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1. Introduction

Let t’ be the class of all nonconstant meromorphic functions on A
(Izl < 1} and let ( denote the extended plane C t3 (c }. Given a subclass
of d/’ and et (, there is associated a class 0() of subsets of the unit
circumference C (Izl 1} which arise as the collection of preimages of a
under the radial limit functions of the members of . Thus E ,,() if and
only if

e {n c.

for some f , where f*(/)= limr__,lf(rrl) at each / in C for which the
limit exists (finite or infinite).

Let J, , and 6 be the classes of nonconstant inner functions, Blaschke
products, and singular inner functions respectively (cf. 4 for a review of the
definitions and basic facts concerning J, , and 6"). For a subclass of ’,
let p denote the class of functions in having radial limits at each point of
C. Our main concern in this paper is the study of .’() when

and p. Results are also obtained for related classes of functions.
In 2 we establish notation and state the main results. In 3, some topologi-

cal results are proved. Explicit constructions of inner functions with radial
limit functions that take on a specified value in prescribed subsets of C are
given in 4. Finally, applications for singular monotone functions are taken up
in 5.
Most of the results of this paper appear in some form in the author’s

doctoral dissertation. The dissertation was directed by Professor Maurice
Heins at the University of Maryland. At this time, the author wishes to express
his appreciation to Professor Heins for his help and to the University of
Maryland for its support. In addition, the author wishes to thank Professor
A. H. Stone for providing him with the proof given at the end of 3 to show
that the last inclusion in (3.9) is proper, and Professor G. Piranian for proving
the first assertion of Theorem 2.5 based on a technique of C. Belna.
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192 ROBERT D. BERMAN

2. Main results

Before stating our main results, we establish some notation and state several
background theorems.

Let ’, J, , and 6a be defined as in 1. Denote by ’J the class of
"meromorphic inner" functions, that is, the class of f in ’ satisfying
limr__,llf(rrl) 1 a.e. in C. For tI) a subclass of t’, let tI)p be as stated in 1.
Also, let tI) be the subclass of functions in tI)p having radial limits of modulus
1 or 0 at each point of C.

Let - (resp. ) denote the class of all closed (resp. open) sets in C. We
adjoin the superscript ’0’ to the notation for a class of sets to denote the class
consisting of all those sets in the original class which have linear measure 0.
Also, the subscript o (or ) is adjoined to the symbol for a class to represent
the class whose dements are unions (or intersections) of countably many
elements in the original class. Note that there is no ambiguity in writing 0
since (-o)0 (-0)o- Generally, if Ar and are two classes of subsets of C,
then we use not only the conventional notation

5fc ad= (W: WSf, W

but also the wedge notation

AcA ad’= {XN Y: XAc,Y}.

Recall that a set E is nowhere dense if int E 0, where E denotes the closure
of E and ’int’ the interior operation, and of first category (resp. second
category) if E is (resp. is not) a countable union of nowhere dense sets. In the
sequel, the symbol c will be used to denote proper inclusion.
The most general radial limit results concerning the classes ’o and ’o,

are given in the following theorem. Assertion (1) of this theorem is due to
Cargo [5; Theorem 5] and assertion (2) was proved by Bagemihl and Seidel [1;
p. 1070] for f , with the present form a special case of [3; Cor. 2.3].

THEOREM 2.1. Let E c C and let a .
(1) Iff .l//J; and f*(rl)= a, *1 E, then E is offirst category (Cargo).
(2) fff foo, then f is analytic (and of modulus l) in an open dense subset

of C. Thus iff *(1) a, rl E, then E is nowhere dense.

A result of Bagemihl and Seidel [2] asserts that if E is of first category, then
there exists a nonconstant analytic function g on A such that g*(r/)= 0,
r/ E. Since any first-category set is contained in a first-category set of full
measure, it follows that if a C, then there exists ft’ such that
f*() a, r/ E. Putting this together with Theorem 2.1 (1) we have the
following.



THE SETS OF FIXED RADIAL LIMIT VALUE 193

THEOREM 2.2. Let E
_
C and a C. Then E is offirst category if and only

if there exists f tlde such that f *(7) a, E.

Theorems 2.1 and 2.2 provide information concerning the size of the sets in
.oe(’o) and .(t’J0), but do not give the precise structure of these sets. In
this paper, we are interested in obtaining characterizations of the following
type [14; pp. 8-11].

THEOREM 2.3 (Lohwater and Piranian). The following equalities hold:

Here and in the sequel, the subscript ’0’ is sometimes dropped from the
notation 0()-

In the next theorem, we summarize the main results of this paper.

THEOREM 2.4.

(2.3)

Let a A. The following equalities and inclusions are valid:

and

^ c_
(2.4) _

Suppose now that a C and E_ C. By Theorem 2.1 and the Riesz
uniqueness theorem, if there exists fo (resp. o0) such that f*(rl)= a,

E, then E is of first category (resp. nowhere dense) and measure 0. It is
not known whether the converses hold. However, the results in the following
theorem are proved in 4 based on a technique of C. Belna communicated to
the author by G. Piranian.

THEOREM 2.5. Let a C. If E o then there exists f o such that

f *(1) , 1 E. Furthermore,

3. Topological results

In this section we prove three theorems. The first, Theorem 3.1, determines
the combined topological and measure-theoretic structure of the sets in
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(’o), .’(’J0), and (.Z-t’Jo ), for a \ C. Theorem 3.2 is a struc-
ture theorem for first-category subsets of C. A corollary of this theorem is used
in the constructions of 4. Finally, Theorem 3.3 gives the inclusion relations
which hold among some of the classes of sets that arise in this paper.
We start with a proposition. Its first two assertions follow from remarks

made by Piranian in MR52# 11049.

PROPOSITION 3.1. Iff /[, then

(3.1) E(s) (r/c C: If(rr/)l < s, < r < 1, for some c (0,1))

is an o set for each s [0, + o). Iff l[0, then

(3.2) E(s) -oo, s (0,1).

In this case (1 C: f*(l) -\ C} is contained in an -o set.

Proof Let s [0, + oo). By the continuity of Ifl, the set

F(t) {r C: [f(rr)[ < s, < r < 1}

is closed for each (0,1). Since E(s)= U F(1 l/n), we have exhibited
E(s) as an ’o set.

If f ’o, then E(s) is of measure 0 for each s (0, 1) since

lim If(rr)l 1 almost everywhere.
r---,

The second assertion follows.
For the last assertion, observe that

(rl C" f*(r/) A} _c JE(1 l/n)
1

and that t3 E(1- 1/n) is an 0 set. Applying a similar argument to
g 1/f to get a corresponding statement for

we arrive at the desired conclusion.

COROLLARY 3.1. Iff .,, then ( f * O) is an (o) set.

Proof This follows immediately from (3.2) and the observation that

{y, =o}
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COROLLARY 3.2. Iff//[,then

(3.3) Zr( f ) (*1 C" lim inf If(r/)l < T)r--*l

is a f set for each T [0, + oe).

Proof It suffices to prove the corollary for T (0, + oe) since

Zo(f)--NZl/n(f).

Let T (0, + oe). For convenience, we show that Zr(1/f ) is a f set. (The
same argument applies equally well with f replacing 1/f.) Observe that

(3.4)

Thus

Zr(1/f ) {1 C" limsuplf(rr/)l > l/r}.
r-,1

Zr(1/f ) C\[.JE[(1/T) -(1/n)],
N

where N is a positive integer large enough to that 1/T > 1/N. By Proposition
3.1, each set E[(1/T) (I/n)] is an 0 set, and the corollary follows.

COROLLARY 3.3. Let f tt’o. If e (0,1), then

(3.5) H(e) (*1 C" f*(*l) I\{1 e < Izl < 1

is an (o,) ( f set. If a , then { f * a } is a f set.

Proof That H(e) is contained in an o00 set follows from the third
assertion of Proposition 3.1. From Corollary 3.2, and the fact that f ’o
implies { C: If*()l < 1 e} Zl_e(f) we conclude that

( C" If*(v/)l 1 e}

is a f set. A similar argument applied to g 1If shows that

(r/ C" 1 + e < If*()l <

is also a N set. Thus H(e) is a N set contained in an o00 set, or equivalently,
an (o) c ’ set.
For the second assertion, if et =/= oe, then Zo(f ct)= (f* a} and

Corollary 3.2 applies. If a oe, the result follows on considering 1/f.
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Using Corollaries 3.1 and 3.2, we prove the following.

THEOREM 3.1. We have the inclusions

(3.6)

(3.7)

for each a \ C, and

(3.8)

c n

Proof. Inclusion (3.6). For a 0, the inclusion follows from Corollary
3.1. If a A, the result is a consequence of the special case a 0 and the
observation that if f t’o and E { f* a), then g L f /’o and
E (g* 0), where L is the M6bius transformation given by

L,,(z)= (a- z)/(1- z), z(.

The case when a ( \ is reduced to the one just treated on considering
g= 1/fandnotingthatl/aA and(f*=a}= (g*=l/a}.

Inclusion (3.7). For a 0, this is a consequence of Corollary 3.1 and
Corollary 3.2 when T 0 since ( f* 0) Z0(f) for f t’. The cases
when a A and a t \ are treated as for the inclusion (3.6).

Inclusion (3.8). If f t’,, then (f* 0) is a set of measure 0 by
(3.7) in the case a 0. By Corollary 3.2 with f replaced by g 1/f and
T> 1, theset

W= {rl C" limsupl/(rl)l >_ 1/T}
r--l

is also a fg. It follows from the definition of ,0 that

W= (1 C: If*(rl)l 1).

Thus{f* =0) C\Wisan set.
THEOREM 3.1 is established.

For the next theorem as well as later results, we make a convention
concerning the use of the words ’right’ and ’left’ in relation to subsets of the
unit circumference C. Let Sk, k 1, 2, 3, be disjoint subsets of C. We shall say
that S is to the right of S2 which is to the fight of S if there exists some point
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C \ to 31Sk and a continuous determination arg of the argument in C \ (" }
such that arg r/1 < arg 12 < arg */3 whenever r/k Sk, k 1, 2, 3. If A is an arc
in C with proper closure (i.e., A is connected, int A 4= 0, and A 4= C) then /is
the "fight hand" endpoint of A and is the "left hand" endpoint of A if (,/)
is to the fight of int A which is to the right of () and /, A.

THEOREM 3.2. Let E c_ C. Then E is of first category if and only if there
exists a sequence (Fj) of mutually disjoint closed nowhere dense sets such that
E c_ to Fj. If E is an o set, then the preceding assertion remains valid when
c_ is replaced by ’= ’.

Proof Since every first-category set is contained in an o of first category,
it suffices to prove the theorem under the conditions of the last assertion.
Sufficiency is trivial so we shall prove only necessity.
By assumption, E to K: where each Kj. is a closed nowhere dense set.

Since E tO (Kj \ tO J-lm=l.tXm)/ and (Kj\ tO J-lm=lKm) is a countable se-
quence of disjoint differences of closed nowhere dense sets, it suffices to prove
the following assertion: IfA and B are closed nowhere dense sets, then B \A is
a countable union of disjoint closed nowhere dense sets. Without loss of gener-
ality, assume that A has at least two points. (Otherwise, add two points from
C \ B to A.) Then C \A is the union of a countable collection of mutually
disjoint open arcs each having proper closure, so the assertion follows once it is
shown that B I is a countable union of disjoint closed nowhere dense sets when
I is an open arc with proper closure. The case when B O I is finite does not call
for attention. Let Z denote the set of integers. Let r/ denote the fight hand
endpoint and the left hand endpoint of I. Choose ( Pk )k z to be a subset of
I \ B so that ( r/} is to the right of ( pk+ ) which is to the right of ( pk ) which
is to the right of { } for each k Z, with limk ooPk /and limk oPk .
Let Ek be the intersection of B with the closed arc with left hand endpoint
equal to Pk and fight hand endpoint equal to Pk+l for each k Z. Then
tO k zEk B I and { Ek } k Z is a countable collection of mutually disjoint
closed nowhere dense sets. This completes the proof.

COROLLARY 3.4. If E o, then E U Fj. where (F2) is a sequence of
mutually disjoint -o sets.

Before stating the final theorem of this section, we prove a lemma. The proof
of the lemma is based on the Baire category theorem which, we recall, can be
formulated as follows. If X is a locally compact Hausdorff space, then a
countable intersection of dense open sets is again dense. We turn now to the
lemma.

LEMMA 3.1. Let X be a locally compact Hausdorffspace. If E is a first-cate-
gory fen subset of X, then E is nowhere dense.
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Proof Suppose not. Then there exists a nonempty open set U in X such
that E is dense in U. Since U is itself a locally compact Hausdorff space and
E c U is a dense fgs subset, the Baire category theorem implies that E C U is
of second category in U. But E c U is of first category in U since E is of first
category in X and U is an open subset of X. Contradiction. The lemma is
thereby established.

In the following theorem, the inclusion relations that hold among some of
the classes of sets in this paper are given. Recall that ’c’ denotes proper
inclusion.

THEOREM 3.3. We have

(3.9) -oc,0nffs
c (0) n c

However, no inclusion relations hold between (o q fs) A o and ()
or o and (o) q fs. Furthermore, all these classes are classes offirst-cate-
gory sets and all except ,-oo, -oo A s, and (’o) are classes of nowhere dense
sets.

Proof. That the weak inclusions hold in (3.9) where the strong inclusions
c are given presents no difficulty and the proofs are omitted.
For convenience, we start by proving the last assertion of the theorem. Since

0o is a class of first-category sets and every (-o0) set is contained in some

o set, it follows from the weak inclusions in (3.9) that all the classes given
contain only first-category sets. The second part of the assertion follows from
what was just proved, Lemma 3.1, and the weak inclusions in (3.9). In
particular, note that every (o c ) Ao set is contained in some 0 C f
set and that 0 ffs and (o,)s c ff are classes of ffs sets.
From the last assertion of the theorem and the fact that 0 and ro A ff

contain dense sets (such as countable dense sets), we conclude that the proper
inclusions

(o) n co ^ f and (..o n ,%) ^ co
hold.
We proceed now to give examples to verify that the remaining inclusions

given in (3.9) are proper and that the assertion immediately following (3.9) is
valid. For the remainder of the proof, let K be a Cantor set of linear measure 0
contained in C and E the collection of endpoints of the component arcs of C \ K.

-oc,on N. Let r/K. Then K\(/}ff- since K\(I} is not
closed. However, K and C \ { /} are both as well as fg sets so the same is
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true of K\ { ) K n (C \ ()). Since K is of measure 0 so is K\ (), and
it follows that K\ (rl } o n as required.
For most of the remaining verifications, either E or K\ E is the example

used. The following lemma will be useful.

LEMMA 3.2. We have K\ E f, \o and E

Proof of Lemma 3.2. Since E is a countable set, E o. Thus

K\E=Kn(C\E)

is the intersection of two f sets so that K\ E . Since K\ E is dense in
K and K is a compact Hausdorff space, Lemma 3.1 implies that K\ E is of
second category in K. On noting that the density of E in K insures that any
0% set contained in K\ E is of first category in K, we conclude that K\ E
o. It also follows that E since otherwise K\ E K n (C \ E) is the
intersection of a closed set with an o set which implies K\ E o contrary
to what was just proved. This completes the proof of Lemma 3.2.

0%on sc(on ,)/xo. By Lemma 3.2, E f, so that Eo%on
f,. On the other hand, E K n E (o n )/x 0%.

o n .% c (o), n .%. From Lemma 3.2 we have K\ E \o. Thus

K\Eo n fg,

but K\ E fs. On observing that a set contained in a closed set of
measure 0 is an (’o) set, we conclude that

K\E (o) n f.

0%0 c o A . Since (o) n f, c 0%0/x , it follows from the pre-
ceding paragraph that K\ E o/x f,. However, Lemma 3.2 asserts that
K\ E o so in particular K\ E 0.

Before verifying that the last inclusion of (3.9) is proper, we prove the
assertion immediately following (3.9). It has already been shown that E
(o n )/x 0%. Lemma 3.2 asserts that E f so that E
Hence

(o n f#,) ^ .c (o), n ,.
On the other hand, we have seen that K\ E (o)n n but that K\ E
0%. Therefore, (o)n n n +c o. Since

n c o,
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it also follows that 0 (0) tq fs and

n ,%) zx ,
We shall now sketch a proof that the last inclusion of (3.9) is proper. The

author is indebted to Professor A.H. Stone for providing essentially this proof
in a written communication. The details of the following argument can be
supplied using standard facts from topology which can be found, for example,
in [18].

oo A f c ()s. There is a standard example [12; p. 278] of a subset H
of the irrationals P such that H is an but not a fo subset of P. There
exists a homeomorphism tp of P onto a f subset of C which is contained in

K. Thus (H) A f o. Since q (H)
_
K and K is of measure 0, it

follows that q(H) (0). However, (H)oA f since 0A f
fo. Indeed, if q(H) fo, then H is a ’o subset of P contrary to assump-
tion.

Theorem 3.3 is established.

4. Constructions with inner functions

With Theorem 3.1 of 3 proved, we proceed in this section to give construc-
tions of inner functions which complete the proof of Theorem 2.4.
We start with a review of the definitions and basic facts concerning the

classes , ’, and 6a referred to in 1 and 2. The classes , ’, and 5 are
the classes of nonconstant inner functions, Blaschke products, and singular
inner functions respectively. By definition, f is an inner function if f is an
analytic mapping of A into its closure A such that If*(/)l 1 for almost all /
in C. A Blaschke product B is a function of the form

n

lZmI-[(k/lakl)Lak or "tlzml--I(k/Iakl)tak

where InI 1, m and n are nonnegative integers, (ak) is a sequence taking
values in A \ (0} with E(1 lakl) < + oz, and

La(z)= (a-z)/(1-6z), aA, z (.

(The convention I-IxLak 1 is used.) We say that B is normalized if /= 1 in a
representation in one of the above forms. A singular inner function is a
function of the form

( 1 fo2"reit+zd(t)} z\C,(4.1) S,(z) exp ---- e it- z
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where the singular generating function IX is a monotone nondecreasing function
defined on the real numbers R satisfying IX’ 0 a.e.,

and the normalization

2ix(t)=ix(t + )+ix(t-), tR.

For convenience, we shall also allow unimodular multiples of S, as singular
inner functions.

Recall that a Blaschke product is uniformly product convergent on compact
subsets of the complement with respect to ( of the cluster set of its zeros [11;
p. 227] and that Blaschke products restricted to A are inner functions [8;
Theorem 2.4]. Recall also the following facts concerning singular inner func-
tions. The function S, (defined in (4.1)) is analytic at each point of ( \ C [11;
pp. 131-133] and

IS, exp(-u),

where

1 02u(z) ’r[(1- ]zl-)/le’t- z] 2] dix(t), zC\C.

The restriction of u to A is a nonnegative harmonic function for which the
Fatou radial limit theorem implies u*(e it) Ix’(t) at each point in R, where
the symmetric derivative

Ix’(t) lim [ix(t + h) Ix(t h)l/(2h)
h---, 0

exists (finite or infinite) [8; Theorem 1.2]. Furthermore, a singular inner
function restricted to A is in fact an inner function. In addition, a theorem of
de la Vallre Poussin [17; p. 128] implies that a singular generating function IX
has derivative IX’ equal to + o at some point in every neighborhood of if and
only if IX is not locally constant at t, whence S, is analytic at e it if and only if

S, has no radial limit value of 0 in some neighborhood of e it if and only if IX is
locally constant at t, for each R. In the sequel, we shall always view
Blaschke products and singular inner functions as functions on the unit disk A.

All of the constructions of this section are dependent on the following result
of Lohwater and Piranian [14; pp. 8-11].

THEOREM 4.1. If E is a nonempty o f set, then there exists a singular
generating function Ix such that S, 5ao,

(4.2) (S* 0) E,
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and the full derivative

eit - E,(4.3) g’(t)
O, e it C\ E.

Though Lohwater and Piranian were only concerned with one-sided deriva-
tives, it can be verified that the normalization/(t +) +/(t-) 2/x(t) in their
construction insures that the full derivative of # exists at each point.
Two results of Frostman will also be used repeatedly in the constructions of

this section. For convenience, we state them here as Theorems 4.2 and 4.3.

THEOREM 4.2 [9; pp. 107-109]. An inner function is a Blaschke product if it
admits no radial limit values of zero.

Before stating Theorem 4.3, we introduce a convention and a definition,
both stated for an infinite Blaschke product B, the corresponding agreements
being understood, mutatis mutandis, when B is a finite Blaschke product.

Convention. The zeros ofB will always be given by a sequence (ak) with the
enumeration according to multiplicity.

DEFINITION 4.1.
given by

The Frostman function for B, denoted tpB, is the map

(4.4) / E r/ C.
1 ]rl

We now state the second theorem of Frostman.

THEOREM 4.3 [10; pp. 170-172]. Let 1 C. Then Ib*()l 1 for each
subproduct b of the Blaschke product B if and only if pB(,1) < + o.

Our first goal will be to prove Lemma 4.2 below, which gives a necessary and
sufficient condition for a Blaschke product B to be analytic at *1 in terms of
the behavior of the Frostman function q% near r/, r/ C. We first prove an
elementary inequality, the statement of which appears without proof in [10; p.
171].

LEMMA 4.1. lf a A and 0 < r < 1, then 1/2ll a < l1 arl.

Proof Observe first that

l1 arl >_ l1 a[ la- ar[ I1 a[ lal(1 r).
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Since 1 r < l1 ar I, we conclude that

I1 arl(1 + lal) >- I1 al.

The lemma follows on noting that al < 1.

We now proceed to the statement and proof of Lemma 4.2. Note that this
lemma is stated for an infinite Blaschke product with the corresponding facts
for a finite Blaschke product being either trivial or empty.

LEMMA 4.2. Let *1 C and B be an infinite Blaschke product. Then B is

analytic at 1 if and only if qB(rl) < + o and qB is continuous at 7. Further-
more, ifB is analytic at each point of a closed subset K of C, then the series (4.4)
converges uniformly to qn on K (and consequently qn is finite-valued and
continuous at each point of K).

Proof For convenience, we prove the last assertion first. To that end, recall
that the set of analyticity of B in C is the complement in C of the cluster set of
the zeros of B. Thus the zeros of B are bounded away from K. The assertion
follows on estimating the terms of the series (4.4). Note that the zeros of B
satisfy the Blaschke condition E(1 lak[) < +
We turn now to the proof of the first assertion. Since B is analytic in some

closed neighborhood of r/, the necessity follows from the result of the preced-
ing paragraph.

Consider sufficiency. Since 0(/) < + , there exists a positive integer N
such that E(1 lakl)/l akl < 1/4. By the continuity of tpn and hence of
E(1 lakl)/l" akl at /, there exists an open arc A in C containing rl such
that

(4.5) 1- ]a,l
< ’A

v I- akl -’
Now for’A, k>N, and0<r<l, wehaveak4=Oand

I1- Kkr- lakl +(Kk/lal)r[

(1- lakl)[1 +(k/lakl)rf]
I1 akrl

2(1- lak[ )
(1/2)11 k’l

1
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use being made of Lemma 4.1 and (4.5). It follows that ( ak) has no points in
common with the open sector determined by A and so B can only have finitely
many zeros in it. Hence (ak)] does not cluster at r/so that B is analytic at .
This completes the proof.

Our first main result of this section is Theorem 4.4. We start with a lemma
which employs Lemma 4.2 and Theorems 4.1-4.3 in its proof.

LEMMA 4.3. Let E o N f, K a compact subset of C \ E, and e > O.
Let T (0,1). Then there exists a Blaschke product B for which

(4.6) In*(n)l T, / E,
(4.7) B(/) < + , ’q C \ E,

(4.8) qB(/) < e, / K,

and p is continuous at each point of C \ E.

Proof If E 0, then B 1 serves. Suppose that E is a nonempty -0
set. By Theorem 4.1 there exists S 5ao such that E (S* 0). Theorem
4.2 implies that the inner function b LT S is a Blaschke product. Note that
b is analytic at each point of C\ E since S is, and that b*(/) T, / E. By
Lemma 4.2, the Frostman function tpb is finite-valued and continuous at each
point of C \ E. Furthermore, the second assertion of the same lemma insures
that by suppressing the factors associated with finitely many of the zeros of b
if necessary, we can arrive at a Blaschke product B for which (4.8) holds. Then
tpn is still finite-valued and continuous at each point of C \ E. Though we can
no longer assert that B*()= T, ,/ E, equation (4.6) remains valid. This
completes the proof in this case.
Assume now that E is not an -0 set. By Corollary 3.4, we have E t Fk

where (Fk) is a sequence of mutually disjoint nonempty -o sets. We claim
now that C\ E t3 Fk* where (F*) is a monotone nondescending se-
quence of closed subsets of C with the property that K

___
F* and C \ E

t3 int Fg*. In fact, since E is a f#, it follows that C \ E is an o and there
exists a seq_uence of closed sets (Kj) such that Kj. C \ E. Furthermore,
since C \ E is an open subset of C, we have C \ E t3 lAk, where (Ak) is a
sequence of mutually disjoint open arcs (some, or possibly all of which may be
empty). Now for each k, there exists_ a sequence (Akj)= of open subarcs of
Ak, such that Ak t3 o= 1Akj and A

_
A for each j. Define

,= j=

for each positive integer n. From the defining properties of the Akj and the K.,
we see that the sequence (F*) is as required.
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Since the lemma has been proved for the case when E is an -0 set, there
exists for each positive integer k, a Blaschke product Be such that Bk fulfills
the conditions of the lemma with Fk replacing E, Fk* U (U k- 1F/) replacing
K, and el2k replacing e. We assume as we may, that each Bg is normalized.
Let B 1-IBk. We claim that B is a convergent Blaschke product with the
required properties.

It is an immediate consequence of the definitions that if B is convergent,
then

(4.9) s Eq%k"

Furthermore, if the right hand side of (4.9) converges (to a finite value) for
some r/ C, then the Blaschke condition is satisfied for the zeros of B and
hence B is a convergent Blaschke product. Therefore, since C\ E ss , it
suffices to show that

< + s c\s

in order to conclude that B is a convergent Blaschke product for which (4.7)
holds.

Let r/ C \ E. Since (Fk*) is a monotone nondescending sequence with
u Fk* C \ E, there exists a positive integer N for which r/ F* whenever
k > N. Thus

Y’. < E < +
N+I N+I

Furthermore, since r/ C \ E c C \ F, we have tpnk(/) < + o for each k.
Thus Ex ps(rl) < + o. We conclude that E ps(r/) < + o and hence B is a
convergent Blaschke product and (4.7) is verified.
To verify (4.8) recall that K

_
F* for each k. Thus for r/ K we have

q0s(r/) Eq0s(/) < Es/2= s as required.
The continuity of q0s at each point of C \ E is seen as follows. If K is a

compact subset of C\ E, then there exists a positive integer N such that
k > N implies K cint Fk* since U int Fk* C \ E. Thus for k > N we
have tps(r/) < el2k, r K1. Since Y’-v+ xe/2k e/2v < + o0 and since tps is
by assumption finite-valued and continuous at each point of C \ F K1 for
each k, we conclude that the fight hand side of (4.9) converges uniformly to a
continuous function on K1. Since K is an arbitrary compact subset of C \ E,
it follows that tps is finite-valued and continuous at each point of C\ E as
required.
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It remains to verify (4.6). Let l E. Then there exists a unique positive
integer k such that r/Fk. When j<k we have (pn.(r/)< + since
r/ F, c C \ Fj. On the other hand q9n.(/) < e/2J when j > k. Thus

(4.10) n,,n.() Z n(r/) + E n(r/)
j<k j>k

E pn(rt)+ E el2J
j<k j>k

Therefore, by Theorem 4.3 we conclude that I(l-lj.kBj.)*()l 1, and hence

In*()l In(*/)] -IBt(/)l- r.

Since r/in E was arbitrary, (4.6) follows. This completes the proof.

We now prove a proposition which has Theorem 4.4 as an easy consequence.

PROPOSITION 4.1. Let E (o) (3 f and W o such that E c_ W.
Let K be a compact subset of C \ Wand e > O. Let T (0,1). Then there exists
a Blaschke product B such that

(4.11) B*(I) 0, / E,

(4.12) IB*(r/)l (T’}0, n W\E,

(4.13) (pn(r/) < + o, ,/ C\ W,

(4.14) (pn(r/) < e, r/ K,

and Ps is continuous at each point of C \ W.

Proof Since W 0, there exists a monotone nondescending sequence
(Fk) of -0 sets such that u Fg W. Since E ff, there exists a mono-
tone nonascending sequence (Gk) of open sets such that n Gk E. We
assume also that

K___ C\G and C\c Jint(C\G).

(These assumptions can be satisfied in essentially the same way as the corre-
sponding assumptions concerning (Fk*) in the proof of Lemma 4.3 can.)

Since Ek Fk 3 Gk o q f and C\ Gk

_
C\ Ek, there exists a nor-

malized Blaschke product B, which is in the same relation to Ek, C\ Gk,
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e/2k, and T as B is to E, K, e, and T in Lemma 4.3 for each positive integer
k. Let B 1--IBk. We claim that B is a Blaschke product as required.
That B is convergent Blaschke product satisfying (4.13) and (4.14) with q0B

continuous at each point of C \ W is verified similarly to the verifications of
the corresponding facts in Lemrna 4.3. Since IB’(n)l T (< 1), r/ Ek for
each k, and for / E there exists a positive integer N such that ,/ Ek for
all k > N, we conclude that (4.11) holds.

It remains to check that (4.12) is valid. Let W\ E. Let k (resp. j) be
the first positive integer such that r/ Fk (resp. Gj). We claim that

(4.15) In*()l (TJ-k’ j > k,
1, otherwise.

Suppose that j > k. If j > rn > k we have by assumption IBm*()l T since
r Em. Thus I(1-I-lBm)*(r/)l T1-k. If k > rn > 1 then qBm(*/) < + o
since r/ C \ E,. Hence

k-1

and Theorem 4.3 implies that I(l-Ixk-lBm)*(/)l 1. If m > j then Bm(r/) <
e/2 since r/ C \ G,. Therefore

fDl-[m> jB,,,( "O ) q)Bm( "O ) < ,/2j- 1.
J

Again it follows from Theorem 4.3 that I(I-Ij.Bm)*(,/)l 1. We conclude that

IB*(r/)l
1 ()"J

Tj-k

When k > j, the case j > rn > k does not come into play and the remaining
part of the proof is similar. This completes the verification of the claim and
(4.12) follows.

Proposition 4.1 is established.

We turn now to Theorem 4.4.

THEOREM 4.4. If E (o) tq f and a A, then there exists B p
such that E { B* a }. Furthermore, if W o with E c_C_ W, then B can be
chosen so that it has radial limits of modulus 1 at each point of C \ W and so that
B is analytic at each point of C \ W. When a O, the additional condition that
all of the subproducts ofB have radial limits of modulus 1 at each point of C \ W
can be satisfied.
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Theorem 4.4 taken together with Theorem 3.1 proves (2.2) and (2.3) of
Theorem 2.4. In fact the inclusions’ c follow from Theorem 3.1. The reverse
inclusion in (2.3) is provided by the first assertion of Theorem 4.4. The reverse
inclusion in (2.2) follows from the second assertion of Theorem 4.4 with
Eo q and W= E.

Proof Let Wo such that E_c W. Such a set Wexists since E
(0).

If E 0, then B(z)-- z is as required. For the remainder of the proof we
assume that E = .

Suppose that a 0. For E and W as above and arbitrary admissible K, T,
and , let B be a Blaschke product as in Proposition 4.1. We claim that B is as

required. Since E = , we have B is nonconstant. The last assertion of the
theorem follows from (4.13) and Theorem 4.3 and this assertion taken together
with (4.12) and (4.11) insures that E { B* 0). The analyticity of B at each
point of C \ W follows from the continuity of 9z at each of these points and
Lemma 4.2. This completes the proof in this case.

Suppose now that a A \ {0). Let B be as in the preceding paragraph with
the added requirement that T (0,1) is chosen so that al { Tk ). Then by
Theorem 4.2, the function L B is a Blaschke product. That L B has the
required properties follows directly from the properties of B and L. This
completes the proof of Theorem 4.4.

Theorem 4.4 can be applied to the problem of determining the sets where the
radial limits of an inner function can fail to exist. In [14; pp. 14-15], Lohwater
and Piranian proved the following.

THEOREM 4.5. ffA fro (3 n, then there exist S 6" and a countable set
E c C \A such that

(4.16) liminflS(r)[ 0, limsuplS(rr/)l 1, r/ A,
rl rl

(4.17) S*(/) 0, / E,

and

(4.18) IS*()l-- 1, C(AUE).

Using Theorems 4.4 and 4.5, we prove the following.

COROLLARY 4.1. /f E (,o ,) A o, then there exists an inner func-
tion f such that the subset of C where flails to haoe a radial limit is precisely E.

Note that Theorem 3.3 asserts that the proper inclusion
(Ca) A holds.
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Proof LetA oq sandW such thatE=A q W. LetSbeas
in Theorem 4.5 relative to A and let B ’0 such that

(s* 0)= A n(c\ _c n

as allowed by Theorem 4.4. Then f BS is seen to have the required property
on noting that C\ E (C\A) U [A n (C\ W)]. This completes the proof of
Corollary 4.1.

We turn now to Theorem 4.6 which has the inclusion 0
_
(ow) of (2.4)

as a consequence. For the statement and proof of Theorem 4.6, notation and
terminology given in the paragraph containing (4.1) are used.

THEOREM 4.6.
function x such that

If E is an o set, then there exists a singular generating

(4.19) /1’(t) + 0t, e it E,

(4.20) (S* 0} E,

and

(4.21) limsuPlS,(r/)[ 1, / C\E.
r-l

Proof If E=0, take/1=0 so that St= 1. If E is anonempty- set,
then Theorem 4.1 is directly applicable.
Assume that E -0. By Corollary 3.4, we have E U Fk, where (Fk)

is a sequence of mutually disjoint nonempty o sets. We shall prove the
existence of a sequence (/1k) of singular generating functions so that

(4.22) /1 Y’/1k

is a singular generating function for which (4.19), (4.20), and (4.21) are
satisfied.
We proceed by induction. Let (sk) be a strictly increasing sequence with

0 < sk < 1 for each k and I-Isk > 0.

n 1. By Theorem 4.1 there exists a singular generating function/11 such
that the full derivative

( + X3, e it El,(4.23) /11(t)
O, otherwise.

It is assumed that exp[-/11(2r)] < sl. (Otherwise replace/11 by a/1 for a a
suitably large positive constant.)
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lnductioe hypothesis. Suppose that n > 1 and the singular generating func-
tion k has full derivative

+ :) e it Fk(4.24) /x(t)
0, otherwise,

with

(4.25) z
k

for k 1,..., n, and

(4.26) /k(2r) < 1/2g+x, k 2,...,n.

n + 1. By Theorem 4.1 there exists a singular generating function v such
that (4.23) holds with x replaced by v and F replaced by Fn+ . Since S, is
analytic and of modulus 1 at each point of C \ Fk for k 1,..., n and since
F,,+ and u ’F, are disjoint closed subsets of C, we have u "Zak c A \Fn+ .
Furthermore, since the singular inner functions S,, 0 < a < 1, converge
uniformly to the constant function 1 on compact subsets of A \Fn+ as the
parameter a approaches 0, we can choose a > 0 sufficiently small so that with,, + av, the inequalities

n

(4.27) Is..+(z)[ > S.+l, z

and

(4.28) /,.+1(2r) < 1/2"+

are valid.
We claim that the inductive hypothesis is satisfied with ’n + 1’ replacing ’n ’.

From the choice of/,+ and the inductive hypothesis, it is evident that (4.24)
and (4.26) hold as required. We turn now to (4.25). From the inductive
hypothesis and (4.27), we have

(4.29)
n+l n
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for k=l,...,n. When k=n+l (and ’n’ is replaced by ’n+l’), the
inequality (4.25) is trivial. Thus our claim is verified.
On noting that the inductive hypothesis is satisfied when n 1, the induc-

tion is completed.
Select (by the axiom of choice) a sequence (/k) of singular generating

functions such that the initial section (/k) satisfies the inductive hypothesis
for each positive integer n. By the conditions satisfied by each/k and the fact
that (4.26) holds for n > 2, the series in (4.22) converges (uniformly on
compact subsets of R) and/x is a monotone nondecreasing function such that

/(t + 2rr)=/(t) +/x(2r) and 2/(t)=/(t+) +/(t-)

for R with (4.19) satisfied. By a classical theorem of Fubini, /’= 0 a.e.
since /, 0 a.e. for each k, and it follows that / is a singular generating
function.

It remains to show that S satisfies (4.20) and (4.21). If R such that
e it 7- E, then (4.19) and the Fatou radial limit theorem imply S(eit) "-O.
Thus the proof will be complete once (4.21) is verified. Referring to the
definition of *’n (cf. (4.25)), we see that

c\
_

where sg(z) z/Izl, z \ (0, oo }, since

fiS,(O) _< S,x(O) exp[-#(2r)] < s __( S

and since l"[’S, is analytic and of modulus 1 at each point of C \ kJ Fk for
each n. Hence a radius from 0 (which is not in .en) to a point of C \ kJ Fk
cuts &a for each n. By the validity of (4.25) for all positive integers n, we have
for each n that

(4.30) IS(z)l

Since 1-lns, 1 as n oo, it follows that (4.21) holds. This completes the
proof of Theorem 4.6.
Our next goal is to prove Theorem 4.7 which leads to the inclusion

o ,\ n
_
’(,,), et A, of (2.4).

PROPOSITION 4.2. Suppose that E W q H, where W o and H
Furthermore, suppose that E* o with E * c_ C \ W, K is a compact subset of
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E*, and e > O. Let T (0,1). Then there exists a Blaschke product B such that

(4.31) B*(,/) 0, r/ E,

(4.32) In*()l (zk)0, r/ W\E,

(4.33) limsuplB(r,/)l 1, C\ W,
rl

(4.34) tpB(/) < + m, ,/ E*,

(4.35) tpB(r/) < e, / K,

and pn is continuous at each point of C \ W.

Proof If E (o) n f, then Proposition 4.1 is directly applicable. We
remark only that (4.33) is guaranteed by (4.13) and Theorem 4.3.
Assume now that E (0) N f. Then W -0 and Corollary 3.4 im-

plies that W= t.)Wk where (Wk) is a sequence of mutually disjoint
nonempty -0 sets. We assume, as we may, that W N E 4:0 for each k. Since
W is of measure 0, we can suppose (by simply adding a point of C \ 14/to K
and E* if necessary), that K 4: 0- Furthermore, since C\ W is an o set
contained in C \ W, it can be assumed (by replacing E * with E * U (C \ W)
if necessary), that C\ W K E*. From these assumptions and the fact that
K E* , there exists a monotone nondescending sequence of closed sets

(F*) such that K c_C_ Fx*, u F* E*, and C \ W
_

int F* (cf. the
proof of Lemma 4.3).

Since E =- E N W, (o) and W, -0 c: 0 with
Wk, there exists a sequence of normalized infinite Blaschke products (bk)
such that b satisfies the conditions of Proposition 4.1 with Ek, Wk, (U I-IWj)
U F*, and e/2k replacing E, W, K, and e respectively for each k. We shall
show that B can be taken as 1--IBk, where for each k the function Bk is
formed from b by possibly suppressing the factors corresponding to finitely
many zeros.

Let (sk) be an increasing sequence satisfying ]bl(0)l < s < 1 for each k
and 0 < VICs. We define (Bn) by induction from (bn).

n 1. Let B1 b and define L’x (In(w)l- s).

Inductive hypothesis. Suppose that n > 1 and there exists a finite sequence
of Blaschke products (Bk)’ such that bk/Bk is a finite Blaschke product and

(4.36) >_ z

for k 1,..., n.
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n + 1. Observe first that bk is analytic and of modulus 1 at each point of
C \ Wk (by the continuity of q0bk at each point of C\ Wg and Lemma 4.2),
1 < k < n. Hence the same is true for B, 1 < k < n. Thus

U " cAu

Since (U’Wk) n Wn+ ’ the inclusion U’S c A \Wn+ holds. Since b,+
is analytic at each point of A \W,+ 1, it follows that b,+ is uniformly product
convergent on the compact set U’Zak. We can therefore define Bn+ by
suppressing the factors corresponding to finitely many zeros of b,+ if neces-
sary so that

n

(4.37) IBn+l(Z)l > s,+l, z U.’k.

Since the inductive hypothesis clearly holds when n 1, it remains to check
that the inductive hypothesis holds with ’n + 1’ replacing ’n’. With the
definition given above for B,+I, it is only necessary to check (4.36) (with
’n + 1’ replacing ’n ’).

If k n + 1, then the inequality is trivial. Suppose now that k e (1,..., n ).
Then by the inductive hypothesis and (4.37) we have

(4.38) IB.+l(Z)

SjSn+I"-’HSj, Z--,,
k

k k

This completes the induction.

A sequence (Bk) of normalized infinite Blaschke products can now be
selected (by the axiom of choice) so that B is a subproduct of the Blaschke
product bn and the initial section (Bk) satisfies (4.36) for each positive integer
n. We claim that B I-IBk is as required. That B is a convergent Blaschke
product satisfying (4.34) and (4.35) with tpB continuous at each point of C \ W
is proved as in the proof of Lemma 4.3.

Since B’(,/) 0, / Ek for each k, and since E UEk, it follows that
(4.31) holds.
We verify that (4.32) holds as follows. If / W\ E, then / W \ E, for

some positive integer n since W\ E U(Wk \ Ek). Now

=1
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since

k=C=n k<n

(using Theorem 4.3). Therefore, by assumption on B, we have

In*()l- In*()l -In:()l {Z}0

as required.
It remains only to check (4.33). Now

n

c\ c_

(where sg(z) z/Izl, z .\ {0, m}) since

< IB(0)I Ibl(0)l < s _< s,

and 1-Ix k is analytic and of modulus 1 at each point of C\ UIWk. Hence a
radius from 0 (which is not contained in a,) to a point of C \ gl’Wk cuts ,a,
for each n. By the validity of (4.36) for all n, we have

(4.39) In(z)l FI  (z)

Since 1-I, s,, 1 as n --+ m, we conclude that (4.33) holds. This completes the
proof of Proposition 4.2.
The next theorem is an easy consequence of Proposition 4.2.

THEOREM 4.7. If E o /X fg, and a A, then there exists B such
that E (B* tx }. Furthermore, ifE W (q H where W o andH ,
and E* with E* c_ C \ W, then B may be chosen in such a way that
(4.33) holds, B is analytic at each point of C \ W, and B has radial limits of
modulus 1 at each point of E*. When t O, the additional condition that all of
the subproducts of B have radial limits of modulus 1 at each point of E * can be

satisfied.

The first assertion of Theorem 4.7 proves the inclusion

of (2.4).
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Proof Let W o and H f#, such that E W n H.
If E 0, then B(z)= z is as required. For the remainder of the proof it is

assumed that E 4: .
Suppose that a 0. For E, W, and H as above and arbitrary admissible K,

T, and e, let B be a Blaschke product as in Proposition 4.2. That E ( B* 0}
is a direct consequence of (4.31), (4.32), and (4.33). The analyticity of B at
each point of C \ W follows from the continuity of B at each point of this set
and Lemma 4.2. The assertion concerning E* is a consequence of (4.34) and
Theorem 4.3. The proof is completed for this case.

Suppose now that a A \ (0). Let B be a Blaschke product as in the
preceding paragraph with the added requirement that T (0,1) is chosen so
that lal {T}. Then by Theorem 4.2, the function Lo B is a Blaschke
product, where

 o(z) z

That L B has the required properties follows from the properties of B and

Za.
Theorem 4.7 is established.

The next result shows that the inclusion (3.6) is best possible using purely
topological and measure-theoretic considerations.

THEOREM 4.8. IfE () and \ C, then there exists a continuous

function g: A ---, with lim,__,llg(rj)l 1 a.e. such that

/ C: limg(rrl) a} E.
r---,

Proof By assumption E fqE, where each E 0. Theorem 4.6 im-
plies that there exists for each k, a singular generating function such that
(S* =0) E,.

If a 0, let_ g E’(1/2)IS,kl. Since each singular inner function S,k
maps A into A, we have the uniform convergence and hence continuity of g.
Using the fact that ISl has radial limits equal to 1 on a set of full measure
and the specific construction of g, we conclude that

(4.40) limg(r/) E(1/2k)ls*(n)l E1/2’= 1
rl

for almost all ri in C. Furthermore,

{lim g(rrl): 0)= 0)
r---,

Thus g has the required properties, completing the proof in this case.
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If a ( \ (C W (0}) and g is as in the preceding paragraph, the function
Log or 1/(L1/,o g) serves according as a A \ {0} or a (\ respec-
tively (the convention 1/m 0 being understood). The proof of Theorem 4.8
is thereby completed.

We remark that by Theorem 4.7 Blaschke products could have been used in
the proof instead of singular inner functions.
The final theorem of this section, Theorem 4.9, implies Theorem 2.5. We first

prove a lemma which is essentially a result of C. Belna communicated to the
author by G. Piranian.

LEMMA 4.4. /f S ,.9, then there exists f o such that

(4.41)

(4.42)

(S*--0}
_

{f*-- 1},
{0 < IS*I < 1}_ {0 _< If*l < 1},

and

(4.43) (]S*I 1} G (If*l 1,f* 4: 1}.

Proof Let log S be an analytic logarithm of S and let M be the MObius
transformation

z(z+l)/(z-1), z.
Define f= MologS. Since logS has a negative real part and M maps
(Re z < 0} onto A, we have f is an analytic mapping of A into itself.

If r/ C such that IS*()l l, then (logS)*(,1) is pure imaginary. Now
M maps the imaginary axis onto C\ {1). Thus f*(r/) C\ {1} and (4.43) is
verified. Since S*l 1 a.e., we have If*l 1 a.e. so it follows that f

If r/ C such that S*(/)= 0, then (logS)*(,/) o. Since M()= 1, we
conclude that f*(,/) 1. The inclusion (4.41) follows.

Finally, if r/ C such that 0 < IS*()l < 1, then (logS)*(,/) has negative
real part. Since M maps {Re z < 0} onto A, we conclude that 0 < If*(/)l < 1
and (4.42) is verified.
The proof of Lemma 4.4 is complete.
The second assertion of the following theorem was pointed out to the author

by Professor G. Piranian.

THEOREM 4.9. Let a C.
(i) IfE o (3 f \ (0}, then there exists B o such that ( B* a )

E. In fact, B may be chosen so that B*()I 1 for all *l C.
(ii) If E o\ (O), then there exists f de such that f*(l) a, 1 E.
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Proof (i) By Theorem 4.1, there exists S 6ao such that ( S* 0} E.
Let f be as in Lemma 4.4 relative to S and B af. It follows from Lemma
4.4 that B oo, { B* a } E, and B*()I 1 for all /in C. By Theorem
4.2, we have B is a Blaschke product so that B o.

(ii) By Theorem 4.6, there exists S 6a such that (S* 0} E. The
existence of f having the required properties now follows from Lemma 4.4.

5. Applications for singular monotone functions

In this section, / will always denote a singular generating function (cf. the
paragraph containing (4.1)). The object of this section is to apply some of the
results of the preceding sections to the study of the set (/’= + m }. All of
the results stated in the following theorem are valid when/’(t) is interpreted
as the full derivative

lim [/(t + h) I(t)]/h
h0

or the symmetric derivative

lim [/x(t + h) l(t- h)]/(2h)
h-,0

at each point in R where the limit exists (finite of infinite).

THEOREM 5.1. (1) The set (ell: 0 < I’(t) < + c) is contained in some

o set. On the other hand, if E is an o set, then there exists I for which
E (eit: I’(t)= }.

(2) If I’ exists at each point, then is locally constant at each point of an
open dense subset of R and in particular,

(eit: 0 < tx’(t) < +c)
is nowhere dense. In this case

(e"" T <_ ix’(t) <_ +)
is an (o) N fen set for each T (0, + ].

(3) If I’ exists and is 0 or + c at each point, then

( e it" iJ,’( ) + cx3 )
is an o (q f# set. Conversely, ifE is an o 0 f, set, then there exists i such
that

E (e it" ’(t)= +c) and C\E (e it" ’(t)= O)
(Lohwater and Piranian).
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Proof Observe first that the results of 3 concerning the classes
t’, and t’ do not depend on the analytic structure of the functions
involved. Thus if f: A is a continuous function with

limf(rr/) C
r--*l

for almost all r/in C, then we can apply the results of that section for ’o to

f. If we add the assumption that lim,_.lf(r,/) exists (resp. is of modulus 1 or
0) at each point of C, then the results for ’.. (resp. ,0) apply.

Let f Sl. Then by the Fatou radial limit theorem we have

lim f( re it) exp[ -/z’( t)]
rl

for each R where ’(t) exists. On applying the third assertion of Proposi-
tion 3.1, Corollary 3.3, and inclusion (3.8) for the present contexts, we
conclude that the first assertion of (1), the second assertion of (2), and the first
assertion in (3) hold.
By [3; Cor. 2.3], a function g t’ is analytic and of modulus 1 in an open

dense subset of C if lim,_llg(rl)l 1 a.e. and limr__,llg(r,/) exists at each
point of C. On recalling that S is analytic at e" if and only if/ is locally
constant at t, for each R, the first assertion of (2) follows.
The second assertions of (1) and (3) follow from Theorems 4.6 and 4.1

respectively. This completes the proof.
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