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HIGHER ORDER SWEEPING OUT

BY

N.A. FRIEDMAN AND E.S. THOMAS

1. Introduction

Let T act in a measure space X with measure m and m(X) 1. We say T
Usweeps out [3] if m(A) > 0 implies m ( 1TknA) 1 for all increasing

sequences (kn). We will say T is lightly mixing if m(A) > 0 and m(B) > 0
imply

liminfm(TnA f3 B) > O.
n--.o

Lightly mixing implies mildly mixing [5] and weakly mixing [2]. In particular,
if T is lightly mixing, then T is mixing on a sequence of density one [3], [6]. It
is shown in [1] that the conditions for sweeping out and lightly mixing are
equivalent. The term sequence mixing is used in [1] but might be confused with
mixing on a sequence.
The definitions of higher order sweeping out and higher order lightly mixing

are given in 2. In 3 it is shown that k-sweeping out is equivalent to tightly
k-mixing, k > 1. The examples of transformations that are partially k-mixing
but not partially (k + 1)-mixing [4] are also examples of transformations that
are lightly k-mixing but not lightly (k + 1)-mixing, k > 1. The construction in
[1] for k 1 is generalized in 3 to obtain transformations that are lightly
k-mixing but not partially k-mixing, k > 1.
A transformation T uniformly sweeps out if for each set A of positive

measure and e > 0 there exists N N(A, e) such that the measure of the
union of any N iterates of A is greater than 1 e. If T is mixing, then T
uniformly sweeps out [3]. It is not known if the converse is true. Higher order
uniform sweeping out is introduced and in 4 it is shown that (2k 1)-mixing
implies uniform k-sweeping out, k > 1.
The authors wish to thank the referee for several helpful suggestions and

comments.
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402 N.A. FRIEDMAN AND E.S. THOMAS

2. Definitions

Let (X, , m) be a measure space isomorphic to the unit interval with
Lebesgue measure. Let T be an invertible ergodic measure preserving transfor-
mation mapping X into X. A transformation T is partially k-mixing [4] if
there exists/3 > 0 such that for all A i, 0 < < k (to 0),

k

(2.1) liminf m Tt’hi >- fl I-I m(Ai).
Ot3 i=0

Given a, 0 < a < 1, T is a k-mixing [4] if (2.1) holds for fl a but not for
fl > a. If a 1, then the limit in (2.1) exists and T is k-mixing.
We shall say that T is lightly k-mixing if for all A of positive measure,

O<i<k(to=O),

(2.2) lim inf m [’ Tt’Ai > O
l-- Ot3

If T is lightly mixing (k 1), then T is weakly mixing and also mildly mixing
[5]. In particular, there exists an increasing sequence s of density one such that
T is mixing on s [3], [6]. A transformation that is lightly mixing but not
partially mixing was constructed in [1]. This construction will be extended in
3 to obtain a transformation that is lightly k-mixing but not partially
k-mixing.

Let d,. be positive integers and A sets of positive measure, 1 < < k. Let

d <’) (dx, d2,..., d,), A(k)= (A1, A2,...,Ak).

A k-fold intersection is denoted by

(2.3) I(T, d {k), A’k)) Td’(A1 Td2(A2 Td*A,) ).

If d t_l, 1 <i<k (to=0),then

k

(2.4) 1"] Tt’Ai
i=1

I(T, d (’), A(k)).

3. Sweeping out

Let d(’) (dn, / 1 < < k), n > 1, and assume that the entries of d(nk) are
positive and that d) is increasing. That is, 0 < d,, < d,+l,, 1 < < k,
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n > 1. We will say that T k-sweeps out if for all increasing d‘) and A(k), we
have

(3.1) m [,j I(T, d’, A)) 1.
n=l

The following result is proved in [1] for k 1, where lightly mixing is called
sequence mixing.

(3.2) THEOREM.
k-mixing.

A transformation T k-sweeps out if and only if T is lightly

Proof Suppose (3.1) is not satisfied for some dk) and A (*). Define B by

( JII( T, d’), A(’)

Hence m(B) > 0 and m(I(T, d), A(k)) N B)= 0, n > 1, so T is not lightly
k-mixing. Conversely, if T is not lightly k-mixing, then there exist increasing
d’), A(), and B of positive measure such that

(2) liminfm(I(T,d(,*),A’’)) B) O.

Choose n such that

(3) m(I(T,d(*) A(k)) N B) < m(B)/5 i>1

From (3) we obtain

(4) m U I(r,a*’ A*’) < 1 3m(B)/4.n
i=1

Thus T does not k-sweep out.

(3.3) Example. In [4], transformations Tk, k > 1, were constructed such
that T, is (1-j/(k + 1))-j-mixing, 1 <j < k + 1. In particular, Tk is
(1/(k + 1)- k)-mixing but not partially (k + 1)-mixing. Moreover, there
exist p,,,i , 1 < < k + 1, such that for every set A,

(3.4) Plim m(Tg,,k+l( (T/,,, A f3 A ) 3 A) ) f3 B) O,

where B=A if k is even and B=A if k is odd. Thus Tk is partially
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k-mixing and hence lightly k-mixing but (3.4) implies Tk
k + 1-mixing, k > 1.

is not lightly

(3.5) Example. Given a positive integer k, we will now construct T that is
lightly k-mixing but not partially k-mixing by extending the case for k 1 in
[1]. The idea is to start with a partially k-mixing transformation S and form
the product T of S with itself countably many times. It is straightforward to
check that T is not partially k-mixing by considering cylinder sets. However,
one also sees that T is lightly k-mixing for cylinder sets. To prove that T is
lightly k-mixing, we will approximate measurable sets by cylinder sets as in [1].

Let S be et k-mixing and define the product transformation

Thus T is defined on the direct product space (Y, ’,/), where Y 1-I=.= 1-Ii=.i, and/x I-I=xmi, X X, ’-’i ’.’, mi m, > 1.
Since S is a- k-mixing, there exist increasing d(k) and A of positive

measure, 0 < < k, such that

(1)
k

lim m(I(S,d(,k),A()) Ao) aVIm(Ai).
n--- oo i----0

Let F, A A A X X --., 0 _< _< k, where A appears
times. Now (1) implies

(2)
k

lim I,(I(T,d(,,k’,Ft(’,) FO, l) ollNl.t(Fi,1).
n--* o i=0

Since a 0, (2) implies T cannot be partially k-mixing. It remains to verify
that T is lightly k-mixing.

Fix F with/X(Fr) > 0, 0 < r < k. We need to show

(3) lim inf tx T’rF, > O.
tr O0

The proof is a generalization of the proof for k 1 in [1]. Since there are
several modifications, as well as some omissions in [1], the proof will be given
in detail.

Let fli, 0 < fl < 1, satisfy

(4) =y > (2k + 1)/(2k + 2).



HIGHER ORDER SWEEPING OUT 405

Let denote the class of finite dimensional cylinder sets in -; hence cg is
dense in -. Fix F ’. We now show there exists C(1) ff such that

/,(C(1)) </,(F) and /,(FAC(1)) < (1 81)(F ).

Let G be a subset of F satisfying 8 </,(F- G) < e where

e (1 flx)/x(F) and 8 1/2(1 flx)/x(F).

Let C(1) be chosen so that

(GAC(1)) < rt where /= (1 fll)(F).

In the next few computations, let us suppress the index, writing C instead of
C(a).
Then, first of all,

/.t(C) </,(C- G) +/,(G) < 1 +/,(F) -/,(F- G)
</,(F) + r 8 </x(F),

as desired. Secondly,

t.t(FAC) tx(F- C) + I(C- F)= t*(G- C) + t.t(F- G- C) + t*(C- F).

Since the last term is no greater than (C G), the inequality continues"

</x(G C) +/,(C- G) +/,(F- G- C) </x(GAC) +/,(F- G)
< rl + e (1 fll)/X(F),

which is the second requirement on C C(1). This latter inequality implies
/,(C(1) N F) > flx/x(F).

Let F(1) C(1) q F. Choose C(2) cg such that

(C(2)AF(1)) < (1 fl2)(F(1)).

Replace C(2) by C(2) N C(1) if C(2) C(1). Hence (5) still holds and

(6) /,(C(2) fq F(1)) > fl2/x(F(1)) > flzflx/x(F).

Let F(2) C(2) N F(1). Proceeding inductively, assume we have F(i 1) and
choose C(i) such that

(7) tz(C(i)AF(i- 1))< (1- fli)tt(F(i- 1)).
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Replace C(i) by C(i) 0 C(i 1) if C(i) el:. C(i 1). Define

F(i) C(i)(3 F(i- 1).

We assume

i-1

(8) tx(F(i 1)) >_ 1-I flyg(F).
j=O

Now (7) implies (8) holds with 1 replaced by i. Let

(9) C C(i) and F (’IF(i).
i=1 i=1

We conclude that/(C) =/(F) > ,/(F) and Co c F except possibly for a
null set.
The sets C(i) will now be considered in more detail. Let C(i) have

dimension N as a cylinder set, > 1. We have C(i) UjC(i, j), where j is in
a finite index set and C(i, j) is a product of N sets in for each j; hence

(10) C(i, j) I-[ C(i, j, l) X X ....
l=1

Therefore C(i, j) G(i, j) N H(i, j), where

(11) G(i, j) I-I C(i, j, l) X X ...,
l=1

(12) H(i,j) XX XX XXX rl
l=Nt+l

C(i,j,I)X ....

By subdividing the C(i, j) if necessary, we can assume the G(i, j) satisfy
G(i, a) N G(i, b) 0 if G(i, a) 4: G(i, b). Since C(i) c C(1), we have
UiG(i, j) C(1). Define U(i, a)= UjH(i, j), where the union is over those
H(i, j) with G(i, j) G(i, a). Let

(13) J(i) {a" t,(U(i,a)) > 23,- 1}.
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Now we have

(14) /(C(i)) (JG(i,. j) rH(i, j))
J

a.J( i) aqiJ( i)

<tt( .J G(i,a))+(27-1)t.t( .J G(i,a)).
a.J(i) aJ(i)

Now since/,(C(1)) </(F), it is easy to check that ,/.t(C(1) < t,(C(i)). This,
together with (14), implies

(15)

/(C(1))</x( [,.J G(i,a)) +(2" l)(i.t(C(1)) t .J G(i,a))).aJ(i) aJ(i)

From (15) we obtain

(16) (C(1))/2<( G(i,a)).
aJ(i)

Now consider F Fr, 0 < r < k, and the corresponding sets Gr(i), Cr(i, j),
Gr(i, j), Hr(i, j), Jr(i), etc. For each we can assume Cr(i ) have the same
dimension N, 0 < r < k. Now

k k

(17) poTt’( U C,(i,a))c nT’,(Uc,(i,j)).
a=Jr(i r=0 j

Note that for each and r, Jr(i)4: f, by (16). Choose a Jr(i) for each
and r, and define S(i,r)= (slGr(i,s) Gr(i, ar) }. Then

r=0 sS(i,r)

=/’t( ( T/(Jr=OsS(i,r) Gr(i’s) fqHr(i’s)))

Ix (’ Ttr(Gr(i, ar))
r----0

N Tt’(Gr(i, ar)) x
r=0

r--0 s-S(i, r)

f"l r’(g(i, a))
rO
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By (13),

(19) 0 Tt’(Ur( i, ar)) >- lX(Ur(i, at)) k
rO

> (k+ 1)(23,- 1)-k
"l,(2k + 2)-(2k + 1)

=p>O.

Thus (18), (19), and S being a k-mixing imply

tr+X--tr--+O r=0 sS(i,r)

> lim inf Pt* Ttra (i, ar)
r=0

k

> paN1H tz(Gr(i, ar) ).
r=0

Summing, for one r at a time, over the different disjoint G,(i, a)’s, a Jr(i)
gives, by (16),

(21) liminf/, T tr [.J c,(i, a) > pavl 1-I /*(Cr(1))
r=0 a-J,(il r=0 2

=P>0.

Therefore

(22) lim infI TtrC ( ) lim infi T tr U Cr( i, S ) > P.
r=0 S

Since C,(i) Cr(OO) as i m, (22) holds with Cr(i ) replaced by Cr(m),
0 < r < k. Now Cr(m)c F except for possibly a null set, 0 < r < k, so we
obtain (3) as required. Thus T is lightly k-mixing.

(3.6) Example. Consider S Tk in Example (3.3). Thus S is % -j-mixing,

% (1 -j/(k + 1)), 1 < j < k. Hence Example (3.5) yields T that is not
partially 1-mixing but is lightly j-mixing, 1 < j < k.

Given 1 < l < k, we do not have an example of a transformation that is
partially j-mixing only for 1 < j < and lightly j-mixing only for j < k. In
particular, for 1 and k 2, we do not have a transformation that is
partially 1-mixing, not partially 2-mixing, but is lightly 2-mixing.
A long-open problem is whether mixing implies 2-mixing. A more basic

problem is whether mixing even implies lightly 2-mixing. The transformation
T2 in Example (3.3) is 1/2-mixing but not lightly 2-mixing. We do not know if
there exists T that is a-mixing and not lightly 2-mixing for a > 1/2.
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The argument in Example (3.5) can be extended to yield the following result.
The only change is that in (20), aN1 will be replaced by 1-li lOti.

(3.7) THEOREM. If T is Ol --k-mixing, a,. > 0, i> 1, then T I-I=IT is

lightly k-mixing.
Note that Theorem (3.7) does not depend on the size of a. However, if

lima 0, then T will not be partially k-mixing. If a a, > 1, then it is
possible that T will also be a k-mixing. This depends on the timing of the
a-mixing of the T’s. To illustrate this behavior, we will construct T and R that
are both 1/2-mixing and T R is also 1/2-mixing. This example can be extended
to obtain T that are all 1/2-mixing, > 1, and I-I%1T is also --mixing.

(3.8) Example. The transformations will be constructed on the unit interval
X with Lebesgue measurable sets and Lebesgue measure m. T and R will
both be 1/2-mixing. However, while T is 1/2-mixing for certain intervals, R will be
mixing very well. Then while R is 1/2-mixing for certain intervals, T will be
mixing very well. Thus while one transformation is 1/2-mixing, the other
transformation will be essentially mixing with respect to certain intervals. The
result of the construction is that for any intervals Ii, 1 < < 4, we will have

(1)
4

lim infm (T"I 12 ) m ( RnI3 f3 I4) > 1/2 1-I m ( Ii )
n--, oo i=1

Let tt m m, A 11 13 and B 12 I4; hence (1) implies

(2) liminftt((T x R)nA B) >_ -tt(A)t(B).

Measurable sets in . can be approximated arbitrarily well by disjoint
rectangles I J for intervals I and J. Thus (2) will also hold for A,

Both transformations are constructed using the same induction step. It
consists in first mixing only half the space and then mixing the whole space.
The induction step is diagrammed in Fig. 1.
The construction is described in terms of towers and cutting and stacking

[3], [4]. A column C is an ordered set of disjoint left-closed right-open intervals
of the same length. A tower G is an ordered set of disjoint columns. An
interval in a column in G is referred to as a level in G. We picture levels in a
column arranged vertically as rungs on a ladder. If x is not in the top level in a
column in G, then Ta(x) is the point above x.
We let SG denote the tower formed by independent cutting and stacking of

G [3], [4]. The set consisting of the union of levels in columns in G is also
denoted by G. The transformation T(G)= limn_oTs.G is defined on G. An
M-tower G is a tower with two column heights that are relatively prime. In this
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FIG. 1.

case T(G) is mixing. Thus if G is an M-tower, then for e > 0 there exists
t* t(G, e) such that for all levels I and J in G,

(1) Im(T(G)tlNJ)m(G)/m(I)m(J)-l] <e, t* < t.

Let t** > t*. The definition of T(G) implies there exists n so large that if T
extends Ts,a, then for all levels I and J in G,

(2) Im(TtlCqJ)m(G)/m(I)m(J)-I <e, t*_<t<t**.

The stacking construction for introducing periodicity in a tower will now be
briefly described. Only towers with rational widths will be considered. In this
case the columns in a tower G can be cut into subcolumns of equal width w.
These columns are then stacked to form a single column C of width w. Each
level in G is a union of levels in Ca. Let p be a positive integer. We cut C into
p equal subcolumns and stack them to form a column C of width w/p. Let h
be the height of C If T extends Tc and I is a level in C then the
construction implies

(3) m(ThI 0 I) > (1 1/p)m(I).

Since each level J in G is a union of levels I in Ca, (3) also holds for J in G.
We denote CI(G C. Thus Cp(G) is a column obtained by converting G to a
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column, cutting this column into p equal subcolumns, and stacking these
subcolumns.
The induction step in Figure 1 will now be described. We begin with

M-towers Gil 1, 2, of equal measure and e > 0. There exists o such that if
G Gix and I and J are levels in G, then (1) holds with t* 0.

Choose p so that 1/p < e. Form C12 Cp(Gll). Thus (3) implies there is a
positive integer hi so that if T extends Tcl and J is a level in G, then

(4) m(Thaj N J) > (1 e)m(J).

We now convert C12 into an M-tower as follows. Cut C12 into q equal
subcolumns and add one extra level to the last subcolumn to obtain an
M-tower G13 with q columns. The measure of the extra level is certainly less
than 1/q and can be made arbitrarily small by choosing q large.

Since G13 is an M-tower, we can choose > t(G13 e) SO that > o and if
I and J are levels in G13 then (1) holds with G G13 and t* 1. We can
now choose n so large that if G14 SnG13 and T extends Tc14, then (3) implies

Im(Ttl J)m(G13)/m(1)m(J) 11 < e, t= q,

where I and J are levels in G13.
Now choose n so large that if G24 SnG21 and T extends TG24, then

(6) Im(Ttl J)m(G2x)/m(I)m(J) 11 < e, to < < tl,

where I and J are levels in G21.
We now want to mix G14 with G24 while preserving the previous mixing. Cut

each column in Gi4 in half and form two copies gji Gi4/2, J 1, 2, 1, 2.
Let G15 (g, gx2) and G9_5 (g21, g22). Thus Gi5 is a half-size copy of Gin
next to a half-size copy of G24 1, 2. Choose 2 > t(G25, e) so that 2 > 2.

In particular, levels in g mix with levels in g at t_. To preserve 1/2-mixing
during [tl, t.], we will continue to mix glj separately, j 1, 2. Thus we can
choose n so large that if

616 (Sngll, Sng12)

and T extends Tx6, then (5) implies

(7) Im(Ttl J)m(g11)/m(I)m(J)- 11 < e, t2,

where I and J are levels in gxx. Also, (6) implies

(8) Im(Ttl J)m(gl)/m(I)m(J)- 11 < e, < <
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where I and J are levels in g12. Here we used the fact that gtt is a copy of G14
and gt2 is a copy of G24.
Choose t3 > t(G16, e) so that > 2. Now choose n so large that if

G26-- SnG25 and T extends T26, then

(9) Im(T’I c J)m(G25)/m(I)m(J ) 11 < e, 2 < < 3,

where I and J are levels in G25.
The induction step will now be used to construct T and R. Let Go be an

M-tower and let Gtt Gt Go/2 and GEt G211 Go/2. Let e et. Apply
the induction step to obtain Gj. Gtj, 2 _< j _< 6, GEj- GEj 4 _< j _< 6, and
tli ti, 0

_
<_ 3.

For convenience we set Tkij T. The towers defining R will be denoted
by H/ and we let R kij TrI.
We have Tli6, 1, 2. If T extends TI6, 1, 2, and I and J are levels in

GO then the induction step guarantees

(10) m(TtI n J) >_ (1 e)m(I)m(J)/2m(Go), to < <_ t13.

If I is a level in Go, then 1/2 is a level in G]x. Hence (4) of the induction step
implies there is a positive integer h ht such that

(11) m(ThI n I) > (1 et)m(I)/2.

We will now begin defining R so that R is mixing well for [tto, t13 ]. Let
Ho Go. Choose n so large that if H1 SnHo and R extends Tnl, then for
levels I and J in Ho,

(12) Im(RtI J)m(Ho)/m(I)m(J ) 11 < El, tt0 < < t13.

During [to t13], (10) and (12) imply T is essentially 1/2-mixing and R is
essentially mixing for levels in GO Ho. Condition (11) is used to verify T is
not a-mixing for a > -.
Now let Ht Ht/2 and H Ht/2. Apply the induction step with e el

and G H/2, 1, 2. We obtain HIj Gtj, 2 < j < 6, Hj G2j, 4 < j
< 6, and rli-- ti, 0 _< < 3. We can choose rto > t13.
We have R1i6, 1,2. If I is a level in Ho, then 1/2 is in H i= 1, 2.i1

Therefore the induction step guarantees that if R extends Rli6, 1, 2, then
for levels I and J in H0,

(13) m(Rtl t J) > (1 el)m(I)m(J)/2m(Ho),rlo < < r13.

Since H HI2, the continuation of mixing in HI to form H4 also
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guarantees 1/2-mixing for levels I in H0 during [t13 rl0 ]. Thus we also have

(14) m(RtI ( J) > (1 el)m(I)m(J)/2m(Ho) t13 < < rl0,

for levels I and J in H0.

If 1 is a level in Ho, then 1/2 is a union of levels in HI. Hence (4) implies
there is a positive integer h h2 such that

(5) m(RhI q I) > (1 el)m(I)/2.

Now we have r13 > rio > t13 > t12.
For the k th stage in the construction, assume we have rk3 > rko > tg3 > t2.

We also have ek > 0, towers G, 1,2, of equal measure, and tk3 >
t(G6, ek). If T extends T,26, then

(16) Im(T7 J)m(Gk25)/m(I)m(J)- 11 < e, t2 -< _< t3,

where 1 and J are levels in G25.
Now rk3 > tk3 SO we can choose n so large that if Glkl+1

extends T/ x,x,x, then
SnGk16 and T

(17) Im(Ttl t J)m(G16)/m(I)m(J) 11 < e, tk3 <_ <_ rk3

where I and J are levels in Gxk6 Also rk3 > t,. so we can choose n so large
that if Gk+ S nGk26 and T extends T,+ 1,2,1, then

(8) Im(TtI J)m(G5)/m(I)m(J ) 11 < ek, tk2 < < r,3,

where I and J are levels in G5.
Let Ek+ < Ik. Choose tk+l,o >_ max(t(Gikl+l, ek+l), i-- 1,2) so that tk+l, o

> rk, 3. We now apply the induction step with e ek+l, Gil G/kl/1, 1,2.
k+lk+lWe obtain Gj Gxj, 2 <j<6, G2j G.g, 4<j<6, and t,+,i, 1 <i

< 3. If 1 and J are levels in GII or G21, then I/2 and J/2 will be in G+ 1,
1, 2. The induction step implies that if T extends Tk / 1, i,6, 1, 2, then for

levels I, J in G, 1, 2,

(19) m(TtI q J) > (1 e,)m(I)m(J)/4m(G-l), tk+,o < < t,+x,3.

If I is a level in Go, then 1/2 is a union of levels in GI. Hence (4) implies
there exists h h k / x,x such that

(20) m(ThI (q I) > (1 ek+)m(I)/2.

We now have tk+l, > tk+l,0 > rk, > rk, 2. The (k + 1)st stage of the con-
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"F

FIG. 2.

struction for R is now obtained by repeating the analogous k th stage of the
construction for T, with G replaced by H, to obtain (16)-(20) with T replaced
by R and r,+l,i replacing tk, i.

If is in [tk3 r3], then (17) and (18) imply

(21) m(T’I C J) >_ (1 e)m(I)m(J)/2m(G15),

where I and J are in G/k1-1, i= 1, 2. This is because 1/2 and J/2 are in Gi,
1, 2. Since we assume m is normalized so that limk_, oom(G5)

limk_.oom(H5 ) 1/2, (21) implies T is essentially mixing for t3 < < rk3
and levels in G-1, 1,2. These levels are arbitrarily small for k large.
Hence finite unions of these levels are dense in . In particular, we conclude
that T is essentially mixing for t3 < < r, for all intervals, as k

Since R is constructed in the same way that T is, we conclude R is
essentially mixing for rk3 < < k/ 1,3 for all intervals, as k
From (19) we conclude that T is essentially 1/2-mixing for/k+l,0 < < t/+l,3

and levels I, J in G, 1,2. By induction, this holds for all k. So we
conclude that as k oo, T will be essentially 1/2-mixing for in [t,,0, t/,3 for
all intervals.

Since R is constructed in the same way that T is, we conclude that as
k-* oo, R is essentially --mixing for in [r0, rk3 for all intervals. The
following diagram is helpful. The 1/2’s and l’s indicate where T and R are each
essentially 1/2-mixing and mixing. In particular, (1) is satisfied so T and R have
the desired properties.

4. Uniform sweeping out

Let k be a positive integer. A transformation T uniformly k-sweeps out if
given A of positive measure, 1 < < k, and e > 0 there exists N N(A(’), e)
such that for all increasing d(k), 1 < n < N,

(N )(4.1) m .J I(T, d(’), A(/’)) > 1 e.
n--l
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In [3] it is shown that mixing implies uniform 1-sweeping out. This result is
generalized as follows.

(4.2) THEOREM. If T is (2k- 1)-mixing, then T uniformly k-sweeps out,
k>l.
The proof of (4.2) depends on the following lemma.

(4.3) LEMMA. If T is (2k- 1)-mixing, then given e > 0 and A, 1 <_ <_ k,
ofpositive measure there exists N N(A(, e) such that n >_ N implies

(I(T,d}),A()) C I(T,d)),A())) -( )1-I re(A,)
i=1

for all increasing d}k), 1 < < n.

Proof. Since T is (2k 1)-mixing, there exists M M(A(k), e) such that if
ai, 1 < < 2k, satisfy [a %1 > M, 4: j, then

m 1’ Ta’Ai N Ta’+kAi m(Ai)
i----1 i= "=

(This is a trivial reformulation of the definition of higher order mixing in [}2.)
Now choose N so large that

(2) (M2 + k2(2M + 1))/N < e/2.

Consider increasing d/(k), 1 < < n, where n > N. Denote the (i, j)th term in
(4.4) by A(i, j). Call A(i, j) bad if A(i, j) > e/2.

If A(i, j) is bad, then (1) implies some pair of the exponents di,1, (di, +
d,2),..., (d + +di k), dj 1,-.-, (dj + +d k) must differ by less
than M. Siace the d[ki’ are ’increasin and since ’the entries are positive
integers, all entries of d}k) are at least r. In particular, if > M and j > M,
then the only way A(i, j) can be bad is that one of the first k exponents is
within M of one of the last k exponents.
Thus we fix a > M and count the number of possible j > M such that

A(i, j) could be bad. Since d, increases as j increases, there are at most
2M + 1 values of j such that [dj, da,xl <_ M. Iterating this argument, we
see that there are at most k(2M + 1) values of j for which d, can be within
M of any of the first k exponents. The same estimate applies to each of the last
k exponents. Thus for fixed a > M, there are at most k2(2M + 1) values of
j > M such that A(a, j) is bad. Summing over a, we see that there are at most
(n M)k2(2M + 1) values of > M and j > M such that A(i, j) is bad.
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SThus ifE is the number of bad A(i,j) ,1 <i, j<n then

(3) E <_ M2 +(n M)k2(2M + 1).

Now A(i, j) < 1 for all i, j. Hence we can use (2) and (3) to estimate the sum
in (4.4) as follows.

L 1 2 e/2)1
h(i,j)<_--(E+(n -E)(4) - i,j=X

M2 +(n M)k2(2M + 1)-< 2
+ e/2

n

M2 + k2(2M + 1)
<

N + e/2

Now Lemma (4.3) will be used to prove Theorem (4.2). Given A(k), we let
1-I I-I/k= m(A i) for convenience and let r/= (eli)/2. Let N N(A(k), /) as
in Lemma (4.3). Let

B I(T, di k), A’k’) and C ( i=15 ni
We need to show m(C) < e.

Let b; denote the characteristic function of B and let f (E= lbi)/N. Since

C q B 0, 1 < < N, H61der’s inequality implies

(1) IIm (C) fc( f I-I) dm -< IIf 1I II1 -< IIf H 2-

Now we have

N 2 N )f 1 E bibj I-[ E bi + I-[2 dm.(2) IIf- Iill
i,j=l i=1

By the choice of N, the first integral on the right in (2) is within r/ of II 2.
Hence (2) implies

IIf- n:ll: _< 2n-n b dm + rl
i=1

2H
<_ Im(B,)- HI + n.

i----1
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Since T is (2k- 1)-mixing, T is also (k- 1)-mixing. Hence, taking 8
e2II/8, there exists P P(A(), ) such that, if di, j >_ P for j 1,..., k, then
Im(Bi)- HI < 8. Since the d/) are increasing and all d,j. are positive, the
above condition will be satisfied if > P. We assume that N has also been
chosen large enough so that P(1 6)/N < 8. Let K denote the number of
terms Im(B) HI which exceed 8. We continue the estimate (3)"

2II
< ----(K +(N- K)8) + rl

2H
< --(P(1 8) + N" 8) + n
< 4118

e2II 2.

Taking square roots yields IIf- IIIl2 < elI. Combining this with (1), we see
that Hm(C) < el-I, hence m(C) < e. This was the desired inequality, and the
proof of the theorem is complete.

(4.4) COROLLARY. If T is mixing of all orders, then it is uniformly sweeping
out of all orders.
The converse of Theorem 4.2 is open. In fact, we do not know if uniform

sweeping out of all orders implies mixing.

REFERENCES

1. J.R. BLUM, S.L.M. CHRISTIANSON and D. QUILLING, Sequence mixing and a-mixing, Illinois J.
Math., vol. 18 (1974), pp. 131-135.

2. J.W. ENGLAND and N.F.G. MARTIN, On weak mixing metric automorphisms, Bull. Amer. Math.
Soc., vol. 74 (1968), pp. 505-507.

3. N.A. FRIEDMAN, Mixing on sequences, Canadian J. Math., vol. 35 (1983), pp. 339-352.
4. Higher order partial mixing, Contemporary Math., vol. 26 (1984), pp. 111-130.
5. H. FURSTENBERG and B. WEISS, The finite multipliers of infinite ergodic transformations, Lecture

Notes in Math., no. 668, Springer, New York, 1977.
6. P. WALTERS, ,4n introduction to ergodic theory, Springer-Verlag, New York, 1982.

STATE UNIVERSITY OF NEW YORK AT ALBANY
ALBANY, NEW YORK


