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ON CONTINUITY OF THE VARIATION AND
THE FOURIER TRANSFORM

BY

P. H. MASERICK

Abstract

Let S be a commutative semitopological semigroup with identity and
involution, F a compact subset in the topology of pointwise convergence of the
set of semicharacters on S. Let f be a function which admits a (necessarily
unique) integral representation of the form

f(s) frP(s ) alf(p) (p F,s S)

with respect to a complex regular Borel measure/f on F. The function Ifl(’)
defined by Ifl(s)-- frp(s)dltzl is called the variation of f. It is shown that
the variation Ifl is bounded and continuous if and only if f is also bounded
and continuous. This, coupled with the author’s previous characterization of
functions of bounded variation, gives a new description of the Fourier trans-
forms of bounded measures on locally compact commutative groups.

1. Introduction and motivation

Consider the following three classical questions.
(1.1) When is a real sequence the difference of two completely monotonic

sequences?
(1.2) When is a complex function on a locally compact commutative group

G the Fourier transform of a regular complex measure on the character group?
(1.3) When is a real function on the half-open interval (0,1] the difference

of two non-negative, non-decreasing continuous functions?
These problems can be abstracted and unified by considering classes of
"-positive" functions on a semigroup S as follows.

Let S denote a commutative semigroup with identity 1 and involution ,,
and -(S) denote the class of all complex-valued functions on S. For each
s S define the shift operator E I-(S) ---> -(S) by

(Esf)(t)= f(st) (f (S),t S).
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Since EsE Est the linear span ’ of the set { Esls S ) of shift operators
forms a commutative algebra with identity I Ex(I Eo if S is an additive
semigroup) under Cauchy multiplication as defined by (EaiEs,)(EbjEj)
EaibjE . An involution is added to ’ by defining (Y’.ciE,)* Y’.?iEs,.
Followiag [8, p. 136], let P be the convex cone spanned by positive linear surs
of finite products from a subset z of ’ which satisfies:

(i) T*= TforeachTz;
(ii) I- TPforeachTz;
(iii) e’ is spanned by linear sums of products of members of z.

The linear functionals on can be identified with -(S) via T ---, Tf(1). We
call f (S) r-positive if Tf(1) > 0 for all T P, i.e. if f can be identified
with a positive linear functional on ’ relative to the cone P.
The following illustrates how (1.1), (1.2) and (1.3) can be put in the

preceding set up.
(1.1)’ Set (S,., ,) ((0,1,...), +,n* n). If z (Ex, I E) then the

classical difference operator A k (cf. [11, p. 101]) is given by

A,f(n) E(I- Ex)’f(0) (f (S)).

Thus, f is r-positive if and only if ( f(n)}n is a completely monotonic
sequence.

(1.2)’ Set (S,., ,)= (G,., s* s-). If z (To, }o, where o is a fourth
root of unity, s G and

T =1/4 I+-E+-E.,s S

then the r-positive functions are precisely the positive definite functions [7, p.
1411.

(1.3)’ Set (S,., .) ((0, II, s. min[s, t], s* s). If

z (Es, I- Esls (0,1]}

then it easily follows that the r-positive functions are the non-negative,
non-decreasing real functions.
Once we impose the discrete topology on the non-negative integers, the given

topology on the topological group G and the usual open interval topology on
(0, 1] respectively, then all of the above semigroups are semitopological (i.e.
multiplication is separately continuous) with a continuous involution. More-
over, we can abstract question (1.1), (1.2) and (1.3) by asking:

(1.4) When is a function on a semitopological semigroup S in the linear
span of the continuous r-positive functions on S?
As is well known, the answers to (1.1) and (1.3) are, respectively, that f be

of bounded variation (BV) in the sense of Hausdorff and that f be continuous
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and BV in the classical real variable sense. Recall that a sequence (f(n)} is
BV in the sense of Hausdorff if and only if

Ilfll =lim k IA
k=0

_f(k)l < .
While Eberlein’s theorem (cf. [9, p. 32]) answers (1.2), it fails to extend in a

natural way to the generality of (1.4). In fact since the constant 1-function is
the only continuous semicharacter in the case of (1.3), Eberlein’s theorem does
not even carry over to this special case. As a corollary (Corollary 2.2) to the
main theorem we answer (1.4) for bounded functions when the involution is
continuous. In the case of (1.2), all Fourier transforms of measures are
necessarily bounded and the involution is always continuous. Thus we have
formulated a new answer to (1.2) in the flavor of the classical answers to (1.1)
and (1.3). The Bochner-Herglotz-Weil theorem then implies that the BV-func-
tions on a locally compact commutative topological group G are just the
Fourier transforms of the regular Borel measures on the character group. We
find it convenient to prove the above corollary in the next section before
proving the theorem itself later in [}3.

2. Functions of bounded variation on S

We recall the general notion of BV-functions introduced in [8] which
subsumes all previous notions as mentioned in the introduction. Let be a
collection of finite subsets A of P such that:

(2.0) (i) Er AT I for each A , i.e. each A f is a partition of unity.
(ii) is a subsemigroup of the collection of all partitions of unity under

Cauchy multiplication as defined by AA’ ( TT’I T A, T’ A’ ).
(iii) Each T - is a member of some partition of unity.

For each f -(S) and A f, define [[fllA ErA[Tf(1)[ and impose the
semigroup ordering on fl; i.e., A > A 2 whenever there exists A such
that A A 2A 3- Then the function A Ilfll A is nondecreasing and the total
variation [Ifl[ of f -(S) is defined by

(iv) Ilfll limAllfll.

The function f is said to be of bounded variation (BV) whenever [ifI[ < o and
BV(S) will denote the set of all BV-functions.

If in (1.1), fl is selected as partitions of the form

E1(I El) 0,1,..., n for n 1,2,...,

then the binomial theorem implies f satisfies conditions (2.0.i) through (2.0.iii)
relative to " (El, I- El). In this event the total variation of Hausdorff
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referred to in 1 agrees with that introduced above. Similarly in (1.3), if f is
selected as the set of partitions

A { Es0, Es, Eso,..., I- Es, } where 0 < s0 < s < < s < 1,

it follows that the abstract notion of total variation is in agreement with the
classical real variable concept. As for question (1.2), for each member s of a
group G let A be the partition defined by A (To, s[o 4 1} and f be the
collection of all finite products A of partitions of the form A s. Then (2.0.iv)
can be taken as the definition of the total variation [IfI[ of a function f on G.

Let F be the set of all (not necessarily continuous) r-positive semicharacters
p on S; i.e., p is a complex function on S which is z-positive such that p 0

and p(st)= p(s)p(t) for all s, S. It follows that p(s*)= p(s) for each
p F. If F is equipped with the topology of pointwise convergence then the
following theorem is implicit in [8].

(2.1) THEOREM. A complex-valued function f on S admits a (necessarily
unique) integral representation of the form

(i) f(s)= frO(s)dl(O)
with respect to a regular Borel measure if if and only iff BV(S). Moreover
the map f If is a linear bijection ofBV(S ) onto the regular Borel measures on
F such that

(ii) txf is non-negative if and only iff is z-positive,
(iii) ix/is real if and only iff(s) f(s*) for all s S and
(iv) II/ll Ilfll.
Assuming the main theorem as stated in the abstract and assuming continu-

ity of the involution we can now answer question (1.4) for bounded functions.

(2.2) COROLLARY. The span of the z-positive bounded continuous functions on
S is the collection of bounded continuous B V-functions.

Proof. (i) A direct application of Theorem (2.1) shows that f is BV
whenever it is in the span of the z-positive functions.

(ii) Conversely assume f is bounded, continuous and BV. Suppose, more-
over, that/.tr is real. Then the main theorem implies that the variation Ifl, as
already defined by Ifl(s) fro(s)dllzl, is continuous and bounded. But then
f is the difference of two z-positive functions, since

f 1/2 (Ifl + f) 1/2 (Ifl f).

In the general case f, as defined by f,(s)= f(s*) is BV and bounded.
Continuity of f, follows from continuity of the involution. The converse
assertion now follows since f fl + if2 where fl (f + f,)/2 and f2 (f-
f,)/2i and since both fl and f2 have real representing measures by (2.1.iii).
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Remarks. (i) In general and contrary to all of the examples considered
thus far, neither a BV-function nor its variation need be bounded. For let S be
any commutative semigroup with trivial involution, which admits an un-
bounded z-positive semicharacter p. If p F then p itself may be represented
by point mass at p and hence is an example of an unbounded BV-function.
Note P[ P- In particular one could take S to be the non-negative integers
under addition with n n* and with r {1/2El, 1- 1/2El} and define p by
(n) 2".

(ii) If S is a group, or a semilattice as above when S (0,1], or more
generally an inverse semigroup (of. [2, p. 27]) with s* s -1, then every
r-positive and hence every BV-function is necessarily bounded (of. [1]). In this
event the boundedness can be removed from the corollary as well as from the
main theorem. In as much as the involution is continuous for a locally compact
group G as well as the semigroup (0,1] pertinent to (1.3), Corollary 2.2
provides the new answer to question (1.2) promised and reproves the known
answer to (1.3).

In order to underscore the difference between Eberlein’s result and ours for
the group case, consider the group of integers under addition. Eberlein’s result
cf [5, p. 32] characterizes those functions f which are in the complex span of
the positive definite functions as those f for which all finite sums lY’.cjf(j)l are
bounded by a common multiple of supolEcj.e-i[. Our characterization asserts
that f is in this span if and only if

lim il, i9_,i3,i4n--- oo

where

T I + -E + -E_ and o 4 1.

(iii) When S is not a group the functions which are r-positive with respect
to r {To, sis S,o4= 1) are shown in [7, p. 141] to be the ,-definite

functions studied in [6] and are necessarily bounded. In this case, boundedness
can also be removed from the corollary as well as from the main theorem. In
fact the results of [1] show that the class of functions on S which are BV with
respect to this r is the largest possible collection of bounded BV-functions on
S with respect to any r.

3. Main theorem

We are indebted to J.P.R. Christensen for suggesting the proof of the
following.
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(3.1) LEMM. Iff BV(S) then f is bounded ifand only /f Ip(’)l 1 for all
p in the support of the representing measure Iy. Consequently a BV-function f is
bounded if and only if its variation Ifl (’) is bounded.

Proof.
set

Assume f is bounded and fix r, S. Let Q be the point wise open

(p rl Ip(r)l > 1).

Assume Q is not empty and define v to be the restriction of f to Q. For each
s S, set Isl suprl(s)l and note that compactness of F implies 0 < Isl <. Since

fr\Qlp(r)lp(t) dly (p) < Itl IIt:ll,

it follows that the function s fr\Qp(s)p(t)dltf(p) is bounded on the set
{(rr*)"ln O, 1,... } which implies boundedness of s fp (s)p (t) dv (p) on
this same set. Thus the function H(z) as defined by

(i) H(z) E Ip(r)12np(t) dv z",
n=0

is analytic on the open unit disk U. But if Izl < 1/2(l/]r]) 2 then

m

E IP(r)[2nz"o(t)
n-O

<
Ip(t)l

< 21p(t)l.
1- Ip(r)l 9-. Izl

Hence the dominated convergence theorem implies that the order of integra-
tion and summations in (i) can be interchanged obtaining

(ii) H(z) f 1
p(r)

2 (-P(t)/lP(r)12) dv (p)

for z sufficiently close to zero.
Let rn be the image of the measure (-p(t)/lp(r)l 2) dv under the map

p 1/1o(r)l z.
Then the support of m is contained in [1/Irl 2,1]. Since Irl < c, the change of
variables formula shows that

1F(z)= f z_ dm(l)
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agrees with H(z) on a sufficiently small neighborhood of the origin. But both
H(z) and F(z) are analytic on U\ [1/Irl 2,1 so that F(z) H(z) on this set.
Consequently F(z) admits an analytic continuation, namely H(z), to all of U
which by the theory of Cauchy transforms [4, Corollary 1.3], implies

Iml([1/lrl,1)) O.

Thus f(-p(t)/Ip(r)12)dv(o) 0 for all S and hence the Stone-
Weierstrass theorem implies (1/Ip(r)12)dv(p)= 0 so that I1--0. Conse-
quently, if It(r)l > 1 then there exists an open set, namely Q, containing o
such that II(Q) 0 so O cannot be in the support of/f. This establishes the
"only if" part of the assertion. The converse is clear.

As in [6], we do not assume continuity of the involution in the following.

(3.2) THEOREM. The variation of a BV-function f on a commutative semitopo-
logical semigroup S with identity and involution is continuous and bounded if and
only iff is continuous and bounded.

Proof (i) If g is a continuous, bounded, z-positive function on S and f
is a BV-function such that/f is absolutely continuous with respect to/g then
f is continuous.

Indeed, the Stone-Weierstrass theorem implies that the linear span of the
functions on F of the form p p(s) (p F, s S) are dense in L:(F,/g).
But since dlxf/dlzg LI(P,/z g) and

(Esg)(t) frP(t)p(s) dtzg (P) (s,tS),

there exists a sequence { f, }, of linear sums of translates of g such that

lim IlL fl[ 0.

Thus for each s S we have

dl<-- dp, g

Ill-

where the inequality follows from Lemma 3.1. Hence f, converges in L:-norm
to f so that continuity of f, implies continuity of f.
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(ii) The "only if" part of the theorem now follows from (i) since /f is
absolutely continuous with respect to I#/I and I1 1 by definition.

(iii) Conversely, assume f is a continuous, bounded BV-function on S. By
[10, p. 126], Idl//dlt/ll 1 so that a complex-valued function h on I’ can be
defined by

h (o) 1/(dtddltfl).
As in (i) the Stone-Weierstrass theorem implies the existence of a sequence
{ h }n of continuous functions on F of the form

which converges uniformly to h. But h, h, LI(F, Itl) for each n and
lim,llh,-hill =0. Define the continuous functions f, on S by f,=
Eiai, nEs,,,f. Then

IL(s) Ifl(s)l

-IIh,- hll 0.

dllxfl (Lemma 3.1)

Therefore f, converges uniformly to the variation Ifl so that continuity of fn
implies that of Ifl-

Remarks. (i) The most well known application of this theorem is, as
mentioned in the introduction, in connection with question (1.3). More gener-
ally it implies the known result that the variation Ifl of every continuous
BV-function on the unit cube of R" is "one-sided" continuous in each variable
if and only if f is "the same-sided" continuous in each variable of [5, pp.
61-64].

(ii) We do not know if the main theorem or Cor. 2.2 is valid without
boundedness.
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