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R(JDIGER GOBEL AND AGNES T. PARAS

1. Introduction

Let F(n) denote the free group of rank n and let B(n) F(n)/F(n)", the free
metabelian group of rank n. The automorphism group Aut(B(n)) has been inde-
pendently and jointly investigated by Bachmuth and Mochizuki in a series of papers
dating from 1965 to 1987. In ], the outer automorphism group Out(B(2)) is shown
to be isomorphic to GL2 (Z). When n 3, Aut(B(n)) has been shown to be infinitely
generated in [2]. For n > 4, they showed [3] that

Aut(F(n)) --+ Aut(B(n)) -- 1;

i.e., every automorphism of B(n) is induced by an automorphism of F(n) and hence,
Aut(B(n)) is finitely generated. This is carried out using the faithful Magnus repre-
sentation of IA(B(n)) as a subgroup of GLn(Z[F(n)/F(n)’]) (IA(G) is the normal
subgroup of Aut(G) consisting of automorphisms of G which induce the identity on
the quotient G! G’), and ideas and methods influenced by matrices and matrix groups
over integral Laurent polynomial rings.

Instead of considering the automorphism group of a given metabelian group, we
propose to approach the problem from the opposite direction, namely:

Which groups can be realized as the automorphism groups of metabelian
groups?

That is, for which groups H does there exist a metabelian group G such that Aut G
is isomorphic to H?

The case when G is a torsion free, nilpotent group of class 2, hence metabelian
with non-trivial center, has been considered by Dugas and G0bel. In [8], they adapt
Zalesskii’s matrix construction of a torsion free, nilpotent group of rank 3 and class
2 with no outer automorphisms, to show that any group H can be realized as

Aut(G)/Stab(G) H
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for some torsion flee, nilpotent G of class 2, where

Stab(G) {c 6 Aut(G) ot induces the identity on Z(G) and G/Z(G)}.

Notice that in this setting, Inn(G) _c Stab(G) and Stab(G) is abelian. Using the
Baer-Lazard theorem, which provides a correspondence between nilpotent groups of
class 2 and alternating bilinear maps, they arrive at a similar result [9] with the added
information that Stab(G)/Inn(G) is isomorphic to a direct sum of IGI-copies of the
cyclic group Z2 of order 2.

In this paper, we consider metabelian groups with trivial center. If a group G
has trivial center, then G automatically embeds as Inn G in Aut G. The quotient
Aut(G)! Inn(G) is usually called Out(G), the outer automorphism group of G. Hence
we ask:

For which groups H does there exist a metabelian group G with trivial
center such that Out G H?

A partial answer is supplied below by our main results.
A group is said to be complete if its center and outer automorphism group are

both trivial. In [11], Gagen and Robinson classified all finite, metabelian and com-
plete groups. Using homological methods, Robinson considered infinite soluble and
complete groups in [20]. Here, we consider, the infinite metabelian case and pro-
vide infinitely many non-isomorphic complete, metabelian groups in the following
theorem.

THEOREM. Let B be a free metabelian group of rank ) with 3 < ,k < 2.
Then there exists a torsion free, complete, metabelian group G embedding B, with
G containing an abelian and characteristic subgroup A of cardinality 2 such that
G/A B/B’.

It is interesting to note that this non-abelian result is obtained by mainly apply-
ing methods from abelian group theory, properties of group rings and the Magnus
representation of a free metabelian group.
A group is said to be a unique product group (UP group) if, given any two non-

empty finite subsets A and B of G, there exists at least one element x of G that has a
unique representation in the form x ab with a 6 A and b 6 B. Free groups and,
more generally, right ordered groups are examples of UP groups. It is a well-known
fact that no group can have its automorphism group be cyclic of odd order > or
infinite cyclic (see Robinson 19], [21 and Pettet 16], 17], 18] for other examples
of non-automorphism groups). In contrast, we see from our second main result that
every abelian group is isomorphic to the automorphism group of some metabelian
group modulo its inner automorphisms.

THEOREM. Every abelian group and every UP group can be realized as the outer

automorphism group ofsome metabelian group with trivial center
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The construction is founded on the endomorphism rings of torsion free abelian
groups, the extraction of the multiplicative units of a ring and the semi-direct product
of two abelian groups.

2. Representation of free metabelian groups

For convenience, we include two well-known results concerning free soluble
groups and matrix representation of groups, which are due, respectively, to Sm61kin
and Magnus.

The following is a special case of a lemma due to Magnus 14], which is referred
to in the literature as Magnus representation and has proved to be a useful tool in
various contexts.

Suppose F is a non-cyclic free group with basis {xi I }. Let

{S X F’ I} and {ai xiF" I}

be generators of F/F’ and F/F" respectively. Let islZ[F/F’]ti be a free Z[F/F’]-
module of rank II l. The set of matrices

F/F’ 0
iel[F/F’]ti

Zil riti
g F/ riti il

il

forms a group under formal matrix multiplication.

LEMMA 2. 14]. The map

aJ--+[ sjtj Oil
extends to an injective homomorphism

F/F’" F/F"-- isiZ[F/F’]ti
0

If B is a metabelian group, then/ B!B’ acts on B’ via conjugation. Hence there
exists a homomorphism q)" B Aut(B’). This extends to a ring homomorphism

q)" Z[/] - End(B’),

and so B’ can be viewed as a Z[B]-module. In the case when B is free metabelian,
the Magnus representation enables us to see that each nonzero element of q)(Z[/}]) C
End(B’) is a monomorphism. We express this in terms of modules"
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COROLLARY 2.2. Let B F/F". Then B’ is a torsionfree Z[]-module.

Proof
that B’ embeds in

Using the Magnus representation, we identify B with p(B) and notice

[ 0]C
iIZ[F/F’]ti

o t o) t o)If a 6 B and Z 6 B’, then Za More-
y z zx

over, if

b=--nj( uj O)vj
Z[B],

then zb ( 0)z Ynjuj ,wherenj Z, uj F/F’ and

B -- B/B’
is the canonical epimorphism. Let z ZiI biti, where bi Z[F/F’]. Since
Z[F/F’] is an integral domain (see [12]),

(Z biti) (Z njblj) =0iff b =0or njuj 0 for each/.

Hence B’ is a torsion free Z[/)]-module. [21

From now on, we identify B’ with a subgroup of )ielZ[]ti Suppose S is a ring
and G is a group. Let I (S, G) denote the augmentation ideal ofS[G], which consists
of all x ngg S[G] such that Y ng 0. Let il biti correspond to an
element of B’. A characterization of the bi’s is given in ], but for our purposes it is
enough to know that each bi is an element of I (Z,/). Since the action of b 6 Z[/]
on z Y bi ti B’ is defined by zb bbi ti and the commutator equality

[uv, w] [u, willy, w]

holds for elements of any group, it suffices to verify that the free generators 7z(ai)
satisfy

[Tz(ai), (aj)] (sj 1)ti + (1 si)tj.
Hence B’ is a subgroup of i11 (Z, B)ti.

Let Fd) denote the d-th derived subgroup of the non-cyclic free group F.

THEOREM 2.3 (Sm61kin [22]). Let G F/Fd) be a free soluble group and
ct Aut(G) which is the identity when restricted to F(d-l)/F(d). Then t Inn G.
Infact, c is conjugation by an element of F(d-1)/F(d)

The following corollary follows easily.
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COROLLARY 2.4. Suppose B F/F", where F is afree group and B embeds in
a group G. Let or, Aut(B) such that otln, 1’ Then

(i) ot /3. Inn B and
(ii) ot extends to G ifand only if extends to G.

3. Extensions of free metabelian groups

Recall that an abelian group A is p-reduced if ’nEo9 PnA 0, for some prime
number p. If an abelian group A is p-reduced and torsion free, we denote its com-
pletion relative to the p-adic topology by A. Note that conju,g.ation by b 6 B extends
uniquely to ". Suppose B is free metabelian, B’ < H < B’ and H is B-invariant,
i.e., closed under conjugation by elements of B. The set G H. B of elements of
the form h b forms a group under the operation

(h. b)(g. c) hgb- bc where h, g 6 H, b, c 6 B.

Note however that representation of elements of G in the form h b is not unique;
i.e., G is not a semi-direct product.

LEMMA 3.1. Suppose G H.B, where B isfree metabelian, B’ < H < B’ and
H is B-invariant. IfA is a normal, abelian subgroup ofG then A < H. Hence H is
the largest normal, abelian subgroup ofG and so is characteristic in G.

Proof We first observe using Corollary 2.2, that if b 6 B and x 6 B’ with
xb x, then either b 6 B’ or x 1; i.e., conjugation by elements b 6 B \ B’ does
not leave non-trivial elements of B’ fixed. By the continuity of homomorphisms on
H and the B-invariance of’H, it follows that conjugation by b 6 B \ B’ does not
leave non-trivial elements of H fixed.

Suppose there exists x 6 A such thatx h.b, h 6 H and b 6 B \ B’.
Since A is normal, abelian in G, x A and xe’x- x-xe" A for all c B;
i.e., [c,x-] [x,c]. Hence [c,x]x-’ [c,x]. Since[c,x] 6 Handh 6 H,
[c, x]b- [c, x]. Taking c b, we get [b, h]b [b, h]. This implies [b, h] 1,
i.e., hb h. Since b 6 B \ B’, it follows that h 1. Sox b (B \ B’) O A and
b A for all c B. Since be’b-1 A f3 B’, b. be’b-l be’b- b be’. This means
(bC)b-’ be’, and so, by our first observation, b for all c 6 B. But this occurs
only if b 1, thus giving us a contradiction.

Throughout this section and the next, we adopt the following notation"

R z[?]

R* the group of multiplicative units of R
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hp

the image of the element x under the homomorphism q9

the R-submodule generated by x

the p-height of x in G, i.e., the largest integer k such that

pk divides x 6 G in the torsion free abelian group G

LEMMA 3.2. Suppose B is free metabelian with rank at least three and p
Aut(B’). Ife eR for every e in every basis of B’, then 99 R.

Proof If B has rank at least three, B’ has at least two R-independent elements, say
e and f. Suppose e e and f if, where r, s 6 R. Then (e. f) (e. f)t for
some 6 R, since e. f is in some basis of B’. Because q9 6 Aut(B’), (e. f)t e "fs.
It follows from the R-independence of e and f and Corollary 2.2 that r s.
Now consider an arbitrary element x of some basis of B’. Then either {x, e} or {x, f}
is R-independent. By the foregoing argument, it is clear that x xr. Moreover
99 R*.

B’ (e) # 0 forLEMMA 3.3. If e B’ and 99 Aut(B’) such that e eR and hp
B’some prime p, then there exists eo B’ such that e e and hp (eo) 0 for all

primes p. Moreover e is pure in B’; i.e., ifx B’ and 0 # n such that x e
then x e.

BProof Write e fn (f B’, 0 -fin Z) such that hp (f) 0 for all primes
p. Take e0 f.

If A is a subgroup of an abelian, torsion free group G, we define the pure subgroup
generated by A to be

(A),={x 6G’x 6A for someO#n6Z}.

We use Jp to denote the group (or ring) of p-adic integers.
Lemma 3.4 is an adaptation ofLemma 3 in [5], which is a result in a strictly abelian

setting, and will be used often in the constructions of the next propostion and section.

LEMMA 3.4. Suppose B isfree metabelian ofrank . with 3 < ,k < 2. Let H be
apure, B-invariant subgroup ofB’ with cardinality less than 2 and B’ < H < ’. If
F is a subset ofB with cardinality less than 2n’’ and o B’ "’ is a monomorphism
such that H f3 F 0 and PlB’ R*, then there exists g B such that gO

_
(H, gR).

and F (3 (H, gR). O.

Proof. Since 0 is defined on B’, p extends to B’ by continuity and restricts to
H. IfH H, then there exists g 6 H such thatg q IH, gR). H and
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(H, gR). f3 F 0. Suppose H

_
H. By Lemma 3.2, OIB, R* implies there

exists a basis element e of B’ such that e ’ eR. Using Lemma 3.3, we can assume
Btthat hp (e) 0 for every prime p and, hence, eR is pure in B’. Since HI < 2

there exists 6 Jp such that H f3 H (see [7]). Let g e. If g (H, gR).,
then there exists a non-zero n 6 N such that gn (g)n h gr for some h 6 H,
r 6 R. So (en-r) G H t3 H and en er. Since eg is pure, e 6 eR, which
is a contradiction. Therefore g ’ (H, gg)..

There exist 2 algebraically independent ’s in Jp such that H f3 H 1. So
there exist 2 g’s (g e) such that g q; (H, gR), =. Hg. Suppose each such Hg
has Hg N F :/: 13; i.e., there exists x 6 F such that x h gr for some non-zero
n 6 1, h 6 H and r 6 R \ {0}. Since there are less than 2 choices for quadruples
(n, x, h, r) and 2s choices for g, there must exist distinct and # with He and He,,
such that x h er and x h elzr. The two equations yield #, since r - 0.
This contradiction leads us to conclude that there exists g 6 B’ such that Hg f3 F 0
and g Hg. D

Remark 3.5. The proof of Lemma 3.4 goes through if we restrict our choice of

’s to any subset of E of Jp containing 2 algebraically independent elements.

PROPOSITION 3.6. If B is free metabelian with rank at least three, ) a cardinal
less than 2 and

{1 # o, Out(B) o < .},

then there exists a torsion free, metabelian group G into which B embeds such that
each p does not extend to an automorphism of G.

Proof Suppose B is of rank less than 2s. Apply Lemma 3.4 to H0 B’, F0 0
and tP01, to obtain go 6 B’ such that 80 ’ (B’, gff).. Suppose Ha (B’, gff fl <
). C B%, F {g fl < } and ln’ such that H & F D. By Lemma 3.4,
there exists g 6 B’ such that g (H, gff). =" H+ and H+l F D.
Let H <z H and G H.B. By Lemma 3.1, H is characteristic in G.
Since H is torsion free, abelian and G/H BIB’, G is torsion free metabelian.
For each ( < ), there exists g 6 H+l such that g H+. Moreover,
{g < } H D. Hence each ( < k) does not extend to G.

Assume B is of rank at least 2 with free generating set {xa 6 I }. For x 6 B,
let x x,e’. X,,e" be the unique reduced word representing x, where ei {1} and

x’s need not be distinct. Define for each 6 6 I,

if 6 ti for some
rr(x)

1, otherwise.

By hypothesis each qg ’ Inn B. For each c, choose b 6 B’ such that b ’ bff.
Each b is a product of commutators of a finite number of free generators x. Call
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this finite set of generators S. Since each S, is finite and ,k < 2, [.J<z SI < 2.
Let A0 (S ot < ,k) and define inductively

An (An-l, zra(y)’6 E I, y An-l, ot < ,) for n > 1.

Set A Ui>o Ai and C (x c 6 I, x ’ A). Then B is the free metabelian
product of the free metabelian groups A and C, which we denote by B A C.
Observe that A and C are free metabelian groups with rank less than 2 and at least
2, respectively. If a 6 A, then a Ai and a Ai+l for each ot < ., for some
> 0. Hence q9 [a E Aut A for ot < .. Moreover O[a ’ Inn A since each b 6 A

and b ’ bff. The above argument for the case when the rank is less than 2 can
now be applied to A to obtain a torsion free, abelian subgroup

H (A’,g ct <., a A), CA’

such that H q {g ot < .} 0. Hence each p does not extend to G (H. A) C.

4. Complete, torsion free, metabelian groups

In the previous section we showed that for a given q9 6 Out B, there exists a
metabelian extension G of B to which tp does not extend. Here we show that for free
metabelian B of rank less than 2, there exists a torsion free, metabelian extension
G of B whose automorphisms are precisely its inner automorphisms. Recall the
containment

B’ < (il I (Z, )ti

PROPOSITION 4.1. Let B be afree metabelian group ofrank at least two. Suppose
H is a B-invariant subgroup of B’ and

B’ < H < i6l l (Jp, )ti

lf tp Aut(H. B) such that tpl/4 idH, then (p Inn(H. B).

Proof Suppose p 6 Aut(H. B) such that o114 idH. Let b 6 B and a 6 H.
Then b-lab H and b-lab (b-lab) (b-)ab. So bb-l commutes with
every a E H, and hence bb-1 H. Thus p induces the identity on the quotient
(H.B)/H.

Supposeb, c B \ B’, b h.b andc k.c, whereh, k H. Since
[b, c] B’ < H,

[b, c] [b, c] h(V-1)k(l-’)[b, c] implies hfi(-l) k(’-)
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In particular, if/ -, then h k. By hypothesis, we identify H with a subgroup
of tiE I (Jp, )ti and let h niti and k Y miti, for some hi, mi E I (Jp, ).
Now

ni(- ’)ti (niti)
(-1)

(miti)
([-1)

mi(- ’)ti

impliesni/(?-l) mi?( 1)foreachi. Ifni,mi arenonzero, thenni ni(b- l)
’, Jp [_/)], since Jp [/] is a unique factorizationand mi mi " 1), for some ni mi E

domain (see [12]) and elements of l(Jp, B) are non-units. Hence, m ni?-.
Since Jp[[] has no zero divisors, ni 0 if and only if mi 0. Let x Y niti

iEi I (Jp, )ti. Then h _, n ([ l)ti (x)-1) and k , ni[?- ( l)ti
(x)-’-1). So b x-)b (b)x- and c xe-’-)c (c)x-. The elements
xb-) and x-l) are in H, since H is B-invariant. If/ # ?, then- and ?- have
as greatest common divisor; i.e., there exist r, s Jp[[] such that (/- 1)r +(?- 1)s
1. Hence x x-l)r x-I)L 6 H. Therefore o is conjugation by x-b for some
x 6HandbE B. [21

COROLLARY 4.2. Assume B and H have the same properties as in Proposi-
tion 4.1. Ifct, Aut(H.B) such that ult4 lt4 then u t3. Inn(H.B).

Proof. Apply the proposition to

LEMMA 4.3. Suppose G H B, where B is afree metabelian group ofrank at
least two, B’ < H < B’ and H is B-invariant. Then no automorphism ofG induces
inversion on H, i.e., if tp Aut(G) then Plt-/:/: -1 id/4.

Proof Supposetp 6 Aut(G) andtpl/ -1 .idt-/. Leta E H andb 6 B.
Then b-a-b (b-lab) (b-)a-lb implies that bb-l commutes with every
element of H. Hence bb-1 H. Since b is an arbitrary element of B, this means
that p induces the identity on G/H.

Letb, c 6 B and suppose b h.b,c k.c, forsomeh, k H. Thenb2 h.
b h-lh.b b. Hence tp2 ida. Now [b, c] [h.b, k.c] [h, c]b[b, c][b, k]’.
Since [h, c], [b, k] E [G, H], it follows that [b, c] [b, c] mod [G, HI. Hence
[b, c]2 6 [G, H]. By commutator calculus, [b, c]2 [b, c2] mod [G, G’]. Since
G’ < H, [b,c]2 [b,c2] mod [G, H]. Thus [b,c2] 6 [G,H]. This yields a
contradiction when b and c are chosen to be free generators of B. rl

We now have the necessary tools to prove our first main result.

THEOREM 4.4. Let B be afree metabelian group of rank , where 3 < ,k < 2’’.
Then there exists a torsion free, complete, metabelian group G embedding B, with
G containing an abelian and characteristic subgroup A of cardinality 2 such that
G/A BIB’.
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Proof Since 0 _< IB’I < 2s’’ and I’1 2s’’, there are at most 2s’’ monomor-
phisms from B’ to B’. Let/7 {(p,, 6 Mon(B’, B’) (p ’ R, ot < 2"}, where
Mon(B’, B’) denotes the monomorphisms B’ --+ B’. Note that/7 contains the auto-
morphisms of B’ induced by Out B.

Assume inductively that for some ot < 2’’ we have a continuous ascending chain
of pure R-submodules H/ (/ < or) of " and elements g, 6 B% (?, + < or) with the
property that for each

RH/ B g "?’ < fl I fl

H fq {g V < } f3 II()

The assumption is vacuously true for oe 0. If ot is a limit ordinal, define
H,, [,-Jt<,, Ht" So I (or) and I I (or) clearly hold. If ot is a successor ordinal, say
ot =/ + 1, apply Lemma 3.4 to H H/, (p (p/ and F {gY ?, < /3}. If we
take g/ to be the element g provided by the lemma, then I (or) and I I (or) are satisfied.
Define

H2,, (B’, gff "or < 2s‘,), and G H2(,.B.

G is clearly torsion free, metabelian with trivial center. By Lemma 3.1, H2,, is
characteristic. Moreover, it is abelian and G/H2,, BIB’. It suffices to show
Aut G Inn G. Let (p 6 Aut G. Then (g,,)o 6 H2,, for all oe < 2‘,. By the choice
of the g’s, (p ’ 27 and (Pin’ is an element of R. By continuity, (Pln2,, is an element

of R. Since the units of R consist of the trivial ones, i.e., R* {4-1} x /}, then,
by Lemma 4.3, (PlH is an element of B. Recall from Lemma 3.4 that each element
g,, e- for some e 6 B’ and s% 6 Jp. Since B’ is a subgroup of @ietl(Z, )ti,
each g c= iI I (Jp, [)ti and H2,, is a subgroup of iet l (Jp, )ti. Therefore, by
Corollary 4.2, 99 Inn(G). I--!

Remark 4.5. Let E be a set of algebraically independent elements of Jp with

cardinality 2s‘,. We can find a family {E C E ot < 22’, of almost disjoint sets
E, with lEvi 2’’ and IE= Cq Et < 2‘’ for all or, :/:/3 < 22’,. By Lemma 3.1 and
Remark 3.5, we can construct a rigid system of 22‘’ groups G satisfying Theorem 4.4;
i.e., Hom(G,, Gt) 0 for ot - . In particular, these groups are pairwise non-
isomorphic.

5. Realizing abelian and UP groups as Out(G)

The results in this section are motivated by a naturally occurring and simple con-
struction, namely the quotient of the automorphism group of a direct sum of two
abelian groups modulo its center, which we illustrate below. This translates the prob-
lem to a question in ring and module theory. We generalize this example to obtain
a realization theorem using a result (see [4] and [6] concerning the endomorphism
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rings of cotorsionfree abelian groups, i.e., a group containing no copies of, Z/pZ
or Jp for each prime p.

mExample 5.1. Let S {r m,n 6 Z} be a subring of Q and let M be an
abeliangroup such thatM

_
S and EndM S. Define N SM. Then

G Aut N/Z(Aut N) is metabelian and complete.

Proof Let M be an abelian group such that M S and End M S. Then M is
an S-module and Hom(M, S) Homs(M, S) 0. Since N S @ M,

EndN M S and AutN - M S*

where S* is the group ofmultiplicative units of S. Observe that G (Aut N)!Z(Aut N)
is isomorphic to the semi-direct product M > S*. Identifying G with M > S*, we see
that G’ M. Clearly G has trivial center. It suffices to show that Aut G Inn G.

If x, n M and r, s 6 S*, the action of xr G is as follows:

l’l n and s (x -ixs-I)r S.

Suppose 99 6 Aut G. Since M is characteristic in G and End M S, olt 6 S*.
Let s 6 S* and s mr for some m 6 M, r 6 S*. If n 6 M, then

mntr- n -tr mr (sn) (nS-’s) n ’tmr mn r

n Hencer--sands ms Note thatS*implies ntr-I t. {4-2k k 6 Z}.
In particular, 2 m.2 and (-1) x. (-1) for somem, x 6 M. Since
(2. 1)) (( 1).2) m.x2-’ -1 =m4.--xm and sox We now have

(-1)--m4.(-1) n=n (n M) 2 m 2.

An easy calculation verifies that o is a conjugation by the element m-2t- M > S*.

We remark that there exists a proper class of non-isomorphic, torsion free, abelian
groups M such that End M S (see [4]). An abelian group A is said to be p-divisible
(p-torsion free) if Ap A (ap iff a 1). If H is a subgroup of an arbitrary
group G, we denote the normalizer ofH in G by N(H).

PROPOSITION 5.2. Let M be a 2-divisible, 2-torsion free, abelian group and P
be an abelian subgroup ofAutM with idM or 2. idt in P. Define G M > P.
Then the center ofG is trivial and Out G NAutM (P)/ P.

Proof. Since P is abelian, G’ c__ M. Now

(aYa -1 [y, a-1] a M, y P} c_ G’.
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If either idg or 2. idM is in P, then G’ M since M is 2-divisible and 2-torsion
free. Hence M is characteristic in G. Since the action of P on M is faithful, the
center of G is trivial.

Observe that if tp Inn G, then q)lM P. Moreover, if q) Aut G then tPlM
NAutM(P). If rn M, p P and 991M f AutM,

mfp (mp) (pmP) pOmPf

This implies mf mpf(p-’) for all m 6 M. If (p-l)o moPo for some m0 6 M,
Po 6 P, then f pfPo. Hence f-1 pf p-I and f 6 Nautg (P). Conversely, if

f NAutM(P), then there exists q) 6 Aut G such that q)lg f and pO pI for all
peP.
We now have the following homomorphism:

Out G -- NAutM(P)/P
q9 - qglM

It suffices to show that the kernel is trivial. Suppose 99 Out G such that q)lM idM.
Substituting f idM in the preceding calculation, we get rn mp(p-I) for all
rn M and p P. This means that p p.M; i.e., 99 induces the identity on G/M.
Let p, q P with p0 pm andq qn forsomem, n M. Since (pq)e (qp),
mqn nPm. If p -1 idM, then n2 mm-q and q q(mm-q)2-’ qm2-1 for
all q 6 P. If p 2. idM, then n mqm-1 and q qm- for all q 6 P. In either
case, we get 99 6 Inn G. Hence the above map is an isomorphism.

At this point it is clear that the problem reduces to determining the units in End M.
A ring R is said to be a cotorsion free ring if (R, +) is a cotorsion free group. We
recall the following result on endomorphism rings.

THEOREM 5.3 ([4], [6]). Suppose R is a cotorsionfree ring,/z =/x > IRI. Then
there exists a cotorsionfree abelian group A ofcardinality Ix such that End A - R.

In particular, if F is any group, there exists a cotorsion free, abelian group M such
rnthat End M S[F], where S {g; m, n Z}. The group M is necessarily 2-

divisible and 2-torsion free. The following theorems now follow from Proposition 5.2
and Theorem 5.3.

THEOREM 5.4. Every abelian group can be realized as the outer automorphism
group ofa metabelian group with trivial center.

Proof. Let A be any abelian group. Then there exists a free abelian group F
with F/U A for some U < F. By Theorem 5.3, there exists a cotorsion free,
abelian group M such that End M S[F]. Now AutM (S* x F). Define
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G M > (S* U). Clearly G satisfies the hypotheses of Proposition 5.2. So it
follows that

Out G NAutM(S* U)/(S* U) (S* F)/(S* U) - FlU A. []

UP groups (see [13]) are necessarily torsion free. If K is a UP group, then the
units of S[K] are the trivial ones, that is S* K.

THEOREM 5.5. Every UP group is the outer automorphism group ofa metabelian
group with trivial center

Proof. Let K be a UP group. By Theorem 5.3, there exists a cotorsion free, abelian
group M such that End M S[K]. Define G M > S*. By Proposition 5.2,

OutG (S* K)/S*’ K. [2]

Since S* - Z/2Z Z, the metabelian groups G in Theorems 5.4 and 5.5 realizing
a given abelian or UP group have torsion part t(G) - Z/2Z. If we were to insist that
G be torsion free, then the resulting outer automorphism group Out G is isomorphic
to the direct sum of Z/2Z and the prescribed abelian or UP group.
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