A routine argument employing the Closed Graph
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Theorem and the continuity of the coefficient functionals shows that this
operator takes X continuously into h ’. It follows that the map R / defined by

R+= (u+i)/2 (uinX)

is a continuous linear operator taking X into the holomorphic Hardy space
HI’. Similarly the linear map R- defined by

R-= (u- i)/2

takes X continuously into HI" (the closed subspace of h I" consisting of complex
conjugates of HI" functions). We define a map T from X into the direct sum
Hp Hp by

Tu (R/u,R-u) (u in X).

Then T is a bounded linear operator, and if we denote the quasinorm in
Hp 9 Ht’ by III IIIp, then for each u in X we have

IIIZulllPp IIR/ulI + IIR-ull
IIR /u + R-ullPp

(by definition)

so T is an isomorphism onto its range. Since the radial limit map takes Hp

isometrically onto a closed subspace of LP(T) [5; Chapters 2 and 3], we see
that Hp Hp is isomorphic to a closed subspace of LP(T) 9 LP(T), which is
in turn isometrically isomorphic to LP(/x), where / is normalized Lebesgue
measure on the disjoint union of two circles. Thus X is isomorphic to a closed
subspace of LP(/x), so by Theorem 3.6, X is finite dimensional. The proof is
complete.

Our next goal is to refine the classical result, noted in the Introduction,
which states that there exist functions in

N(hP’O <p < 1}

whose harmonic conjugates lie in no h p space.

3.8. DEFINITION. Denote by h- the space f’l( h P’O < p < 1), equipped
with its natural metric topology, in which a sequence converges to zero if
and only if it converges to zero in each h p (0<p<l). Let h-=
O(h: 0 <p < 1}.

Thus h- is a closed subspace of h1-, and the conclusion of Theorem 3.1
holds here also, with essentially the same proof. To motivate the next definition
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note that a subspace of h1- which is dosed in h e for some 0 < p < 1 is then
closed in h1-

3.9. DEFINITION. A linear subspace of h1- is universally closed (u.c. for
short) if it is closed in h e for every 0 < p < 1.

Clearly every finite dimensional subspace of h1- is u.c., and we will see
before long that even h- contains infinite dimensional u.c. subspaces. The
Open Mapping Theorem shows that a closed subspace of h- is universally
closed if and only if the restrictions to the subspace of the h e topologies
coincide for all 0 < p < 1. In particular, every dosed subspace of a u.c.
subspace is again u.c..
Our main result about u.c. subspaces is the following.

3.10. THEOREM. Every infinite dimensional universally closed subspace of hlo
contains a function whose harmonic conjugate belongs to no h e space.

Proof Suppose X is an infinite dimensional u.c. subspace of h-. Fix a
sequence 1 > Pn $ 0, and let

X,= {uX:izhe’).

Since X is Borel measurable and, by Theorem 3.7, not equal to X, it is of first
category in X 3; Chapitre III, Throreme 1, page 36]. Thus O,X, is also of
first category, and is therefore not all of X. The proof is complete.

The next result shows that the hypothesis of Theorem 3.10 is not vacuous.

3.11. PROPOSITION.
spaces.

ho contains infinite dimensional universally closed sub-

Proof Fix u in h- with u(0)= 0, but u not identically zero. Define a
sequence (u,) in h- by un(z) u(z) (z in A). Then u ---) 0 uniformly on
compact subsets of A, and for 0 < p < 1 we have ]lUnlle Ilullp. By Lemma
3.3 and a diagonal argument there exists a subsequence vk u,k (nk ) such
that for each a in the series Eakvk converges uniformly on compact subsets
of A to a harmonic function u,, and for each 0 < p < 1 there exist constants
Ae and Be > 0, independent of a, such that

This shows that the map S: a --) u, takes co isomorphically into h for all
0 < p < 1. Thus S(c0) is contained in h0 and closed in h e for all 0 < p < 1.
In other words, S(co) is an infinite dimensional u.c. subspace of h-. The
proof is complete.
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Our proof has also shown that S maps 1 isomorphically into h1- Thus
h1- is not separable.
The next result shows that Theorem 3.7 is in some sense optimal.

3.12. THEOREM. If n 2, 3, 4,..., then h/ has a closed subspace X which
is mapped by the conjugate function operator into f’){ h p" p < 1In ).

Proof. We phrase this argument in the language of Schwartz distributions
on T; see [18; Chapter 1, sec. 7, problem 5, page 43] for the relevant
definitions. In particular, the series expansion 2.1 (3) and growth estimate 2.2
(b) show that each u in h/n is the Poisson integral of a distribution/x on T of
order at most n 1.

Fix a compact set E c T with infinitely many points, such that m(E) O,
and for each p < 1/n the distance function

pe(z) inf{Iz zl" z E} dist(z, E),

defined for z A, satisfies

(1) fTPF. ( tO ) -"P dm (to) <

We will see in a moment that such sets E exist. Granting this, let h denote
the collection of functions u in h p whose representing distribution/u has its
support contained in E. Since E is infinite, h contains infinitely many rotates
of the Poisson kernel, so its intersection with h is infinite dimensional. Let
X h n h:. Growth estimate 2.2 (b) shows that if u, u in h p, then
/ u. -->/ in the sense of distributions, so h is closed in h P. Thus X is an
infinite dimensional closed subspace of h.
We claim that the conjugate function operator takes X into h for every

p < 1/n. To see this, fix such a p, and fix u in X. Let/ be the representing
distribution for u, so/ has order < n 1, support / c E, and u P[/].
Then u + ifi C[/x], the Cauchy transform of /t, and by [29; Lemma A,
page 342] we know that there exists a positive constant A such that for each
zinA,

(2) IC[t](z)l < APe(Z)-".

Writing z rei and using the standard estimate

PF ( rei) > rl/2pF ( e’a)

([29; page 348], for example) we obtain from (2) the inequality

(3) IC[lxl(reia)l < Ar-1/2#E(eia)-",
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valid for each rei in A. It follows from (1) and (3) that C[/z] Hp, so h p

as desired.
We now prove that the sets E with the desired properties exist. If E is any

compact subset of T and (I,) is the collection of disjoint open arcs whose
union is T\ E, then a straightforward calculation shows that the conditions
m(E) 0 and (1) are equivalent to

(4) _,m(I,,) 1

and

(5) _,m(I,,)1-’p < oo for all 0 < p < 1/n.

Thus we can even realize E as a countable set with exactly one limit point; we
leave the details to the reader. The proof is now complete.

We close this section with a result that sets the stage for the work of the next
section, and shows how the Hahn-Banach theorem can fail in an F-space
which is not locally convex.

3.13 PROPOSITION. h is weakly dense in hP().

Proof Suppose h is a continuous linear functional on h() which
vanishes on h. We must show that h is zero on all of h(). It is enough to
show that X(e,) 0 for all n Z, where e. is given by equation 3.1 (1). Let u
denote the Poisson kernel, so for z re A,

1+zu(z) Re
1 z " rl’lei’

By Proposition 2.5, u h, so Propositions 2.6 and 2.7 guarantee that the
dilation map w---, u takes A continuously into hP(). Thus the complex
function A defined by

A(w)=h(Uw) (wa)

is continuous on A. Since uw h for every w T, we see that A vanishes
identically on T.
Now if w pe A, then the series expansion

converges uniformly on A, hence in h’(), so

A(w) A(u)= _,plnleinA(e,),
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and this series converges uniformly on compact subsets of A. Thus A is
harmonic in A, and since it is continuous on A and 0 on T we must have
A 0 on A. Thus for each n Z,

o

which shows that , vanishes on h P(P). The proof is now complete.

As we noted in the introduction, this result shows that the quotient space
h’(9)/h has trivial dual. In the next section we prove a sharper result: the
quotient space is isomorphic to LP(T).

The main result of this section, Theorem 4.7, assets that when 0 < p < 1 the
Poisson integral can be used to establish an isomorphism between LP(T) and
the quotient space hP(9)/h. This result should be viewed as the analogue for
the Poisson integral of a similar one recently proved for the conjugate function
by A.B. Aleksandrov [1; Theorem 1, page 303]. In fact our proof is an
adaptation of Aleksandrov’s and it is possible to derive our result from his.
However, there are several reasons for giving an independent proof. First, we
wish to keep the paper reasonably self-contained, and our proof is slightly
easier than Aleksandrov’s since it deals with the Poisson integral rather than
the Hilbert transform.2 Next, our proof generalizes quickly to the h e spaces of
the unit ball in R for n > 2 (Section 4.8 contains a discussion of this), where
generalized harmonic conjugates do not behave properly for all values of
p < 1. Finally, we need some of the estimates involved in our proof to show
that the rotates of the Poisson kernel span a dense linear subspace of h
(Theorem 4.10). Before proving this last result we discuss some linear topologi-
cal consequences of Theorem 4.7 which follow from recent work of Kalton and
Peck.

4.1 Notation. (a) Revised notation for quasinorms. For this section only we
let II lip denote the Le-quasinorm, and II Ilhp the h P-quasinorm. We also
write LP for LP(T).

(b) Characteristic functions. If E is a subset of T, then Xe denotes the
characteristic function of T; that is, X e 1 on E and 0 off E.

(c) Quotient space. We will be dealing with the quotient space he(9)/h,
which is by definition the space of cosets

u + hg (u + Uo" Uo ho }

2However see Remarks 4.12 for a simpler proof suggested by the referee, based on a more
function theoretic idea of Aleksandrov.
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where u runs through h(). Since h is a closed subspace of hP()
(Theorems 2.4 and 2.6), the functional

Illu + hlllp inf{ilu + u011," u0 h)
is a quasinorm which makes hP()/h into an F-space, and induces the
quotient topology.

(d) Poisson kernel. For z reg A we write

P(z) P(r, O) Rel+z 1-r2

1 z 1 2rcos0 + r 2

for the Poisson kernel, and we denote the n th derivative of P(r, O) with respect
to/9 by P(n)(r, ) P(n)(z). For real and m 1,2,..., we write

m-1

Om(z,t) E P(n)(z)tn/n!,

where p(0)= p. Note that Qm(reg, t) is a Taylor polynomial for P(r, 0 t),
where is viewed as the variable and the center of the expansion is 0.

For f L define P[f] to be the Poisson integral of f, and

Qm[f](z) Qm(z, t)f(t) dt/2qr

lP’’(z) f
n=0

n! _tnf(eit) dt/2r"

All the functions p(n), Qm are harmonic on A.
(e) Positive constants. Throughout the proofs of this section we let C

denote a positive number which may vary from line to line, but which depends
at each occurrence only on the index p.
We require some standard integral estimates, whose proofs we omit.

4.2 PROPOSITION. For each 0 < a < o there is a positive constant C such
that

(a) f_,,ll reiOl-dO < C(1 r)1- /f a > 1 and 0 < r < 1 [5; page
65]; and

(b) flal_<sll reial-a dO < C,6- if 0 < < r and 0 < a < 1.
We also need a pointwise estimate on the derivatives P(")(z).

4.3 LEMMA. For n 0, 1, 2,... there exists a constant Cn
each z in A with zl >_ 1/2, and each real we have

< o such that for

Ie<")(z)l < C,(1- Izl)/ll- zl "+z.
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Proof. Write g(O) 1 2rcos0 + r 2. Then an induction argument shows
that the nth derivative of 1/g has the form

(1/g)(n)(8) akFk/g(O) k+l

k=l

where each ak is real and F, is a sum of products of derivatives of g with each
such product containing g’(8) to the power

(2k- n)/= max(2k- n, 0).

This shows that
_

(1- r2)F(r’ O)(1) P(n)(rei) a
k=l (1 2rcosO + r) k+l

where Fk(r, O) is a sum of products of powers of r, sin O, and cos 0, where each
such product contains sin0 raised to at least the power (2k n)+.

If 2k > n then the k th term on the right side of (1) is dominated by a
constant multiple of

(1 r)lsinOI2k-/ll reiOl 2+2,

which is itself dominated by a constant multiple of

(1 r)/]l rei[ "+2,

as desired. On the other hand, if 2k < n, then the term in question is
dominated by a constant multiple of

(1 r)/ll reiOl 2k+2

which has the desired growth since the exponent in the denominator is
< n + 2. This completes the proof.

The next result generalizes the fact that the Poisson kernel P belongs to h1,
and also to h for every p < 1 (Proposition 2.5).

4.4 PROPOSITION. For n 1, 2,..., the derivative P() belongs to h1/(n+l),
and also to h for all p < 1/(n + 1).

Proof. By Lemma 4.3,

lim e(n)( reie) 0
r--* l-



HARMONIC HARDY SPACES 329

so the uniform integrability argument of Proposition 2.5 guarantees that the
second conclusion of Proposition 4.4 follows from the first. To show that
P(") h1/(n+1), let a (n + 2)/(n + 1), fix 1/2 _< r < 1, and successively
apply Lemma 4.3 and the integral estimate 4.2 (a):

fIP<n)(reie)l 1/n+1) < C(1 r) ’-1 I1 reiel-dO

< C(1 r)"-/(1 r) "-
=C

where C is a positive constant independent of r. This completes the proof.

The crucial step in the proof of our main result is the following sharp special
case.

4.5 THEOREM. Suppose 0 < p < 1 and let rn be the unique positioe integer
such that 1/(m + 1)< p < 1/m. Then there is a positioe constant C C(p)
such that for eoery subarc I of the unit circle centered at the point 1,

lIP[x,] Q,[xz]llh -< CIIxzllp

Proof. Suppose I ( e: -i < < 8 }, and let 21 denote the arc centered
at 1 having twice the length of I. By Theorem 2.2 (a) the quasinorm

sup(Mp(u; r)" 1/2 < r < I} (u h p)

is equivalent to the original h p quasinorm, so it is enough to show that if
1/2 < r < 1, then

(1) Mff(P[x,] Q,,,[X,]; r) < C

where C depends only on p and not on 8 or r.
To this end, fix 1/2 < r < 1 and write the pth power of the left side of (1) as

J + K where

J f2}Ptxt](ro) Qm[xt](roa)lp dm()

and K is the corresponding integral over T\ 2I.
We estimate J. Since 0 < p < 1 we have J < Jx + J2 where

J1 f2IIP[xzllP(r) dm (o) < 2
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since 0 < P[X I] < 1 on A, and

To estimate J2 we use Lemma 4.3 to bound the integrand:

m-1

IQm[xt](re’a)l < E
n=O

1p<)( reiO fln! ) dt/2r

m-1

<_ lP<)(re
n---O

iO)ln+ 1/(/,/ -I- 1)!

< C
--o 1-re

n+l

By Proposition 4.2 (b) and the fact that (n + 1)p < 1, the integral over 21 of
the pth power of the n th term of the last sum is bounded by a constant
multiple of

8(,,,+ )vB1-f,,+ 1)v 8,

SO

m-I

v _<cE
n=0

<

8 )(.+l)pf2I I1 rl
dm(o)

Thus J < CB, as desired.
We now estimate the integral K, which we rewrite as

(2) K= f [P(r,O t)- Qm(rei,t)l f dO/2r.
8< I01 <r I<8

We need a pointwise bound on the integrand of the inner integral, so fix 0 and
with 2 < 101 < r and Itl < B. By Taylor’s theorem, with as the variable

and 0 the center,

(3) IV(r,O t) Qm(rei,t)l
m-1

e(r,O t)

_
Vf")(rei)t"/n!

k=0

IVim)(rei’)tm/m!l
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where z is a number in the interval between 19 and 8 t. Thus Il > 101/2, so

(4) I1 reil > CI1 rei

where C is independent of r, 0, and t. By (3), Lemma 4.3, and (4), in that
order, we obtain

IP(r,O t) Qm(re’,t)l < C Itlm(1 r)
I1 reial m+2"

Recall that 1 < p(m + 1). Suppose we have strict inequality. The right side
of (5) is dominated by a constant multiple of

Itlm/ll reiOlm +1.
Substituting this estimate for the integrand of (2) yields

K < C(m+ 1)p I1 rel --(m+ 1)p dO

c6(m+1)p61-(m+1)p
C8

where the next-to-last line follows from Lemma 4.2 (a), because (m + 1)p > 1.
Suppose, on the other hand, that (m + 1)p 1. Then we substitute (5)

directly into (2) to get

K <_ c(m+I)p(1 r) p l1 reial -(m+2)p dO

CB(1 r) I1 rel-o+ dO

< C,

again by Lemma 4.2 (a). Thus in either case K < C, so estimate (1) is
established, and the proof is complete.

3.6 THEOREM. Suppose 0 < p < 1. Then there exists C C(p) < c such
that for each f in LI(T) there is a function u in h with

liP[f] ullh CIIfllp.

In fact u can be taken to be a finite linear combination of rotates of the derivatives
pn) of the Poisson kernel defined in 4.1 (d), where 0 < n < (l/p) 1.

Proof Let S denote the collection of finite sums

(1) f= cjX z
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where each cj is a real number and (Ij } is a finite pairwise disjoint collection
of intervals. We first prove the result for S. Let Y denote the linear span of the
rotates of the functions p(n) for 0 < n < (l/p)- 1. By Proposition 4.4 we
know Y c h. Thus for m < 1/p and f LI(T), each rotate of Q,[f], as
defined in 4.1 (d), belongs to Y.

Suppose f is given by (1). Then by Proposition 4.5 and the remarks above,
there exists for each j a function u Y such that

IIP[xz] uyll, -< C’m(1./)

where C depends only on p. Let u Y’.uy. Then u Y, and

liP[f] ull, -< la./l’llP[xz] ull
< Cl’Elall’m(I./)

CPllfll
which is the desired estimate.

If f L1, then we can choose g S such that IIf- gllx < Ilfllp- By the
paragraph above there exists u in Y with

Then

But

SO

liP[g] ullh,, CIIgllp.

liP[f] ull, < liP[f] P[g]ll, + liP[g] ull,
< liP[f] P[g]llg, + Cllgll

<llf- gllf + C’llgll’p
< Ilfll / Cllgll-
Ilgll < II/11 + IIf- gllp

-< Ilfll / IIf- gll

_< 211fllp

liP[f]- ullg, (1 + 2C)11/11

and the proof is complete.
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We can now prove the main result of this section.

4.7 THEOREM. For each 0 < p < 1 the map f P[f + h, defined for f in

LI(T), has a unique extension to an isomorphism of Lr(T) onto the quotient
space hP()/h.

Proof. L is dense in L r, and P[f belongs to hr() for every f in L1.
Thus Theorem 4.6 asserts that the map in question takes a dense subspace of
Lr continuously into hr()/h; hence it has a unique continuous linear
extension

p. Lr - hr()/h.

Since the range of P contains all cosets u + h where u is a harmonic
polynomial (these are just the cosets P[f] + h, f a real trigonometric
polynomial), we see that P has dense range. So we will be done if we can show
that P is bounded below.

In fact we claim that IllP[f]lll >- Ilfll for every f in Lr. It is enough to
check this on a dense subset of Lr, so suppose f L1. Write u P[f] and
consider the dilate u for 0 < r < 1. As r 1 we know that u f in Lt,
hence in Lr, so Mr(u; r) Ilfll. Thus for every u0 h the definition of the
h P quasinorm and the subadditivity of MP(.;r) yield

liP[f] + u0llg >- lim M(u + u0; r)
rl-

> lim [Mff(u; r) Mp(u0;r)]
r--*l

lim Mff(u;r) (sinceu0h)
r--*l

PIlfllv-
Since u0 is any member of h, this implies that IIIP[f]lll Ilfll,, which
completes the proof.

4.8 Remark. So far, all the results derived in this paper which do not
involve the conjugate function have analogues for the h r spaces defined on the
unit ball of Rv (N > 2). The proofs of these generalizations differ little from
the ones given here, except that in Theorem 4.5 we take m so that

N/(m + N) <p < N/(m + N- 1),

and view I as a Euclidean spherical cap.
Theorem 4.7 has immediate linear topological consequences, the most obvi-

ous of which is Theorem 3.8, the weak density of h in hr(). Here are two
others.
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4.9 COROLLARY. If a compact linear operator from hP() into a Hausdorff
topological vector space annihilates h, then the operator is identically zero.

Proof. Kalton [12] has shown that there is no nontrivial compact operator
from LP into any Hausdorff linear topological space E. So if T: hP() E
is compact and identically zero on h, then the operator S defined by

S(u -F h) Tu (u hP())

is a compact operator from he()/h into E. By Theorem 4.7 and Kalton’s
result, S 0 on he()/hO, hence T 0 on he().

It should be noted that Corollary 4.9 does not follow from the fact that h
is weakly dense in he(). In fact there exist F-spaces with trivial dual which
nonetheless admit nontrivial compact operators [17], [2; Section 5].

4.10 COROLLARY.
linear extension to h P.

Every continuous linear functional on h has a continuous

Proof Results of Kalton and Peck ([16; Theorem 5.2, page 74] and [1.5;
Theorem 4.3, page 268]) show that if X is an F-space and Y a closed subspace
such that the quotient X/Y is isomorphic to Lp, then Y has the desired
extension property in X. Thus Theorem 4.7 shows that h has the extension
property in h P(). We will be finished if we can show that hP() has the
extension property in h P.

Suppose , is a continuous linear functional on hP(). Let N be the
seminorm defined on h e by

N(u) sup ]X(Ur) (u h p)
0<r<l

where ur, the dilate of u by r, clearly belongs to he(). Since

IX (u,)l II 2x II II Ur]] hp II 2k II II u II h
we see that

(1) N(u) IlXll IlUllh
for each u h p. Since u
know that

u in h p as r 1- for each u hP(), we

IX(u)l N(u)

for each u in he(). The Hahn-Banach theorem provides a linear extension A
of X to h e, with AI -< N on h e, and the continuity of A on h e then follows
from (1). This completes the proof.
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It might appear at first glance that the extendability of continuous linear
functionals from h to h’() should be a simple consequence of the fact that

h is weakly dense in hP(). This is not the case: if Y is a proper, closed,
weakly dense subspace of an F-space X, then it may still happen that Y
supports continuous linear functionals not extendable to X. In other words, the
weak topology of Y may be strictly stronger than that of X. In fact Duren,
Romberg and Shields [6; Section 5, Corollary 2, page 53] discovered that
certain weakly dense subspaces of Hp have exactly this property.
We close this section with an approximation theorem which follows from

Theorem 4.5.

4.11 THEOREM.
Poisson kernel.

h is the closure in h p of the linear span of the rotates of the

Proof Fix 0 < p < 1 and let m be the positive integer such that

1/(m + 1) < p < 1/m.

Let X denote the closure in h p of the linear span of the rotates of the
derivatives P(") defined in Section 4.1 (d), with 0 < n < m- 1. Proposition
4.4 guarantees that X c h. We claim that h X.
To see this, fix v in h g and e > 0. By the definition of h g and the fact that

oroy in h*’asrl- (sincehch*’())wecanchoose0<r0< 1such
that

Mff(v; r) < e/2 and Ilv Vr]lp < e/2

whenever ro < r < 1. Let f denote the restriction to T of Vr:

f(o) o(ro) (o T).

By Theorem 4.6 there exists u in X so that liP[f] Ullh <- CIIfllp; that is,

IIv ullh -< CMp(u; r).

Thus

so v X. This shows that h c X, so the two spaces are the same.
We complete the proof by showing that the rotates of the Poisson kernel

span a dense subspace of X. To do this we need only show that if n < m 1
then each derivative p(n) is an h P-lJmit of linear combinations of rotates of
p(n-1). This requires an appropriate formula for P("). Let

l+z
F(z)= 1-z (zA)
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and, writing z re i, let F(") denote the r/th derivative of F with respect to O.
Then P(")= ReF") for n 0,1,2,
Now if g is holomorphic in A and g’ is the usual complex derivative, then

0g

In particular if n is a positive integer and g,(z) (1 z)-", then

O0
in gn gn+ 1],

so by induction,

(1)
n+l

F(n) Y’. Cjgj
j=l

where the coefficients cj are all real.
For -r < < ,r and z in A, write

qgt(Z) t-l[F(n-1)(zeit) F(n-1)(z)].
Then 9 -. Hp for each t. We are going to show that tpt -o F (n) in He as
t -o 0. Upon taking real parts, this implies that Re/---, p(n) in h e, and since
Re i) is a linear combination of rotates of p{n-1), the proof will be complete.

Since the functions F(n) and i) belong to Hp, it is enough to show that

(2) lim fTll)t F(n)[p dm O.
t--*0

For the rest of the proof we view t and F(n) as functions on T. Since

Dt F(n) as 0 at every point of T except 1, it is enough to prove that the
family { tpt: -r < < r } forms a bounded subset of Lq for some q > p. Then
(2) follows from Vitali’s Convergence Theorem.

Fix p < q < 1/m. By formula (1), t is a linear combination of functions:

t(eis) t-l[gj(ei(O+t)) gj(ei)]
where 1 < j < n. It is enough to prove that each such family

{t" -r < < r}

is bounded in Lq. We see this by computing

t(eiO) eiOt-X(e it

j-1

1) E gk+l(ei(e+t))gj-k(eie)
k--1
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Since j _< n _< m 1 and q < l/m, Holder’s inequality shows that each term
in the series on the right belongs to Lq, with Lq norm independent of t. The
quantity multiplying the sum is uniformly bounded in and 8, so
(t: -r < t < r } is Lq bounded, as desired. This completes the proof.

4.12. Final remarks. The referee has pointed out that one can give a short
proof of Theorem 4.7 (hP()/h( Lp) by using in place of Theorem 4.5
another idea of Aleksandrov which depends more heavily on function theory.
The argument is so simple and elegant that we feel it is worth presenting in
some detail. We note however that Theorem 4.5 is still needed to prove the
approximation theorem 4.11, as well as the higher dimensional analogue of
Theorem 4.7.

Let ’P denote the space of (a.e.-equivalence classes of) measurable func-
tions on T which are radial limits of functions in Hp. Thus f ’ if and
only if there exists F Hp with

f(t) limF(r) (r --+ 1 -)

for a.e. o in T. It is well known that the map F- f is an isometric linear
transformation taking Hp onto P, endowed with the "norm" of LP(T). Let
’P denote the collection of complex conjugates of members of ,P. Then
when 0 < p < 1 (and only then) we have

P c3 ’P {constants}.

For example the function 1/(1- z) lies in this intersection, as does more
generally the Cauchy transform of any singular measure on T. The space
P r3 o’ was first studied by K. de Leeuw [4] as an example of an infinite
dimensional closed rotation-invariant subspace of L’(T) (0 < p < 1) which
contains no nonconstant character. The linear topological properties of this
space have been studied by Aleksandrov [1], [2], and Kalton [14]. As we
remarked earlier, Theorems 4.5-4.7 are analogies for the Poisson kernel of
results proved by Aleksandrov [1] for the conjugate function. In this analogy
h plays the role of .,"’ c3 A’p. In [1] Aleksandrov used his precursor of
Theorem 4.5 to prove:

THEOREM A. If 0 < p < 1 then v + ,,g,p LV(T).

We now show how this result gives an easy proof of Theorem 4.7, and then
we will indicate Aleksandrov’s beautiful alternate proof of Theorem A.

Theorem A implies hP()/h L’. As usual, if 0 < r < 1 and u h P,
let ur(z)=u(rz) for zA. If uh’() then it is easy to see that as
r 1 we have u u in h ’, hence the restriction of u to T converges in
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LP(T) to a function we will denote by Su. The map S is easily seen to be a
norm-decreasing linear transformation of h’() into LP(T) with null space
h. The image of h’() under S clearly contains both "’ and "P, so it
contains ’P + d’’ which by Theorem A is L’(T). Thus S is a bounded
linear map taking hP() onto L’(T), with null space h, so hP()/h is
linearly homeomorphic to L’(T), and the proof is complete.

Proof of Theorem A ([2; Theorem 2.4]). Fix 0 < p < 1. By a standard
approximation argument it is enough to prove that there exists a constant

Ap < oo such that for each trigonometric polynomial_ of these exists g and h in
’P with L’-norms < A,llfl[,, such that f= g + h.

Fix the trigonometric polynomial f and choose a positive integer N so large
that if 3’(to)= tov, then both vf and 3’f lie in ’P. Let q0 /(3’- 1), so
q ’’ C3 .dp and + 1. For real let t(to) q(toeit) (to T), and
set gt fDt and h fqt. Then both gt and h are in ’P and f gt + . A
routine computation shows that

f02llg,lldt/2r IIqllPllfll

so there exists t such that IIg, ll < IIllllfll- For this value of t,

Ilhtllp-< (llfll + Ilgtllep) x/p <- (1 + IlePtllPp)/’llfllp
which completes the proof, with g gt, h h,, and A, (1 + IIllp)/.
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