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Introduction

Throughout this paper A denotes an artin algebra over a commutative artin
ring R; i.e., A is an R-algebra which is finitely generated as an R-module. All
A-modules are assumed to be finitely generated Our main concern is to
develop criteria for when two indecomposable modules are isomorphic, at least
for some special types of algebras A.
Given a module M, we denote by [M] the image of M in the Grothendieck

group of A. Thus [Mx] [M2] if and only if they have the same composition
factors including multiplicities. Now it is classical that A is semisimple if and
only if [M1] [M2] implies that M and M2 are isomorphic, where M and
M2 are arbitrary A-modules. So while the composition factors do not de-
termine arbitrary modules over nonsemisimple artin algebras, it is still a
sensible question to ask which artin algebras have the property that their
indecomposable modules are determined up to isomorphism by their composi-
tion factors. While we do not give a definitive answer to this question, we do
extend considerably the class of artin algebras previously known to have this
property.
By a short chain we mean a sequence of nonzero morphisms A B

D TrA where A and B are in ind A, the category whose objects are the
indecomposable A-modules. We show in Section 1 that if A has no short
chains, then indecomposable A-modules are determined up to isomorphism by
their composition factors. In the case A is of finite representation type, then A
has no short chains if its AR-quiver has no oriented cycles, where by an
oriented cycle we mean a sequence of nonzero morphisms between indecom-
posable modules A0

-o A1 -o -o An, not all of which are isomorphisms,
with A0 =- An. Therefore this result contains earlier results by Happel-Ringel
[10] and Bautista [4]. It is worth noting that the class of algebras with no short
chains is much more extensive than the class of algebras having no oriented
cycles, as follows easily from the theory of coverings [8].
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Algebras with no short chains have another interesting and somewhat
surprising criterion when two indecomposable modules A and B are isomor-
phic. Namely, let PIP0A 0 and QI Q0B0 be minimal
projective presentations. Then A is isomorphic to B if Pi is isomorphic to Q
for 0,1. It would be interesting to know which artin algebras satisfy this
criterion for indecomposable modules to be isomorphic.

These results follow rather easily from two general facts which seem to be of
interest in themselves. The first is the fact that two arbitrary modules A and B
are isomorphic if either of the following conditions is satisfied:

(a) (X, A) (X, B) for all X in ind A,
(b) (A, X) B, X) for all X in ind A,

where U, V) denotes the length as an R-module of HomA(U, V) [2] (see also
[6]).
The second general fact is the following. Let A and B be arbitrary

A-modules and P1 P0 A -- 0 a minimal projective presentation of A.
Then

(A, B) (B, D TrA) (Po, B) (P, B).

In fact, the notion of short chains as well as the results cited above were
suggested by this formula. The last section of the paper is devoted to giving
some applications of this formula in somewhat different directions as an
indication of other uses it may have. Amongst other things we show that if A
is a symmetric algebra, then [P(A, B)[ P(B, A)I for all A-modules A and B
where IP(A, B)I denotes the length over R of the R-submodule of HomA(A, B)
consisting of the morphisms factoring through projective modules. Benson and
Parker showed this result for group algebras in [6].
We would like to thank Sverre Smal for helpful discussions, especially on

the material in Section 2.

1. Algebras with no short chains

In this section we prove that if A and B are indecomposable A-modules
which are not the middle of any short chain, then they are isomorphic if
[A] [B]. Actually we deduce this as a consequence of more general results.
We say that a subcategory cg of ind A is contravariantly determined if two

modules A and B in add ’ are isomorphic whenever (X, A) (X, B) for all
X in , where add c consists of all finite sums of modules in c. Now it is well
known that [A] [B] if and only if P, A) P, B) for all projective P in
ind A, if and only if A, !) B, 1) for all injective I in ind A. Therefore if
we assume that a subcategory c of ind A is contravariantly determined, then
showing that A and B in c are isomorphic whenever [A] [B], is the same
thing as showing that P, A) P, B) for all projectives P in ind A implies
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that (X, A) (X, B) for all X in cg. Dually, we say that cg is covariantly
determined if A and B in add cg are isomorphic whenever (A, X) (B, X)
for all X in

In view of the results of this paper it is of interest to know which
subcategories cg of ind A are contravariantly or covariantly determined. This
question will be studied in another paper. As stated in the introduction this has
been proved for cg ind A. The proofs known carry over to show that cg is
contravariantly and covariantly determined if it is closed under irreducible
morphisms. We include a proof for the sake of completeness. To avoid using
functors as in the proof of Auslander, we use the language of almost split
sequences as in [6].

Let cg be a subcategory of ind A. We denote by K0(Cg, 0) the free abelian
group generated by the isomorphism classes of modules in cg. We define the
bilinear map ( ): Ko(Cg, O) Ko(Cg, O) Z by

Associated with each object A LIniC in add cg is the element EniC in

Ko(cg, 0), which we will often denote more simply by A. The following result
gives a useful way of showing that cg is contravariantly determined.

PROPOSITION 1.1. Let cg be a subcategory of ind A.
(a) Iffor each C in c there is a in Ko(, 0) such that
(i) (C., C 0 and

(ii) (C, X) 0 for X in c not isomorphic to C,
then is contravariantly determined.

(b) Iffor each C in c there is a in Ko(, 0) such that
(i) (C, ) 4= 0 and

(ii) (X, C) 0 for X in cg not isomorphic to C,
then cg is covariantly determined.

Proof. (a) Let A LIniC be in add cg. Then n, (ti, A>/(4, Ci> for
all i. Therefore A is completely determined by the numbers (C, A) for all C in
cg, which shows that cg is contravariantly determined.

(b) This is analogous to the proof of (a).

We now apply this to show the following.

COROLLARY 1.2. Let cg be a subcategory of ind A which is closed under
irreducible morphisms. Then c is contravariantly and covariantly determined.

Proof Suppose A in cg is not injective and let 0 A B - C 0 be an
almost split sequence. Then B and C are in cg since cg is closed under
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irreducible morphisms. Define B- A- C in K0(, 0). If A in cg is
injective, then A/socA is in cg since A -o A/socA is irreducible. Define. A A/socA in K0(Cg, 0). We claim that for each A in cg we have

(a) (, A) 4= 0 and
(b) (A, X) 0 for X in c# not isomorphic to A.

For if A is not injecfive, the almost split sequence 0 -o A - B - C - 0 gives
rise to the exact sequence

0 Homa(C, X) HomA(B, X) HomA(A, X)

for each X in cg, and by the definition of almost split sequences

0 Homa(C, X) Homa(B, X) - Homa(A, X) 0

is exact if and only if X A. And if A is injective,

HomA(A/socA, X) HomA(A, X)

is a monomorphism for X in cg, which is an isomorphism if and only if X A.
Hence cg is contravariantly determined by Proposition 1.1. It is proved
similarly that cg is covariantly determined.

We now point out a condition on a subcategory cg of ind A which is useful
in showing that if [A] [B] for A, B in cg, then (X, A) (X, B) for every X
in . Suppose we have a map f: cg c# __, (nonnegative integers) such that
for each X in cg we have that g(A) (X, A) f(X, A) depends only on the
composition factors of A and let ’ be the subcategory of cg consisting of the
modules C such that (X, C). f(X, C)= 0 for all X in . Then we have
the following.

LEMMA 1.3. Let A and B be in cg such that A B]. Then
(a) (X, A) (X, B) for all X in cg,
(b) A B if cg is contravariantly determined.

Proof (a) Since [A] [B] we have

<X,A) f(X,A) <X,B) f(X,B) foreachXinCg.

If ( X, A ) 4= 0, then f(X, A) 0. Then ( X, B ) f( X, B) > 0, so that ( X, B)
4= 0 since f(X, B) >_ 0. Therefore f(X, B)= 0, which shows that < X, A)
< X, B) in this case. If ( X, A) 0, then < X, B) f(X, B) < 0 so that ( X, B )
--0.

(b) Trivial.
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In the case A is hereditary, a natural f: mod A mod A V" suggests
itself, where mod A in the category of finitely generated A-modules. Consider
f(X, A) IExt(X, A)I where IExt(X, A)I means the length of Ext,(X, A) as
an R-module. Then if 0 Px P0 X 0 is a projective resolution of X,
we have that

(X, A) [Extl(x, A)I (P0, A) (Pl, A)

which depends only on the composition factors of A. Since A is hereditary,
Ext,(X, ) is right exact and so we have that

Extk(X, A) Extk(X, A) (R)AA.

Therefore

IExt(X, A)I IExt(X, A) (R)AAI

ID(Ext(X, A) (R)AA)I (A, DExt(X,A))
(A, DTrX).

So we have

<X,A> <A, DTrX> (Po, A> <P1, A>.

Remarkably, this formula is true for arbitrary artin algebras, as we now show.

THEOREM 1.4. (a)
A. Suppose P1 - Po
have

Let X and A be arbitrary modules over an artin algebra
X 0 is a minimal projective presentation. Then we

(X,A) (A, DTrX) (Po,A) (P1, A).

(b) Let X and A be in mod A and let 0 X Io --. 11 be a minimal
injective copresentation. Then we have

(A, X) (TrDX, A) (A, Io Ix).

Proof (a) Denoting HomA(Pi, A) by Pi*, the exact sequence

Po* PI* "-’ TrX - 0

gives rise to the exact sequence

Po* (R)AA P* (R)AA --> TrX (R)AA --* 0.
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Using the functorial isomorphisms Pi* (R)AA -’* HmA(Pi, A), we get the exact
sequence

0 HomA(X, A ) (Po, A)--, (P1, A) TrX (R)AA 0.

Using the fact that D(TrX (R)AA) =- HomA(A, D TrX) as R-modules, we have

ITr X (R)AAI (A, D Tr X)

which gives (a).
(b) Follows by duality.

This result suggests the following definitions.
Let cg be a subcategory of ind A. A chain A ---, B ---, D TrA of nonzero

morphisms is said to be a left short chain in cg if A and B are in cg, a right
short chain in if B and D TrA are in cg, and a short chain in c6’ if it is both a
left and a right short chain in . For ff ind A, or more generally if ff is
closed under irreducible maps, then all these definitions coincide.

Clearly B in is not the middle of any left short chain in W if and only if
(X, B)(B, DTrX) 0 for all X in cg, and not in the middle of any right
short chain if (TrDX, B)(B, X) 0 for all X in cg. Therefore, combining our
previous comments, we have one of our main results.

THEOREM 1.5. (a) Suppose a subcategory cg of ind A is contravariantly
determined (for instance, is closed under irreducible morphisms), and assume
that A, B in c are not the middle of any left short chain in of. If [A] [B], then
A--B.

(b) Let cg be a covariantly determined subcategory of ind A and assume that
A, B in cg are not the middle of any right short chain in c6’. If [A] [B], then
A=B.

As a special case of this theorem we get the following result of Happel [9]
which generalizes an earlier result of Happel-Ringel [10].

COROLLARY 1.6. Let c be a subcategory of ind A which is a preprojective
component. If [A] [B] for A and B in cg, then A B.

Proof Since a preprojective component is closed under irreducible mor-
phisms, it suffices to show by Theorem 1.5 that there are no short chains in cg.
One of the consequences of cg being a preprojective component is that for each
X in cg there are only a finite number of Y in ind A such that HomA(Y, X) 4:0
(see [10]). Hence there is a nonzero morphism Y ---, X in c6’ which is not an
isomorphism if and only if there is a finite chain of irreducible morphisms
from Y to X with nonzero composition. Therefore the fact that there are no
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oriented cycles of irreducible morphisms in is equivalent to there being no
oriented cycles of nonzero morphisms in if, where not all the morphisms are
isomorphisms. But this implies there are no short chains in ft. For suppose
there is a short chain A B D TrA in . Then the almost split sequence

ODTrAEAO

gives rise to a sequence of irreducible morphisms D TrA E’ A in
which in turn gives rise to an oriented cycle of nonzero morphisms

A BDTrA E’A

in , not all of which are isomorphisms, which is a contradiction. Hence has
no short chains, which is what we wanted to show.

As another consequence of Theorem 1.5 we have the following.

COROLLARY 1.7. Suppose ind A has no short chains. Then A and B in ind A
are isomorphic if A B].

In view of the above, it would seem that algebras having no short chains
should be of considerable interest. They are probably of finite representation
type since they have the property that their indecomposable modules are
determined by their composition factors. For this reason we concentrate on
algebras of finite representation type in discussing algebras with no short
chains. We now show that this is a rather extensive class of algebras.
As our first example we have the following.

PROPOSITION 1.8. Suppose A is of finite representation type and has no
oriented cycles of irreducible morphisms. Then A has no short chains.

Proof This follows from the proof of Corollary 1.6.

The algebras of finite representation type having no oriented cycles do not
by any means exhaust the class of algebras of finite representation type having
no short chains, as can be seen from the following result.

PROPOSITION 1.9. Suppose A is an algebra offinite type over an algebraically
closed field k.

(a) There are finite coverings of k(FA) such that the associated algebras have
no short chains, where k(FA) denotes the mesh category of the AR-quiver.

(b) If A has no short chains, then every A’ where k(FA, ) is a finite covering
of k( FA) has no short chains.
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Proof (a) Follows from the proof of Corollary 5.3. in [8].
(b) Trivial consequence of the definition of coverings.

While we will return later to discuss other properties of algebras having no
short chains, we end this section with the following.

PROPOSITION 1.10.
then A is Schurian.

If A is an algebra offinite type having no short chains,

Proof. Assume to the contrary that A is not Schurian, i.e., there is some A
in ind A having a nonzero endmorphism f: A A which is not an isomor-
phism. Then there is an oriented cycle of irreducible morphisms

A Ao -> A --’> -’-> A,,_ A. A

with nonzero composition.
By the theorem of Bautista-Smalo [5], there is some B such that B A and
D TrB =- Aj for some and j. But then we have the short chain B A
D TrB, which is a contradiction.

2. Modules not on cycles

Our purpose in this section is to exploit the following observation.
Let P1,..., Pt be nonisomorphic indecomposable projective A-modules and

suppose F (End P)P, where P 11= 1Pi, has the property that indecom-
posable F-modules are determined by their composition factors. The
HomA(P, Pi) are the indecomposable projective F-modules, and the natural
morphism HomA(Y, X)---, Homr(HomA(P,Y),HomA(P,X)) is an isomor-
phism when Y P and hence also when Y P for each i. Suppose ff is a
subcategory of ind A such that the functor (P, ): ff mod A given by

C "-* HomA(P, C)

is fully faithful. Then two objects C and C’ in are isomorphic if (P, C)
(P, C’) for 1,..., t, in particular if [C] [C’]. For we have by the above
that

<P,C> <HOmA(P,P),HOmA(P,C)>

and

<Pi, C> <HOmA(P, Pi), Hom A(P, C’)>.
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Hence (Pi, C) (Pi, C’) for 1,..., implies [(P, C)] [(P, C’)] in
mod F. Since the indecomposable F-modules are determined by their composi-
tion factors, we have (P, C)= (P, C’), and by the assumption on (P, )"

’ mod F, we have C C’.
We now describe a way of finding families of indecomposable projective

modules P1,’", et such that F End(I_IPi)P has the property that indecom-
posable F-modules are determined by their composition factors in the case A
is of finite representation type. We begin by recalling some general facts.

Let A be an arbitrary artin algebra, P1, Pt some family of nonisomor-
phic indecomposable projective modules and F (End P)p where P
LIti-iei" We now describe three subcategories 0, (1, (62 of ind A such that the
functor (P, )" rood A modF given by C (P, C)= HomA(P, C) when
restricted to the subcategories cgo, cg

t,
cg
2 induce equivalences with ind F (see

[1]).
(a) A is in 0 if and only if in its minimal projective presentation

Q1 Q0 -’ A --, 0 the simple summands of Q1/rQ1 and Qo/rQo are amongst
the simples P/rP Pt/rPt, where r is the radical of A.

(b) A is in 1 if and only if the simple summands of A/rA and socA are
amongst the simples P/rP,..., Pt/rPt.

(c) A is in 2 if and only if in its minimal injective copresentation
0 -- A -- I0 -, I the simple summands of soc I0 and soc 11 are amongst the
simples P1/rP,. Pt/rPt.
Our aim now is to prove the main result of this section.

THEOREM 2.1. Let A be an artin algebra of finite representation type.
Suppose C is in ind A and PI, Pt are a complete set of nonisomorphic
indecomposable projective A-modules such that (Pi, C) :k O. Further suppose
that C, which lies in c for P,..., Pt, does not lie on any oriented cycle of
nonzero nonisomorphic morphisms in cg. Then I" (End 11 i--t 1Pi)op has the
property that indecomposable F-modules are determined by their composition
factors.

Proof. Clearly C is in cg
1. Since (P, ): cg ind F is an equivalence, the

fact that C does not lie on any oriented cycle of nonzero nonisomorphic
morphisms in (1 implies that (P, C) does not lie on any oriented cycle of
nonzero nonisomorphic morphisms in ind F. Hence F is of finite representa-
tion type with a sincere module (P, C) (i.e., an indecomposable F-module with
all simple F-modules as composition factors), not lying on any oriented cycle
of irreducible morphisms in ind F.
We want to show that if is on an oriented cycle of irreducible morphisms

in ind F, then D Tr Y is not on the cycle. Assume there is a cycle containing Y
and D Tr Y and let C be a maximal such cycle, in the sense that there is no
cycle with more nonisomorphic modules in it. We claim that C must contain a
projective and an injective module.
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Suppose C does not contain a projective module. Then D TrC, with its
obvious meaning, is a cycle of irreducible morphisms which contains D Tr Y
and so the join of C and D Tr C is a cycle containing Y and D Tr Y. Hence the
modules in D Tr C are amongst the modules in C. Therefore the modules in C
are D Tr-periodic. Since F is an indecomposable algebra of finite representa-
tion type, there must be some indecomposable T not in C such that there is an
irreducible morphism T S or S T with S in C. Otherwise the modules in
C would be closed with respect to irreducible morphisms and would be all of
ind F, which is impossible since all the modules in C are D Tr-periodic.
Suppose T is not in C and there is an irreducible morphism T S with S in
C. (The case S T is handled similarly.) Then D TrS T S, when joined
to C, would give an oriented cycle containing Y, D Tr Y and T, contradicting
the maximality of C. Therefore not all the modules in C are D Tr-periodic
which means that C contains a projective module. Similarly, C contains an
injective module.

Let Q be a projective module in C and I an injective module in C. Since
(P, C) is a sincere module and F is of finite type, we know there is a chain of
irreducible morphisms Q (P, C) I. Therefore (P, C) lies
on a cycle since Q and I lie on the cycle C, which is a contradiction. Therefore
no oriented cycle of irreducible morphisms in ind F contains both Y and
D Tr Y for any Y in ind F.
We now indicate two different ways of completing the proof of the theorem.

If there were a short chain A B D TrA in ind F, then there would be an
oriented cycle of irreducible morphisms containing A and D TrA since F is of
finite representation type. Therefore there are no short chains in ind F, which
shows by Corollary 1.7 that the indecomposable F-modules are determined by
their composition factors.

Alternatively, Bautista-Smalo [5] have shown that for any oriented cycle of
irreducible morphisms there must be a Y such that Y and D Tr Y are in the
cycle. This shows that there are no oriented cycles of irreducible morphisms in
ind F and so by the result of Happel-Ringel [10] the indecomposable F-mod-
ules are determined by their composition factors.

As an immediate consequence of our discussion so far we have the following
result.

COROLLARY 2.2. Let A be an artin algebra offinite representation type, C an
indecomposable A-module and P1,..., Pt a complete set of nonisomorphic inde-
composable projective A-modules such that Pi, C) O. Suppose C is not on any
oriented cycle of nonzero nonisomorphic morphisms in the subcategory 1 of
ind A given by P1,..., Pt. Then two indecomposable A-modules A and B with
[A] [B] are isomorphic if they both are in one of the subcategories Co,
of ind A given by the projectioes P,..., Pt.
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As a special case of this result we have the following.

COROLLARY 2.3. Let A be an artin algebra of finite representation type.
Suppose C in ind A does not lie on any oriented cycle of irreducible morphisms.
If A and B are in ind A with [A] [B] such that the simples occuring as
composition factors for socA, A/rA, socB, B/rB are amongst those occuring
for C, then A B.

Proof. Let P1,"-, Pt be the projective covers of the simples occuring as
composition factors of C. The hypothesis means that A and B are in the
subcategory (1 of ind A given by P1,--’, Pt" Hence the result follows from
Corollary 2.2.

3. Another isomorphism criterion

Let A be an artin algebra and cg a subcategory of ind A. In Section 1 we
obtained some information about modules in cg which are not the middle of
left short chains in when cg is contravariantly determined. This section is
devoted to studying modules in cg which are not the beginning of left short
chains in cg when is covariantly determined. The results generally follow
directly from the formulas given in Theorem 1.4, in much the same manner as
the proofs in section one followed directly from these formulas.

THEOREM 3.1. Let A be an artin algebra and a subcategory of ind A.
Assume A and B in g are not the start of any left short chain in and their
minimal projective presentations

PI(A) -- Po(A) --* A 0 and P(B) -- Po(B) -- B -- 0

have the property Po(A) PI(A) Po(B) PI(B) in Ko(C, 0). Then we have:
(a) A, X) B, X) and X, D TrA) (X, D TrB) for all X in .
(b) If cg is covariantly determined, then A B.
(c) If cg is contravariantly determined and D TrC is in cg for each nonprojec-

tive C in cg, then A B.

Proof (a) By Theorem 1.4, we have

(A,X) (X, DTrA) (Po(A)- PI(A),X> <B,X> <X, OYrB>

for all X in rg. The fact that

<A,X> <B,X> and <X, DTrA> <X, DTrB>
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for all X in now follows from the fact that

<A,X> <X, DTrA> =0= <B,X) <X, DTrB>

since A and B are not the start of any left short chain in .
(b) Obvious consequence of (a).
(c) Suppose A is not projective. Then D TrA is in W and so by (a),

(DTrA, DTrB> 0

which means that B is not projective. Since cg is contravariantly determined, it
follows from (a) that D TrA D TrB and so A B. If A is projective, then B
is also projective by the previous argument and so A Po(A)- PI(A)=
Po(B)- PI(B)= B.

We now state the dual version of Theorem 3.1.

THEOREM 3.2. Let A be an artin algebra and cg a subcategory of ind A.
Assume A and B in cg are not the ends of any right short chain in cg and their
minimal injective copresentations

0 A Io(A)-oIx(A ) and 0 B--oIo(B)-II(B)

have the property that lo(A) -11(A) lo(B) -I(B) in K0(Cg,0). Then we
have:

(a) ( X, A ) ( X, B) and (TrDA, X) (TrDB, X) for all X in

(b) If cg is contravariantly determined, then A B.
(c) If cg is covariantly determined and TrDC is in cg for each noninjective C

in cg, then A --- B.

Combining results from Section 1 with the above we obtain the following.

THEOREM 3.3. Let A be an artin algebra and cg a subcategory of ind A
having no left or right short chains. Suppose in addition c is both covariantly and
contravariantly determined. Let A and B be in

(a) The following are equivalent.
(i) A --- B.
(ii) [A] [S].
(iii) Po(A)- PI(A)= Po(S)- P(S).
(iv) Io(A) II(A)= Io(S) II(B).
(b) If (A, B) O, then we have the reciprocity law

<Po(A) PI(A), B> <A, B) <A, Io(B ) I(B)>.
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Proof (a) Already proven.
(b) This is a special case of the following slightly more general obvious

consequence of the formulas in Theorem 1.4.

PROPOSITION 3.4. Let A be an artin algebra andA and B in ind A such that
A, B) 4: O. If D TrB, A) 0 (B, D TrA), then

(A, Io(B ) II(B)) (A, B) (Po(A) PI(A), B).

It is worth noting that our previous results imply that the conclusion of
Theorem 3.3 is also valid under the following circumstances.

THEOREM 3.5. Let A be an artin algebra and a subcategory of ind A
haoing the property that D TrC is in cg for each nonprojectioe C in cf and TrDC
is in c for each noninjectioe C in c. If in addition cg has no short chains, then A
and B in cg satisfy (a) and (b) of Theorem 3.3 provided cf is either con-
travariantly or covariantly determined.

The rest of this section is devoted to studying some properties of modules
which are not the start of left short chains in a subcategory of ind A.

PROPOSITION 3.6. Let A be an artin algebra, cf a subcategory of ind A and
A in cg not the start of any left short chain in . Then we have the following
where PI(A) Po(A) A 0 is a minimal projectioe presentation.

(a) (A, X) and IX, D TrA) depend only on IX] for X in
(b) If P is an indecomposable projectioe module such that P/rP is in c, then

Po(A) and PI(A) do not haoe P as a common summand. Hence, if c contains
all the simple modules, Po(A) and PI(A) haoe no common summands.

(c) If S is a simple module whose injectioe enoelope is in of, then S is not a
common composition factor of f2A and A. Hence if contains all injective
modules, then 2A and A have no composition factors in common.

Proof (a) Let X and Y be in with IX] []. Then

A, X) X, DTrA) (Po(A) PI(A), X) (Po(A) PI(A), Y)
<A,Y> <Y, DTrA).

It then follows that <A, X> <A,Y) and <X, DTrA> <Y, DTrA> since A
is not the start of any left short chain.

(b) Let P be an indecomposable projective module such that the simple
module S P/rP is in c. Since A is not the start of a left short chain in c,
we have that <A, S) < S, D TrA) 0. Therefore A/rA and socD TrA do not
have S as a common summand. Since socD TrA fA/rfA, it follows that P
is not a common summand of P0(A) and PI(A)-

(c) This is an easy consequence of the following general fact.
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PROPOSITION 3.7. Let A be an arbitrary module over an artin algebra A and
I an injective A-module. Then

(a) (a2A, I) <I, DTrA> and
(b) pdA < l if and only if ( I, OTrA) =0

for all indecomposable injective modules I.

Proof. (a) Let

o -. A -* 0

be exact with P(A) Po(A) A 0 a minimal projective presentation.
Then

0---, HomA(A, I ) HomA(Po(A),I ) HomA(P(A),I )
--, HomA(2A, I) 0

is exact since I is injective. Therefore

<A,I> <a2A, I) <P0(A)- PI(A),I> <A,I> (I, DTrA>.
Hence (2aA, I) (I, D TrA).

(b) Trivial consequence of (a).

Returning to the proof of Proposition 3.6(c), we have that if I is an
indecomposable injective module in cg and (A, 1) 4: 0, then (22A, I)
I, D TrA) 0 since A is not the start of a left short chain in . Therefore

soc I is not a common composition factor of A and faA.

For the sake of completeness we end this section by giving the duals of
Propositions 3.6 and 3.7 in reverse order.

PROPOSITION 3.8. Let B be an arbitrary module over an artin algebra A and
let P be a projective A-module. Then

(a) (P, f 2B) (TrDB, P) and
(b) inj dim B < 1 if and only if (Tr DB, A) O.

The dual of Proposition 3.6 is the following.

PROPOSITION 3.9. Let A be an artin algebra, a subcategory of ind A and
B in c not the end of any right short chain in c. Then we have the following
where 0 - B - Iv(B) - II(B) is a minimal injective copresentation.

(a) (X, B) and (TrDB, X) depend only on IX] for X in .
(b) If I is an indecomposable injective module such that soc I is in , then

Iv(B) and II(B) do not have I as a common summand. Hence if c contains all
indecomposable injectives, Io(B) and II(B) have no common summands.
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(c) If S is a simple module whose projective cover is in @, then S is not a
common composition factor of B and -2B. Hence if contains all indecom-
posable projective modules, then B and -2B have no composition factors in
common.

4. Examples

There are some natural ways to try to generalize our results. We give
counterexamples to some of the things that do not work, and pose some
questions. We first give two examples, which we use to give our counterexam-

Let A be given by the following quiver with relations

pies.

Example 4.1.

2.._ 0, over an algebraically closed field k. Denoting the simple projective
A-module by S and the other simple A-module by T, we have the following
AR-quiver.

T

T
S T

T
S T "s /

T
T

The indecomposables which are not the start of short chains are

T T
T T ST

S, T, S, S,

and the only indecomposable not the middle of a short chain is S.

Example 4.2. Let A be an indecomposable selfinjective Nakayama algebra,
with indecomposable projective modules P1 en and of Loewy length t. Let
A be an indecomposable A-module.

(a) A is not the start of a short chain if and only if I(A) < n t, where
I(A) denotes the length of A.
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(b) A is not the middle of a short chain if and only if I(A)<_
n-t+1.

(c) If A is not projective, HomA(A, DTrA) 0 if and only if l(A)<_

(d) If A is not projective,

Hom ( A, D TrA ) =Hom ( A, D TrA)/P( A, D TrA) 0

if and only if I(A) < n 1 or I(A) > n + 1, where P(A, D TrA) denotes
the morphisms from A to D TrA factoring through projective modules.

(e) A is uniquely determined by its composition factors if and only if
n 1 or I(A) is not a multiple of n.

(f) End(A) is a division ring if and only if l(A) < n.
(g) A is determined by P0(A) PI(A) if and only if l(A) > n.

We have seen that ind A having no short chains is sufficient for [A] [B] to
imply A B when A and B are in ind A, and A being Schurian is a more
general condition which is not sufficient as seen from Example 4.2(e), (f).

In Section 3 we saw that if an algebra of finite type had no short chains, then
A in ind A is uniquely determined by P0(A) PI(A). This last property is not
sufficient for A in ind A to be determined by [A], nor does the converse hold,
as seen from Example 4.2(e), (g).

If A has no short chains, we also have (A, D TrA) 0 for all A in ind A
and (A, D TrA) 0 for all A in ind A where (A, D TrA) is the R-length of
HomA(A, D TrA). But neither of these conditions is sufficient, as seen by
Example 4.2(c), (d).
We next discuss possible "local" conditions. We do not know if it is

sufficient for [A] [B] to imply A B that only A is assumed not to be the
middle of a short chain.
The property of A not being the start of a short chain neither implies nor is

implied by A not being the middle of a short chain. This is seen from the above
examples. We do not know if not being the start of a short chain is a sufficient
condition for modules to be determined by their composition factors. But if
only one of the modules is not the start of a short chain, it is not sufficient, as
we see by choosing

T TA T and B
S S

in Example 4.1.
In Section 3 we saw that if A in ind A is not the start of a short chain in

ind A, then (A, X is determined by [X]. It would be interesting to know if
when both A and B in ind A have this latter property, [A] [B] implies
A--B.
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(A_,D TrA)= 0 is not a sufficient condition when A is indecomposable
nonprojective, as seen from Example 4.2(d). But we do not know if
(A, D TrA) 0 is a sufficient local condition if A is indecomposable nonpro-
jective. Also we do not know if (A, DTrA)= 0 for all indecomposable
nonprojective A implies that the indecomposable nonprojective modules are
determined by their composition factors.

It would also be interesting to know if any of the above properties, along
with the property of not lying on a cycle of irreducible maps, is preserved for
indecomposables with composition factors amongst those for the given one.

5. A symmetry for symmetric algebras

Let A be an artin algebra over the commutative artin ring R. Given two
A-modules A and B we denote by I(A, B) the R-submodule of Hom(A, B)
consisting of those morphisms factoring through injective R-modules. Our aim
in this section is to show how Theorem 1.4 can be applied to study P(A, B)I
and I(A, B)I, the R-lengths of P(A, B) and I(A, B) respectively. Amongst
other things we show that IP(A, B)I IP(B,A)I for all A and B if A is a
symmetric algebra, generalizing a result of Benson and Parker for group rings
[6]. We also obtain information on (A, B) (B, A) for symmetric algebras.
To prove our results in this section we also make essential use of the

isomorphism ExtA(A, DB)= D HomA(TrB, A) from [3, Prop. 2.2 and page
253] for A in modA and B in modAp. Here HomA(X,Y) denotes
HomA(X, Y)/P(X, Y). This isomorphism, which in addition to being a group
isomorphism is an End(A)P End(B)P bimodule isomorphism, has been
useful in the representation theory of artin algebras, in particular it was used to
prove the existence theorem for almost split sequences over artin algebras in
[3], and also in the work of Bongartz on tilted algebras [7, page 34].

PROPOSITION 5.1. Let A and B be modules over the artin algebra A. Then we
have:

(a) II(A, B)I (P TrDB, A) where P P(fTrDB), a projective
cover for f TrDB, and where X denotes the first syzygy module for X.

(b) IP(A,B)I (B,I- f]-IDTrA) where I= I(f-IDTrA), an injective
envelope for f]- XD TrA.

(c) IP(A, B)I (A, P(B) aB).
(d) II(A, B)] (I(A) f-XA, B).

Proof. (a) By Theorem 1.4 we have

(TrDB, A) (A, B) + (Po P1, A)

where P1 P0 TrDB --, 0 is a minimal projective presentation of Tr DB.
From the exact sequence 0 ---, a TrDB Po --’ TrDB 0 we obtain the
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exact sequence

0 --+ HomA(TrDB, A) --+ Homa( P0, A) -+ HomA(2 TrDB, A)
--+ Ext](TrDB, A) --+ 0.

Using the fact that

D Ext,,(TrDB, A) =HomA (TrDA, TrDB) HOmA(A, B)

where HomA(X, Y) HomA(X, Y)/I(X, Y), from the last exact sequence we
get

<TrDB, A> ( Po, A > + IH--6--a ( A, B) (f TrDB, A>.
Comparing these two expressions for (Tr DB, A> we obtain

<A, B> -]HOmA(A, B) <Px fTrDB, A>
from which our desired result follows since

II(A, B)I <A, B> -IHOmA(A, B)l"

(b) Follows from (a) by duality.
(c) From the exact sequence 0-+ fB P(B)---> B ---> 0 we obtain the

exact sequence

0 HomA(,B) HomA(A, P(B)) HomA(, B).

Since P(A, B)= Im(HomA(A, P(B))--+ HomA(A, B)), the sequence

0 ---> HomA(A, fB ) --+ Hom.(A,P(B))--+ P(A,B)--+ 0

is exact, from which (c) follows trivially.
(d) Dual of (c).

The next two propositions give information about when two A-modules A
and B satisfy IP(X, A)I IP(X, B)I or II(X, A)I II(X, B)I for all indecom-
posable X. They generalize a result from [6] on group algebras, and some of
the arguments are similar to those in [6].

PROPOSITION 5.2. Let A and B be modules over an artin algebra A where the
radical has no nonzero submodule which is projective.

(a) IP(X, A)I IP(X, B)I for all indecomposable X if and only if (f]A)
(fB)a, where C denotes the sum of the nonprojective indecomposable sum-
mands of C.
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(b) Suppose, in addition, A is selfinjective and A and B have no nontrivial
projective summands. Then A B if

II(X, A)I Ie(X, A)I IP(X, B)[ II(X, B)I

for all indecomposable A-modules X.

Proof (a) By Proposition 5.1(c) we have that IP(X, A)I IP(X, B)I for
all X is equivalent to X, P(A) 2A) (X, P(B) B) for all X, which is
equivalent to P(A) 2A P(B) 2B in K0(ind A, 0) since ind A is con-
travariantly determined. It is easy to see that this last equality is equivalent to

(fA) (B).
(b) This is a special case of (a). For if A is selfinjective, then flA (fA)

and fB (fB)a and fA [2B implies A B if A and B have no nontriv-
ial projective summands.

PROPOSITION 5.3. Let A and B be modules over an artin algebra A where the
radical has no nonzero submodule which is projective. Then II(X, A)I iI(X, B)I
for all indecomposable modules X if and only if (f TrDA) (fl TrDB).

Proof By Proposition 5.1(a) we have that

II( X, A ) II( X, B) forall S

is equivalent to

<P(TrDA) fTrDA, X) <P(fTrDB) fTrDB, X> for all X,

which is equivalent to

P(g2TrDA) TrDA P(fTrDB) fTrDB in K0(ind A,0)

since ind A is covariantly determined. It is now easy to see that this last
equality is equivalent to (TrDA)#--- (fTrDB)#.

We now apply Proposition 5.1 to show that IP(A, B)I IP(B, A)I for all
indecomposable A and B when A is symmetric, generalizing a result from [6]
on group algebras. We deduce this as a special case of a result for selfinjective
algebras. Denote here by N the equivalence (D( ), A) from mod A to mod A.
If C is indecomposable nonprojective, we see that NC TrDf2C, by consid-
ering the following exact sequences:

0 "2C --.> P_ -o P0 --> C O,

0 ---> D(C)---) D(Po)--) D(P)---) D(2C)--)O,

0 (D2C)* --* D(P)* D(Po)* ---) D(C)* ---)O.
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N is isomorphic to the identity functor if and only if A is a symmetric algebra.
With this notation we have the following.

THEOREM 5.4. Let A be a selfinjective algebra and A and B in mod A. Then
IP(B, A)I IP(NA, B)[..

Proof. By Proposition 5.1(b), if A has no nonzero injective summands then
[P(TrD2A, B)[ equals (B, I(A) fA), which is equal to (B, P(A) A),
and hence to IP(B, A)I by Proposition 5.1(c). If Q is indecomposable projec-
tive, then socO DQ*/rDQ* NQ/r(NQ). Hence (B, Q) (NQ, B) since
both sides measure the multiplicity of composition factors. This finishes the
proof for all A, B since (B, Q) IP(B, O)l and (NO, B) IP(NQ, B)[.

THEOREM 5.5. /f A is a symmetric algebra, then P(B, A)I P(A, B)I for
all A, B in mod A.

This result can be viewed as a generalization of the fact that the Cartan
matrix of a symmetric algebra is symmetric. For this generalized matrix to be
symmetric, it is clearly necessary that A is weakly symmetric, which we see by
choosing A to be simple and B to be indecomposable projective.

There is another natural generalization of the Cartan matrix, by using
(A, B) for A and B indecomposable. This matrix will rarely be symmetric. In
fact, we have the following.

PROPOSITION 5.6. Let A be an indecomposable artin algebra. Then (A, B)
B, A) for all indecomposable A and B if and only if A is a local Nakayama

algebra.

Proof If (A, S) S, A) for all indecomposable A, S with S simple, then
we have already seen that A is weakly symmetric, and we have socA A/rA.
In particular, this holds if A/rA is simple, so that each indecomposable
projective is uniserial and has only one simple in its composition series. This
shows that A is local Nakayama, and the converse is obvious.

We now use our main theorem to describe (A, B) B, A) for modules
over symmetric algebras. This result is based on the following specialization of
our formula D(Ext(X, A))= HomA(TrDA, X) [3] to selfinjective algebras.
We recall that <_X,_Y> is the R-length of HomA(X, Y).

LEMMA 5.7. Let A be a selfinjective algebra. Then (B_, A) (A_A_,D Trf-IB)
for all A-modules A and B. In particular (B_, A> (A, B) if A is symmetric.

Proof From the exact sequence 0 B I(B) fl-lB 0 we get the
exact sequence

0-- HomA(f-IB, A) HomA(I(B),A ) --> HomA(B, a ) --> Ext(-IB, A) 0



300 MAURICE AUSLANDER AND IDUN REITEN

from which it follows that HomA(B, A) -= Ext(f-lB, A). Since

D(EXtA( ft- IB, A ) ) HomA (TrDA,-IB ) HomA ( A, D Tr f- IB ),
we have (_B, A) (A, D Tr B).
Assume now that A is symmetric. Then D Tr f2, so (_B, A) (A, B).

As a consequence of Lemma 5.7, we have the following result.

PROPOSITION 5.8. Let A and B be modules over a symmetric algebra A. Then
A, ) , A) (_,A _).

Proof Now (A, B) IP(A, B)I + (A, _B) IP(B, A)I + (B_, f__A) by
Theorem 5.5 and Lemma 5.7. Since (B, A) P(B, A)I + (-B, A_A_), we have

(A_, (B, A) UA A_).

We next investigate what it means to have (_X, A) (_X, ___A) for all X for
an A in mod A.

LEMMA 5.9. Let A be a selfinjective algebra where the projective modules are
determined by their composition factors, and let A be in mod A having no
nonzero projective summand. Then (_X, A_) (_X, fA) for all X if and only if
2A=A.

Proof Let A be in mod A with no nonzero projective summand. Assume
that (_X, A} (_X, fA) for all X in mod A. The exact sequence 0 -+ fA
P(A) --) A ---) 0 gives rise to exact sequences

0- HomA(X, t2A ) --+ HomA(X,P(A))
--+ HomA( X, A) --+ HomA ( X, A) 0

for X in mod A. And 0 --) fl2A ---) P(fIA) --) 12A ---) 0 gives exact sequences

0 + HomA(X, f2A) --+ HomA( X, P(fA))
--+ HomA( X, A) --+ HomA ( X, A) --+ 0.

This show that (X,f2ALIAI_IP(A)) (X,fAI_IAIIP(A)) for all X in
mod A. Hence f2A A by Corollary 1.2.
Assume conversely that flA A, and consider the exact sequence 0 -, A

-+ Px --’ Po --’ A - 0, where Po P(A) and Px P(A). Then P0 P1],
so that by our assumption Pa P0-Then (_X, A) (_X, 2A) follows from the
above exact sequences.
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We have the following consequence of Proposition 5.8 and Lemma 5.9.

COROLLARY 5.10. Let A be a symmetric algebra where the projective mod-
ules are determined by their composition factors, for example a group algebra.
Then the following are equivalent for A in mod A with no nonzero projective
surnmand.

(a) X, .4 .4, X for all X in mod A.
(b)
(c) There are nonprojective indecomposable A-modules C and positive in-

tegers n i, 1,..., t, where 2n,C C such that .4 is isomorphic to

LI
i=l
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