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TRANSFER AND INFINITE LOOP MAPS

BY

A. KOZLOWSKI

1. Introduction

In what follows an infinite loop space will always mean the zeroth space of a
fixed connective 2-spectrum, while an infinite loop map between two infinite
loop spaces is any map which can be de-looped infinitely many times (perhaps
in more than one way). All spaces are assumed to be compactly generated.

Let V and W be infinite loop spaces and f: V W an H-map (not
necessarily an infinite loop map) and suppose that for every finite covering p:
E - X the diagram

f
[e;v]

[x;vl ,Ix;w]

is commutative, where p.,V, p.,W denote the Kahn-Priddy transfer. In such a case
we say that f commutes with the transfer. It is well known that an infinite loop
map commutes with the transfer. The converse of this is in general false (see
[7], [9], [15]) but it holds in a number of special cases (e.g., see [10]). In 2 we
show that it holds always when V is an infinite loop space of the form
QX indlimifiY.iX, for some connected X. This seems intuitively obvious
but there appears to be no published proof. In [}3 we use this result to show
that if V BU and W has only finitely many non-zero homotopy groups,
then some positive integer multiple of any transfer commuting map is an
infinite loop map. We also show that for certain IV’s, e.g., products of
Eilenberg-Mac Lane spaces, this holds for any H-map (not necessarily transfer
commuting).
The contents of this article are partly based on my Oxford D. Phil. thesis
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and some of this work was done while the author was a Japan Society for the
Promotion of Science Post-Doctoral Research Fellow at Tsukuba University. I
would also like to thank professor J. P. May for several useful comments, in
particular for pointing out that my original proof of Lemma 2.2 was inade-
quate and that the result follows easily from his article [13].

2. Transfer commuting maps QX - Y

The principal reference for this section will be [11].
Recall that an E operad C {C(j)}j>_0 is a suitably compatible collec-

tion of contractible spaces C(j) and maps

v.: C(n) c(j ) c(j +

The symmetric group Xj. acts freely on C(j) so that the orbit spaces C(j)/E9
are K(E; 1)’s. An action of an E operad C on a space X is a suitably
compatible collection of maps 0j.: C(j).X X. Such an action de-
termines the Dyer-Lashof operations in H,(X; Z/p) and the Kahn-Priddy
transfer on the functor ;X].
Now let X be any topological space and C an E operad. There is a space

CX on which the operad C acts, defined as follows:

CX jC( j ) X xj xJ/

where tA denotes disjoint union and the equivalence relation is given by
certain base point identifications. The action of C on CX is given by the maps
,P,,: C(n) x x.(CX)" CX, where

*n ( Cn, Cjl, Xl, Xjx ], CL,, Yl, Yj,,])
[’Yn(Cn, Cjx,..., Cj,,), Xl,... Xj,..., Yl,’", Y,],

with 7n as above.
Now let QX indlimif]EiX. QX is an infinite loop space, its homotopy

groups are the stable homotopy groups of X, and it has the property
Inf(QX; Y)-- Map(X; Y), where Y is any infinite loop space and Inf( )
denotes the set of infinite loop maps.

THEOREM 2.1. Let X be a connected space and Y an infinite loop space of the
homotopy type of a CW-complex. Let f: QX --> Y be an H-map such that

(i)

f
X QX--, Y

is null homotopic, where is the natural inclusion of X in QX and
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(ii) f commutes with the transfer.
Then f O.

Remark. It is easy to see that Theorem 2.1 is equivalent to the statement
that the transfer commuting maps QX Y are precisely the infinite loop
maps. For, given such a map f, let f’ fi, and let f’ be the map

Oft
QX QY Y

where r is the natural retraction. Then the map f- f’ satisfies the conditions
of the theorem and must therefore be null homotopic. Thus f is homotopic to
an infinite loop map.

Proof of Theorem 2.1. Let C be the "little cubes" operad. Since C acts on
any infinite loop space, it acts on Y. Since X is connected, the natural C map
CX QX is a weak equivalence. Hence we can replace QX by CX in the
above. The space CX is built up by successive cofibrations

Fk_ lfX -- FkfX ---> EkCX

where F,CX denotes the image of j <_ kC(j) X X
topology and

Xj in CX with the quotient

E,CX EEl, I>< Xtkl= EEk xX/EXg xpt,

where Xt’l is the k-fold smash product X/x A X and pt stands for the
base point in Xt’l. The map f commutes with the transfer if and only if the
indicated diagram is homotopy commutative,

C(k) xxk(CX) ’ xfk , C(k) Xx,Y’

CX Y

where the vertical maps come from the action of C on CX and Y. This is well
known; for example, see Theorem 4.2.1 of [3] or see [15]. Restricting the
diagram to

XCX
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we see that this implies that

x(fi)
C( k ) X kXk -C( k ) X EkYk

CX - Y
is homotopy commutative. From the formula for the action of C on CX given
above, we see that

,(1 X ik)(C.,Xl,...,Xk)= [C,,,Xl,...,X,]

the equivalence class of (c, x1,..., x)

in CX. This is, in other words, the composite of the natural maps

Xk Xj U C(j) x.XJ/---C(k) =k --’ u c(j) ,.. -,

We shall denote this map by Ck. Since fi is null homotopic (by hypothesis), the
homotopy commutativity of the diagram implies that ftk is null homotopic.
Let denote the composite of the natural projections

C(k) E,X* L C(k) x x,X[’l C(k) X ,,xtkl/C(k) pt E,CX.

Since Y is an infinite loop space, Y] is the zeroth term of a cohomology
theory. I shall denote this cohomology theory by y*( ), i.e., yi(X)-
[X; BiY], where BY is the i-th delooping of the given infinite loop structure
on Y. We shall need the following result.

LEMMA 2.2. Let y*( ) ;B’Y] be as above. Then

, X)t* y (ECX) y*(C(k) X=,

is a split monomorphism.

A proof of this 1emma will be given at the end of this section.
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Consider the diagram

F,_ aCX , F,CX E,CX

where the horizontal line is a cofibration. Apply to this diagram the functor
y0( )=[ Y] to obtain the diagram

y(Fk_ICX)
k*

y(F,CX).- y(E,CX)

Since the functor y*( ) takes cofibrations to exact sequences the horizontal
line in this diagram is exact. Let [f] y(CX) denote the homotopy class of

f: CX--. Y and let [f], denote its image in y(FkCX). Assume inductively
that If]k-1 is 0. This means that k*([f],)= 0 and therefore there is some
h y(E,CX) such that j*(h)= [f],. Consider t*(h)= p*([f]k). It follows
immediately from the definitions that this is [ftI),]. But we have shown that
this last is 0. Hence [f], 0 for all k. Next, observe that since y*( is a
cohomology theory we actually have a long exact sequence

-- yl(Fk_lCS) k_ yl(FkCg JZ yl(EkCS) -- y(Fk_lCS)

k* j*,__ yO( F,CX) yO( EkCX)

The above argument shows that all j* are injective, hence all k* are surjective.
Recall from [1] or [14] that we have the following Milnor exact sequence:

0 lim yO(F,CX) yO(CX) li._my(F,CX) O.
k k

Since all k* are surjective the lim term is zero. Since each [f]k
Before proving Lemma 2.2 we state the following:

O, [f]= O.

COROLLARY. Let r: QX - X be the natural retraction, where X is an infinite
loop space. Let Y be an infinite loop space of the homotopy type of a CW-com-
plex. A map f: X --. Y commutes with the transfer if and only if the composite fr:
QX Y is an infinite loop map.
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Proof If f commutes with the transfer then so does fr since r, being an
infinite loop map, commutes with the transfer. The result now follows from
Theorem 2.1. Conversely, suppose that fr is an infinite loop map. Then it
commutes with the transfer. Let p: A -+ B be a finite covering. Consider the
diagram

f
[A; QX] ,[A; X] [A; Y]

[B; QX >[B; X]- +[B; Y]

The left hand square is commutative since r commutes with the transfer. The
rectangle is commutative by hypothesis. Since r is surjective the right hand
square commutes completing the proof.

Remark 1. This can be interpreted as, in some sense, showing that commut-
ing with the transfer is the only ’first order’ homotopy obstruction to an
H-map being an infinite loop map. In particular, a map which commutes with
the Kahn-Priddy transfer must also commute with the Becker-Gottlieb transfer
[4] for fibre bundles with compact fibre.

Remark 2. Again, let f denote the composite

QX QY Y

and let fr be as above (where r denotes the retractions for X and Y). Then the
homotopy class [fr -f] [QX; Y] is the universal obstruction to f commut-
ing with the transfer.

Proof of Lemma 2.2. For a based space X, let EkX denote the space
Xtkl for k > 2, X for k 1 and S O for k 0. Let H5a be the stable

category defined in [12, II]. J.P. May has proved the following:

THEOREM [13]. There are functors Ek: HSa- HS’ and natural isomorphisms
of spectra QE,X EkQoX for spaces X, where QY is the free -spectrum
generated by the space Y, i.e., Qiy Qyiy.

Now, EEl, kXk= Ek(X+) where X+= X u (base point} and the natural
pointed map r: X/ X is stably split, in fact there is s: ZX Y(X/) such
that

y x-+
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is the identity. Thus we have a splitting Q(X+) Qx; hence

E,Qo ( X+ ) E,Qo X,

and by May’s theorem,

QE,( X+) QE,X.

Since for any space Y we have y*(QoY) "-- y*(Y), the natural homomorphism
y*(E,X) y*(Ek(X+)) is a split monomorphism. It remains to observe that
we can take C(k) as a model of EZk, and the map C(k) x xkX’ E,CX in
Lemma 2.2 is just the map E,(X+) E,X above.

3. Riemann-Roch formulas

Let i: CP BU be the natural inclusion and let ’: QCP BU be as
before (where the infinite loop structure on BU is that corresponding to
reduced connective K-theory). Recall the following results of Segal [16].

THEOREM 3.1. (a) 7Q" QCP BUQ is a weak homotopy equivalence of
infinite loop spaces, where XQ denotes the rationalization of X.

(b) For any space X, the map [X; QCP] --> [X; BU] is surjective.

Theorems 2.1 and 3.1 together imply the following "splitting principle".

PROPOSITION 3.2. Let Y be an infinite loop space of the homotopy type of a
CW-complex. Any transfer commuting H-map f: BU Y which is null homo-
topic on CP is null homotopic on BU.

This "splitting principle" can also be proved directly using the method of [4],
since one can show that any complex vector bundle over a finite complex X is
the image under the Becker-Gottlieb transfer of a line bundle over a certain
fibre bundle with compact fibre over X [6].

If Y is an Eilenberg-Mac Lane space it is easy to see that the classical
splitting principle implies that Proposition 3.2 holds for any H-map (not
necessarily transfer commuting). We shall say that an infinite loop space Y has
the splitting property if Proposition 3.2 holds for all H-maps BU Y.

THEOREM 3.3. Let Y be an infinite loop space of the homotopy type of a
CW-complex, such that r (Y) 0 for all n >_ Nfor some positive integer N. Let
f: BU Y be a transfer commuting H-map. Then there is a positive integer M
such that Mr: BU Y is an infinite loop map. If Y has the splitting property
this is true for an.v H-map.
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Proof We again work in May’s stable category of spectra H5a. For any
infinite loop space X, let X denote the corresponding spectrum in H6a.
Consider the morphism in H, |: QCP BU, determined by the unique
delooping of i. In H5a we have the following cofibration (or fibration)
sequence which extends in both directions since fiberings and cofiberings
coincide in H.

j_ k
F QCPBUC

Applying to this sequence the functor
sequence

;Y] we obtain the long exact

- F; Y] L [QooCp. y] --k [c;v],-...

We claim that under our hypothesis [F; Y] is a torsion group. If X is a finite
CW-spectrum, then for any spectrum Y [X; YQ] [X; Y] (R) Q. In our case F
is not a finite spectrum but the above still holds because F has finite homotopy
groups (and hence can be replaced by a CW-spectrum with finite skeleta) and
Y has only finitely many non-zero homotopy groups; more precisely, we can
show that [F; Y] [FN; Y], where Fu is the N-skeleton of F. Now, apply the
functor ;YQ] to the cofibration sequence. Since [X; YQ] [XQ; Ye] for any
spectra X, Y, the map induced by is an isomorphism by Theorem 3.1 a). By
the exactness of the long exact sequence [F; Ye] [F; Y] (R) Q 0. Hence
[F; Y] is a torsion group. Let f: BU Y be an H-map and let f’ be the
composite

CP BU- Y.

Let f" QCP Y be as before. Since f’ is an infinite loop map, its unique
delooping determines an element a [QCP; ]. Let j(a) have order M in
[F; Y]. Then j(Ma) 0, hence there is/3 [BU; Y] such that i(fl) Ma. Let
g: BU Y be the zeroth map of a map of spectra representing/3. Then g is
an infinite loop map. We claim that g Mf. Clearly, g M(f i), i.e.,
g i- M(f i)= 0. The result now follows from Proposition 3.2 if f is
transfer commuting, and from the splitting property in the second case.

Remark. We are interested in two special cases which may be viewed as
integral analogs of the classical (rational) Riemann-Roch formula. In each case
the infinite loop space involved has the splitting property, which follows from
the classical splitting principle.

(1) Let Y be an Eilenberg-Mac Lane space K(Z; 2q) and let f Sq q!
ch q, where chq is the q-th Chern character. According to Theorem 3.3, there is
an integer Mq such that Mqsq is an infinite loop map.



670 A. KOZLOWSKI

(2) Let A {Aq}q>_O be a commutative graded ring. In [17] a connective
cohomology theory G*(X; A) is constructed, for which G(X; A) is the group
of multiplicative units of the ring 1-Ii>_0H2i(X; Ai) of the form 1 + a

+ + ai + .-., where a HZi(x; Ai). Let A Z[[x]]; the graded ring of
formal power series in one variable x of degree 2; the total Chern class may be
viewed as a natural homomorphism c: /(X) G(X; A). One may ask if c
extends to a transformation of cohomology theories. This is false; in [18] it is
shown that c is not transfer commuting. In fact, one can show that there are
no non-trivial transfer commuting natural homomorphisms/(X) G(X; A)
[8]. It is natural to consider "truncated" total Chern classes, i.e., natural
homomorphisms

 0(x; A[. ]),

where A[n] Z[x]/x" viewed as a graded ring. Since the infinite loop space
representing G(X; A[n]) has only finitely many nonzero homotopy groups,
Theorem 3.3 shows that for some integers N (depending on n), c-) extends to
a transformation of cohomology theories bu*(X) G*(X; A[n]), where
u*(X) denotes connective (reduced) K-theory. A suggestive way of restating
this is to say that each truncated total Chern class can be made an infinite loop
map by inverting a finite number of primes; to make the (non-truncated) total
Chern class an infinite loop map all primes have to be inverted.

In the above examples the positive integers Mn and N can be taken to be
the least ones for which the conclusion of Theorem 3.3 holds but they do not
necessarily give the least positive integer multiples of sn and c(, which are
transfer commuting. We can, however, give a similar interpretation to the least
such integers t’ and . Let C be the mapping cone of the map ’:
QCP BU; i.e., we have a cofibration

QCP BU C.

Let Y be an infinite loop space with the splitting property and again let y*( )
denote the cohomology theory given by the infinite loop structure on Y. We
have a long exact sequence

0(yl(C ) L y(QCp) y(BU) y C) ....
The homotopy class of f’ is an element a of y(QCP). As above we can
show that yl(C) is a torsion group. Let t’ be the order of the image of c in
y(C). Then there is some fl y(BU) with i(fl) a. By the surjectivity of
(Theorem 3.1(b)) we see, exactly as in the proof of the corollary to Theorem
2.1, that g: BU Y, representing/3, is a transfer commuting H-map. It now
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follows by the splitting property of Y that g ’f; i.e., dg’f is transfer
commuting. Clearly t’ is the least integer with this property (and a divisor of
M of Theorem 3.3).

In the above examples: the positive integer M was computed by Adams [1],
[2], w/t’ by Roush [15] and the present author [7] who has also computed the
values of V’n: dr/" 42 1, M/’+ > n > 1 for n > 2. (Strictly speaking the
above mentioned articles consider only transformations from un-reduced K-
theory, the reduced case is exactly analogous.)
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