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LOCAL PROPERTIES OF SELF-SIMILAR MEASURES

MANAV DAS

I. Introduction

Let (X, d) be a complete, separable metric space and let # be a Borel probability
measure on X. Let B, (x) be the closed ball of radius centered at x. For x 6 X,
ot _> 0 we are interested in the quantity

ot lim
log #B (x)

0 log diamB (x)’

if the limit exists, ot is often referred to as the local dimension of/z at x. Typical
questions involve the conditions on the measure that would ensure the existence of
the limit, characterization of points for which this limit exists, the range of possible
values for the local dimension and so forth. Several authors investigated this phe-
nomenon using thermodynamic formalism. Cawley and Mauldin [3] were the first
to provide a geometric measure-theoretical framework for such a decomposition for
Moran fractals. Attention has primarily focussed on the situation where X is taken
to be d-dimensional euclidean space, and/z is a self-similar measure with totally
disconnected support. It is therefore natural to ask if such a decomposition may be
carried out for these measures by weakening the condition that their support be to-
tally disconnected, but requiring that they satisfy the open set condition (OSC). This
problem was posed in [7, Question (d)] and [9, Question 7.8], among others, and was
finally settled by Arbeiter and Patzschke ], for a random self-similar measure.
We present an alternate treatment of the above questions. We restrict our attention

to the case where X IRa and/z is a graph directed self-similar measure satisfying
the open set condition. Our setting is therefore more restrictive than the random
setting in ], but more general than the class of self-similar measures. Moreover our
approach yields stronger results, and may be readily generalized to a broader class of
measures that includes the ones stated above. We are able to establish some explicit
local properties, which enable us to see the geometric measure-theoretic interplay
between the sets that are used to construct the measure (called cylinders), and the
sets used to study the local geometry (the balls). This approach allows us to transfer
results about Hausdorff [4] and Packing dimensions [5] from the string space (which
is easy to analyze) to the metric space in question. The paper is arranged as follows:
Section 2 describes the setting. Section 3 begins with the notion of stoppings. We
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then investigate the local properties. We apply these results in Section 4 to study the
local dimensions.

2. Preliminaries

Let (V, E) be a directed multigraph, where V is the set of vertices and E is the
set of edges. For u, v 6 V, there is a subset Euv of E known as the edges from u to
v. Let Eu vv Eo. For e 6 E, let i(e) denote the initial vertex of e, and t(e)
be the terminal vertex of e. A path in the graph is a finite string ?, ?, ?’2... ?’k of
edges, such that t(?’i) i(?’i+). Let Ek be the set of all paths of length k that begin
at u and end at v. Let Euk) be the set of all paths that are of length k and begin at u.
Let E, be the set of all finite paths of any length that begin at u and E* [..Jv E,.
An infinite string over the alphabet E corresponds to an infinite path if the terminal
vertex for each edge matches the initial vertex of the next edge. Let E’) be the set
of all infinite paths starting at u V; let E() [,_Jv E().

v(,o) such thatFor ot 6 E*, a 6 E(’), we say that ot -< o" if there exists r 6 t()

a otr. If ot E*, we let [or] {a E(): ot -< a} and call it the cylinder set
generated by or. Let a Ik denote the finite string comprising of the first k symbols
ofa.

Let ((V, E), (X,)uv, (Se)e., (re)eE, (Pe)eE), be a Mauldin-Williams (MW)
Graph with probabilities. Due to rescaling, we may assume that re < l, ’e E.
Also, as a result of strong connectedness, Pe < 1, Ye E. Let Xu, u V, be
compact subsets of d. There exists a unique invariant list (Ku)uv, where each Ku
is a nonempty compact subset of X, satisfying

Ku U Se(Kt(e)), YU . V.
Eu

See [6] for details.
G is said to satisfy the open set condition (OSC) iff there exists a list (U,),v of

sets, where U, is a non-empty, open and bounded subset of X, satisfying

(i) UeE, Se(Ut(e)) C Uu, Yu V.
(ii) Se(Ut(e) (’] Se,(Ut(e,)) O, [ u . V, e, e’ E, e :/: e’.

Further, if U, A Ku :/: 13, Yu 6 V, then G is said to satisfy the strong OSC (SOSC).
These notions are extensively discussed in 10] and [12] among others.

By the boundary of a set A

___
d, denoted 0 A, we will mean the collection of all

points belonging to the closure of the set A and to the closure of the complement of
A in d.

Let J be a non-empty compact subset of X. Its existence and properties have
been guaranteed by Schief [10] and Wang [12]. Since int(Ju) # 0, _.d(Ju) > O,
where d denotes the d dimensional Lebesgue measure. For e ele2.., en E*,
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we let S(e) Set o Se2 Se,,, and let

J(un) U Se(Jt(e))"
eEn)

Then

gu NJ(un’.
n=l

For each u 6 V, there is a model map hu" E) Xu, defined so that hu(cr)
is the unique element of the set Nn%I Strln(Jt(rln)). So K hu(Eu’)). For r
rlr2...rn 6 E*, we let K(r) Sr(Kt)), r(r) r(rl)r(r2)...r(rn), p(r)
p(rl)P(re).., p(rn), rmax max{r(e): e 6 E}, rmin min{r(e): e 6 E}, Pmax
max{p(e): e 6 E}, Pmin min{p(e): e 6 E}.

Let (#)uV be the unique, invariant self-similar measure list corresponding to

(K)uV, and for q 6 , let/2q) denote the multifractal measures. For details
concerning these measures, please see [7]. For our purposes, we need a measure
defined for the entire graph. This may be done using the stationary distribution as
follows.

Let A (q,/3) be the square matrix with rows and columns indexed by V:

Auv(q, )

_
p(e)qr(e).

eEuv

For a given q, there exists unique/ so that the spectral radius of A(q,/3) is 1. Since
A(q, ) has spectral radius 1, there exist positive right and left eigenvectors pv, ,ko
with

Z Y P(e)qr(e)/pv Pu,
vV eE.

Yu6V.

Z .up(e)qr(e)J =.v, Yv V.
u_V eEuv

By the Perron-Frobenius Theorem [11], ., ,or > 0. Let P(e) plp(e)qr(e),oo
and let

P’ (e) ru P (e)

where e E., r. ..p., u V. Then

P’(e) Z..(vv Z p(e)qr(e),o)
u,vV eEuv uV eEuv

)P 1.
uV
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For y E*, we let

/2(q)([Y]) )i(,)P(Y)qr(Y)# pt().

This gives us a unique probability measure/2q) on E). It is therefore clear from
the uniqueness of the extended measures that

](q )(Eu(w))
For a given q, let (q,/) be the spectral radius of A(q, ), and let/3 be the unique

value such that (q,/3) 1. This defines/3 as an analytic function of q. Define
ot - and f(ot) qot +/3 We may sometimes write ot cu to emphasize its

du
dependence on the measure/z. These functions have been studied in [7].

For x Ku, ot , ot > 0, we will call ot the local dimension of/z at x if

log/z(B. (x))
lim
--,0 log diam(B (x))

Note that the existence of the limit is part of the definition. Most of our attention will
be directed toward the following sets:

K’) {xKu" lim
lg#u(B(x)) }

{ logp(alk) ]/.) a 6 E)" lim =or
k log r(cr Ik)

Since we will be dealing with ratios of logarithms, we will adopt the following
conventions. For 0 < 0, g" < 1,

log 0 log log
log 0 log g" log 0

log 0 log log 0
log g" log log

log 0 log
log 0 log

=0,

3. Local structure

Fractal measures are often constructed using an iterative process. One of the
consequences of the iterative process is the .construction of a collection of sets C,
called cylinders. In our case, the cylinders are the sets Ju(r), u 6 V, r 6 E,.
Computations involving the measure are carried out more naturally by using these
cylinder sets. But for a given metric structure, we are really interested in deducing
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the behaviour of the measure with respect to the closed balls, B. This immediately
leads us to the following questions. For x Ku, rr h-l (x):

1. When does lim
logtxu(B(x))

lim
logp(crlk)

c?
0 log diam(B (x)) ko logr(crlk

2. Does the Hausdorff dimension of a subset of Ku when computed using B
coincide with that using C?

3. Does the Packing dimension of a subset of Ku when computed using B coincide
with that using C?

Questions 2 and 3 are answered in [4] and [5] respectively. In this paper, we prove
the following result:

MAIN RESULT. Let u V. There exists a set Du such thatfor all x Ku \ Du,

lim
loglzu(B(x))

lim
logp(trlk)

0 log diam(B(x)) k--.o logr(alk)

whenever one ofthese limits exist. Moreover, #(uq) (Du) 0, Yq .
3.1. Stoppings. The notion of stoppings arose from the idea of mapping the set

Ju into itself, and identifying strings r of shortest length, so that Ju (r)
_

intJu (r 1).
Although our definition is more restrictive than the one in ], it turns out to be more
useful in obtaining exact results.

Let Eu(1) {el,ez ej}’, Ju(ek) Sek(Jt(ek)), k 1,2 j. Note that j
depends on the particular choice of u 6 V. Let r 6 E,. Then r is.called a u-stopping
iffK(r) N J(e) 0, k j; k rll. Let N(u) {v V: Euo va 0}.

LEMMA 3.1. Let SOSC hold. Thenfor each v N(u), there exists rv E’ such
that erv is a stopping for every e Euo.

Proof Let u V, v N(u). By the SOSC, intJv N Kv -7/: 0. Thus we may
choose xo 6 intJo f3 Ko. By the definition of ho and our choice of xv, cro h- (xo)
must be unique. For each e Eo, Se(xo) Xe(V) intJu N Ku. Therefore, by the
same reasoning as before and by self-similarity, re(V) h- (Se(xo)) must also be
unique. Now

Xe(U) OJ,(e,) OJu(e,,)for any ek, ek, 6 Eu(1).

Hence there exists ke(v) 1, smallest, such that

J,(Cre(v)[ke(v) + 1) N J,(ek) 13 for every ek E(), ek # e.

Let k(v) max{ke(v): e Euv}; rv (h-l(xo)lk(v)). Then, by construction,
r E, and er is a stopping for every e
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Remark 3.2. It is clear that if r is a u-stopping, and if o -< r for some r 6 Eu,

then r is also a u-stopping. Thus we can take

k, max{k(v): v N(u)}

and finally

m----- q-max{ku: u V}.

We then obtain that for each u 6 V, v 6 N(u), there exists ero 6 Eo, such that err
is a stopping for every e Euv, and that moreover, lerol m, Yu V, v N(u),
e Euv.

For each u 6 V, v 6 N(u), let ro be the smallest (in terms of length) stopping
guaranteed by Lemma 3.1. Let, {s 6 E" Isl Irol, es is a stopping for every e 6 Ev}.

So 0, by Lemma 3.1, Io < o. Finally, let

S {es: s , v N(u), e 6 E,}.

Let S [..J,v Su. So for every r 6 S, rl m.
Then S is the set of stoppings of length m.
The idea is that we take an infinite string and look for the occurrence of a finite

string from S. Thus we get a finite cylinder, and using self-similarity, we would know
the geometry in the neighbourhood of this cylinder. We make these ideas precise in
the next section.

3.2. Geometric results. Let r 6 Su. Suppose r er r2... rm-l, where e
for some v 6 N(u). Then r- erl rm-2. Let

d(r) min{d(x, y)" x 6 0Ju(r), y OJ(ek), ek E(), ek :/: e}.

If r (r-) < d(r) let N 1. If r (r_) > d(r), then choose N 6 N, smallest, such
that r(r-) Nrmax < d(r). Clearly, such Nr exists.

LEMMA 3.3. Let u V, r E* such that t(rl) u. Let r S, r
erlr2.., rm- where, e

_
Eo,for some v

_
N(u), and

d(rr) min[d(x, y): x OJi(,)(rr), y OJi(,)(rek), e E(), e e}.

Then

(i) d(rr) r(r)d(r),
gr(ii) r(rr )rmax < d(rr).
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SO

(ii)

Proof (i) Since Ju(r) and Ju(ek) are compact sets, there exists x 6 0Ju(r),
y OJ,(ek), ek e, such that d(r) d(x, y). By self-similarity,

d(rl r) d(Sr, (x), St, (y))

r(rl)d(x, y)

d(rl r) r(rl)d(r).

Nrr(rlr t’max r(rl) r(r-) Nrmax
< r(rl) d(r)

d(rl r) by (i).

The following definitions are motivated by [10] and [2].
Given k E, x K f)J(k), ot > 0, let

I (k, x, or) {r 6 E," r(r) < r(k) < r(r-); Ju(r) A Ba(x) 0},

I2(k, x, or) {r 6 Eu. p(r) < p(k) < p(r-)" Ju(r)f)B(x) 0},
"o13(k, x, or) {z" Eu. Ivl Ikl; J(r) C B(x) 0},

I(k) {r 6 Eu. r(r) < r(k) < r(r-)" J(r) Ju(k) 0}

/2(k) {r 6 E," p(r) < p(k) < p(r-); Ju(r)f)J(k) 5 0},

13(k) {r E," Irl Ikl; Ju(r) Ju(k) k }.

LEMMA 3.4. Let u V, r E* such that (rl) u. Let r Su. Then:

(i) lj(rr)= {rls: s 6 lj(r)}, j 1,2, 3.
(ii) 3?," #1j(r r) < ?’, ’v’ r 6 E*, t(r) u. Yr 6 S., Yu 6 V, j 1,2.3.

Proof (i) Follows from the definitions by using self-similarity.
(ii) Follows from (i) by choosing ?, as follows"

?’ maxuv(maxj=,2,3(max{#1j(r)" r S})) r-1

LEMMA 3.5. Let u V. Let SOSC hold. Let cr rrr2 where r E* with
Nrt(rl) u, r Su, r2 Et(r) where Nr maxrsNr. Then there is a constant ?’
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such thatfor any cr E* as above, any x Ji(r,)(a), any u V, and any > 0
with ot < r(a-), and x Ji(r,)(a) c_ B(x), we must have

#1j (a, x, or) < ?, for j 1,2, 3.

Proof
similarity,

Fix j 6 {1,2, 3}, u 6 V. If a ritz2, then by Lemma 3.3 and self-

Ij(a,x, or)= {rs" s 6 lj(rr2, sl(x), 8), 8 < r(rr2-)}.

Itsufficestoconsiderlj(rr2, x, ot), whereot < r(rr) andx 6 J,(rr2)___ B,(x). By
Si’(Nr)our choice of Nr since r2 6 -t), we have r(rr2-) < d(r). Thus B(x) c_ J,(rll).

And finally

#Ij(vr2, x, ) IE(II+Nr)I IEI (m+Nr) < .
3.3. Measuring the overlap. In this section, we show that under the assumptions

of the OSC, the measure of the intersection of any two adjacent cylinders is zero. We
begin with some definitions.

Let a 6 E(’). Let Ai be the event that oioi+l.., o’i+m_ S. Let X 1ai, and
suppose j, (a) is chosen so that

jk(a)

E Xi-’k-I-1.
k=O

If x 6 K. such that h-(x) a is unique, then let

sk(a) sk(x) j,(a) + Nr + m 1.

When a is fixed or its meaning is clear from the context, then we will write jk (a) jk,
sk (a) sk. Let

’() U K"()’
uEV

Du {a e E(u)"

D-- UD.,
uEV

K=UK..
uEV

jk(a)

We begin by finding the support of ](q).
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LEMMA 3.6. For q, ot as defined earlier we have

/(q)((a)) 1.

Proof.

And thus

For each u 6 V,/2(,q)(/u()) (see [71). So

(u()) (q)(E())/%(q) IE.() ---u

Z P’(e)
vEV eEEuv

*r’Z Z P(e)
vV eEuv

LEMMA 3.7. Let G satisfy 0SC. Then tr, r E*, q N, we have:

(i) /A(q) (K (a) 71K (r)) 0 if a 7 r and r 7 a.
(ii) /z(q)(K(o’))= P’(a).

Proof This is a generalization of [8, Lemma 3.3], where it was proven for the
self-similar case. The same proof works with the appropriate modifications for the
graph-directed case.

COROLLARY 3.8. /z(q){x Ku" h-l(x) is not unique} O.
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Proof

So,

Clearly, h-l is not unique if and only if

3s, E,, s 7 t, 7( s, such that x K (s) f) K (t).

By Lemma 3.7, we obtain the desired result.

{x K." h-(x) is not unique} c_ U N (K(s) K(t)).
s,tEEt,1),st

3.4. Nestedness ofballs and cylinders. Given k 6 N, let

ek(x) ek(r) max{d(x, y): y OJ,(rlk)}
ml(rlsk) max{r(t): ll(Xlsk, x, e,,)}.
m2(crlsk)- max{p(t): 12(also, x,

LEMMA 3.9. Let x K such that h (x) is unique. Then:

(i) x 6 J( Isk).
(ii) r(lsk) < d(lsk Nr).
(iii) x Ju(alsk) B% (x) and

K B% (x)
tl(sk,x,e.

(iv) x 6 J,(als) B% (x)and

K, N B% (x)

_
(v) lim,__,

log ml (or [sk)
log r(cr Isk

J,(t) c_ J,(rljk- 1)

_
J,(o’lj-l).

U J,(t) c_ J,(rljk- 1)

_
J,(rljk-l).

tEl2(cr [sk .X,s/

log m2(r [sk)
lim
k-,o log p(cr [sk)

Proof (i) Since hffl(x) cr is unique, we must have x q 8J,(e) C OJ,(e’)
for every e, e’ 6 Eu(1). So by Lemma 3.1, there exists 1"1 G E, 1" G S, such that
x 6 J,(rlr) C J,(cr[1). Let j 11"11-t-1. Suppose jk has been chosen. Since h21(x)

p(1) Again,isunique, we must have x OJt(lj)(e)OJt(,lj)(e’) forevery e, e’ 6 -t(,lj)
by Lemma 3.1 there exists Et(lj.), 1" S, such thatx 6 J,(rlr2...rjt1") C
J,(r [jk). Let jk+l jk + Irl + 1. Thus, inductively, we see that if h-I (x) is unique,
then Xk for infinitely many values of k. Since sk j, + Nr + m 1, we see
that x 6 J. (r Is).

(ii)

r(rlsk) < r(rlsk- 1)

Nr< r (r [sk Nr 1) rmax
< d(cr Isk Nr) by Lemma 3.3(ii).
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(iii) Since x 6 Ju (r Isk) (by part (i) above), for any y O Ju (or Isk),

d(x, y) < r(rlsk) < d(rlsk Nr).

By (ii) above,

,k < d(rlsk Nr)

min{d(yl, Y2): Yl OJu(rlsk- Nr), Y2 8Ju(Crlr2...crjke)}

it?(where e 6 "t(crlj,)’ e # O’j,+l. And so,

Ku Bs (x) c_ U Ju (t)
tEl (r Is,X,sk

Ju(crljk- 1)

___
Ju(aljk-).

(iv) Same as (iii).

(v) Recall that ml(als)= max{r(t)" ll(alsk, x,,)}. Then logml(alsk) <

log r (a Isk) < log m (a Is) log rmin SO

log m (a Is) log rmin log r (a Is)
< <1

log m (a Is) log m (or Is)

and therefore

lim
logr(crlsk)

1.
log m (or Isk)

The limit involving the measures follows in the same way. !--!

3.5. Local dimension using stoppings.

(x) is unique, we havePROPOSITION 3.10. For any x Ku such that r h

log/zu (B, (x)) log p(cr Is)
(i) lim inf lim inf

log diam(B (x)) log r(cr Is)

log Mu(B,s, (x)) log p(cr Isu)
(ii) lim sup lim sup

k log diam(B.,, (x)) k log r (r Isk)

Proof By Lemma 3.9(iii),

Ku B, (x) c U Ju(t).
tEl (r Isk,X,s
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By Lemma 3.5, diam(Bsk (x)) <_ yml(crlSk). So

log lz,(Bs (x)) log p(r Isk
logdiam(B% (x)) log ’ml(rlsk)

log p(crls) logr(crlsk)
log r(r Isk) log ,m (also)

By Lemma 3.9(v),

log lzu(B (x)) log p(cr Isklim inf < lim inf
% log diam(B% (x)) sk logr(crlsk)

By Lemma 3.9(iv),

K,, (q B% (x) c_ U
tIz(rlsk,x,%

By Lemma 3.5, #u(B% (x)) < ’m2(ls). So

Ju(t).

log lzu(Bsk (x)) log ?’m2(cr Isk)
log diam(Bs (x)) log r (or I&,)

By Lemma 3.9(v),

log lzu(Bs (x)) log p(r Isk)
lim inf > lim inf
% logdiam(B% (x)) sk logr(crlsk)

3.6. Relative measures of successive cylinders. Let x Ku. Suppose cr

h- (x) is unique. For each e 6 E, let N(x, e) be the number of times edge e is
traversed in the first k steps of r Let p(x, e) limk Nx,e) if this limit exists.k

For0 < p(x, e) < 1,

lim
log P(crlk) 2eE p(x, e) log p(e)

, logr(alk) 2eE p(x, e) logr(e)

Let S(x) E be such that:

(i) Nk(x, e) --+ cxz as k -+ cxz for every e 6 S(x).
(ii) supk N(x, e) < cxz for every e E \ S(x).

LEMMA 3.11. Let x Ku. Suppose there exists a sequence (lk) satisfying:

lk-I(i) lask cxz.

(ii) Ntk (x,e) p,
l - (x, e), Ve S(x),
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where 0 < p’(x, e) < 1. Then

log r(r Ilk-l) log
lim lim

logr(trllk) logp(rll)

Proof Let 31 > 0 such that 0 < p’(x, e) 31 < p’(x, e) + 31 < 1, Ye 6 S(x).
Let 0 < 3 < 31. Then, for each e 6 S(x), there exists Ne N such that k > Ne,

p’(x,e) -3 < Nlk (x, e)
< p’(x, e) d- 3.

Let M maxess(x)Ne. Then for k > M,

p’(x, e) 3 < Nk (x, e)
< p’(x, e) + 3.

Thus

lk_l(p’(x, e) + 3) logre < Nl_ (x, e) logre < lk_l(p’(x, e) 3) logre, Y e S(x).

Then

YeS(x) lk-l(p’(x, e) 3) logre

YeS(x) lk (p’ (x, e) + 3) log re
YeS(x) NI-, (x, e) log re
eS(x) Nl (X, e) log re

eeS(x) lk-l(p’(x, e) + 3) logre

eS(x) 1 (p’ (X, e) 3) log re

And so

lim
lk-I eS(x) (P’(X, e) 3) log re
l eS(x)(P’(X’ e) + 3) log re

< lim
EelS(x) Nli-, (x, e) log re

k eS(x) Ntk (x, e) log re

l-I YeeS(xl(P’(x, e) d- 3) 1Ogre
< lim

1 esS(x(P’(X, e) 3) Iogre

lk-Since 1, we obtain

eS(x) (P’ (X’ e) 3) log re
YeS(x) (p’(x, e) + 3) log re

log r(r I/-l)
< lim

logr(crl/)

eS(x) (p’(x, e) + 3) log re
YeS(x) (P’(X’ e) 3) log re

Since 3 > 0 was arbitrary, we let 3 0 and obtain the desired result, r-I
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3.7. Measuring the discarded set.

PROPOSITION 3.12.
measure on E().

For each q , _(q) is an ergodic T-invariant probability

Proof. This proof is the same as that of the ergodicity of #* in [12, Proposi-
tion 2.2.1], with very few modifications. I-1

We may think of D as the set of points that are too "close" to the boundaries of the
cylinder sets. Corollary 3.8 showed that the overlap has measure 0. We now show
that the set D also has measure 0.

PROPOSITION 3.13. Let D be as before. Thenfor any q , we must have

z(q) (D) =0.

Proof Let cr E(). Then

<.
N>m n>N

Thus D is a Borel subset of E). Moreover it satisfies T-D D. By Propo-
sition 3.12, (q)D 0 or 1. Let lo min{lvl" v is a path from u to v}. Then
strong connectedness of the graph implies that l is defined for each u, v 6 V.
Letl max.o/,. Recall thatm [r[,r 6 SandletL max(1, m), and let
M L(L + 1)... (2L- 1). Consider the matrix A’ indexed as

a’o(q, ) p(y)qr(y).
_(M)

By our choice of M, we obtain a new graph G’ whose edges are given by paths of
length M in G. G’ is strongly connected, and it contains all possible transitions in G.
Thus A’ is ieducible. Modify S, the set of stoppings as follows:

r 6S’ rl=Mandthereexistsv6S, vr.
Let g: E) be given by g(v) s,. For a 6 E), let a fflff2

where ai 6 E). Let X g(ai). Then (Xi) is again an ergodic Markov chain, with
stationary distribution , as before. By the ergodic theorem (see 11 ]), for q)-a.e.

Ew),
k-Ii=0 g(Yi)

k u,vV

And soeach stopping r 6 S’ is visitedP(r) > 0. Buta 6 D implies that

0 for every r 6 S’. Thus, q)(D) < 1.



LOCAL PROPERTIES OF SELF-SIMILAR MEASURES 327

4. Local dimension

4.1. Existence ofthe local dimension: A consequence.

PROPOSITION 4.1. Let x Ku. Let cr h-l (x) be unique Ifr D then:

Proof (i) Suppose o" 6/() Then limk log p(crlk)
log r(al,) or, and so

U(x,e) log p(e)
lim

eS(x)
U(x,e) log r(e)k ZeuS(x) k

Let S’ be as in the proof of Proposition 3.13. Since r D, there exists r 6 S’,
such that lim supk

Uk(x,) > 0. Look at the first time r shows up in the string cr Call
it T. Then for some 6 {0, M }, r must occur infinitely often at times
T+l+kM. So we get

lim
-eS(x) Uk(x,e) log p(e)k

Uk(x,e) log r(e)k ZeuS(x) k

and so

which implies

lim
Zeus(x) Nkg(x,e)k log p(e)

k ZeuS(x) NkM(x,e)k log r(e)

y _..(4)
N(x,t) log p(r)

lim
Y,,v ,,o

NkM(X V)u,oev r-’’’ log r(r)uv k

From this it follows that there exists r 6 S’ such that limk (.’) p’(x r) exists,k
and is non-zero.

Let s be the (k + 1)-st occuence of r in a. Then

N, (x, r) (x r)s_= s_ -’ 1.
(x r) N,_ (x r)+lsk Ns_ sk

But sk’_ --<: Sk- < Sk Sk: The result follows from this.
(ii) Suppose x 6 K(). Then

log/xu (B% (x))
lira

log diam(B% (x))
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By Proposition 3.10, we get

lim
log p(a Isk)

k log r(a Is)

By the same reasoning as in part (i) above, there exists r S’ such that limk N,, r)

SkM

p"(x, r) > 0. Now

SkM SkM N,k, (x, r) N,k,4_,, (x, r)

SkM-1) NsM (x, r) /Vs,,_l SkM-1)

But Ns_)(x,r) <_ NsM(X,r) <_ Nsk4_)(x,r) + M, andso

SkM

Sk(M-l)

4.2. The main result. We have already seen in Proposition 3.10 that if we restrict
our attention to the stoppings, then the lim infs and lim sups of the local dimensions
computed using the balls B, (x) and the cylinders J(alsk) corresponding to these

-1 (x) is unique. We now consider localstoppings, are equal, as long as a h
dimension using arbitrary balls and arbitrary cylinders. So we will consider the
expressions

log tzu(B(x)) log p(alk)
and (1)

log diam(B (x)) logr(alk)
The limits of these expressions as -- 0 and k --+ cx respectively may not even
exist. In this section we show that ifwe discard all the points that are too "close" to the
overlaps of the cylinders, then the existence of the limit of any one of the expressions
in (1) would imply the existence of the other, and the two values would coincide. We
summarize this idea in the statement of our main result:

THEOREM 4.2. Let u V, x Ku \ hu(D) and a h (x). Then

log lzu(B(x)) log p(alk)
lim lim
--,0 log diam(B(x)) o logr(alk)’

whenever one of these limits exist. Moreover, #q)(huD) O, q .
This is an immediate consequence of the following two propositions.

PROPOSITION 4.3. Let a , () \ D. Then hu(a) x K(u).

Proof Let e > 0 be given. Choose k, 6 N, smallest, such that

x J (a Ik) fq Ku B, (x).
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Sincex 6 Ju(crlk-l),wemusthavee < r(trlk-l). Butr(crlk-l)rmin < r(crlk).
So < r(cr k,). Then,

Fmin

log #u(B(x)) log p(tr Ik)
<

log diam(B (x)) log(2r(crlk)/rmin)

log p(cr Ik,)
log r(crlk) + 1og(2/rmin)

Thus,

log/Zu B, (x) log p (or [k)
lim sup < lim sup

log diam(B (x)) k log r(cr Ik)

By Proposition 3.10, we have limsup, log,uCB,x)) Or. Since r D,, we canlog diam(B (x))
choose a sequence (sk) of stoppings. Choose k such that s_l < k, < s. By
Lemma 3.9(iv), we get

Ku B%_, (x) c_ C Ju(i) c_ J(crlj,- 1).
_12(cr Isk- ,X,sk_

Now, let Nr + rn 1. Then Sk_ jk-t -]- <_ j. So Sk_t_ <-- Sk-t < jk 1.
Hence Ju(crlj-l)

_
Ju(crlsk-t-l). Also, by our choice ofk Ju(trlk-l) B(x)

so that e < e,_ < e._. Thus Ju(crls) B(x) and

B,(x) N Ku c_ B%_, (x) fq Ku

U
il(c Is- ,x,%_

Ju(rljk- 1)

Ju(i)

Ju(lst-t-).

So

log#u(B(x))
log diam(B (x))

log ym2(crls-t-)
by Lemma 3.5.

log r(r Isk)

log p(crlsk) log ym2(crlsk-t_l) log p(crlsk_t_)
logr(crls) logp(crlsk_t_l) logp(crlsk)

Using Propositions 4.1, 3.10, and Lemmas 3.9, 3.11, we get

log lzu(B(x)) log p(r Isk)
lim inf > lim

logdiam(B(x))- .k logr(crlsk)

PROPOSITION 4.4. Let x Ku) \ hu(Du). Then h (x) r K’u).
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Proof. By Proposition 3.10, we have lim logp(crlst)
logr(trlsk) Or. Let n N; then there

exists s, such that sk-1 < n _< sk. Now, Be,, (x) _c Be,._, (x). By Lemma 3.9(iv),

(x) C) Ku c_
12 (rr Is_ .x.e.._

J,(i) J,(rljk- 1).

As in the proof of Proposition 4.3, let Nr + m- 1. Then sk-t-i < jk- 1. So

J, (r In)

_
Be,, (x)

c Be (x) tqKu

12(crls_

Ju(O’lSk-t-1).

J,(i)

Thus

log #, (Be,, (x)) log .v m2(o" Is-t-)
log diam(Be,, (x)) log r(o’ln)

by Lemma 3.5.
Using Proposition 4. l(ii) and Lemmas 3.9(v), 3.1 l, we get

log p(cr In) log #,(Be,, (x))
lim sup < lim sup

log r(cr In) log diam(Be,, (x))

Again by Lemma 3.9(iii),

B,, J,(i)

_
J,(crljk- 1).

So, by Lemma 3.5,

log/z, (Be,, (x)) log p(cr In)
log diam(Be,, (x)) log yml (rlsk-t-)

Again by Proposition 4. l(ii) and Lemmas 3.9(v), 3.11, we get

lim inf
log p(crln)

> lim inf
log #u(Be,, (x))

log r(o’ln) log diam(Be,, (x))

4.3. Other measures. In this section, we consider multifractal decompositions
with respect to other measures. The diameter of a cylinder set is nothing but the
lebesgue measure, suitably normalized. Note that all the above results hold for any
other measure v defined by some different initial probability distribution. Thus all our
notions and definitions make sense when considered with respect to measure v. Given
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measure/z, we will write otu for the local dimension, to emphasize the dependence
on

If we assign another set of probabilities p’(e) of traversing the edge e, then we
may change the matrix A (q, fl) so that its entry in row u and column v is

Auv(q, ) E P(e)q P’(e)t"
eE,,v

Let #, v be the probability measures corresponding to the probabilities p(e), p’(e),
e 6 E, respectively. Then we may define the functions flu, and otu, as before.- and similarly we may obtain f(ctu,)Standard computations show that otu, ,,
f(") Also it is easy to deduce that (0, 1) ,(1 0) where (q /3) is the.f(,,)
spectral radius of A (q, fl) defined in terms of p(e), p’(e), e E.
Now it is clear that for t Du,

From Theorem 4.2, we thus deduce that for x hu D,

Then, by arguing as in the proof of Theorem 4.2, we may obtain the following:- (x) ThenTHEOREM 4.5. Let u V, x Ku \ hu(Du) and tr h

log lzu(B(x)) log p(cr Ik)
lim lim
--,0 log vu(B(x)) k log p’(trlk)

whenever one ofthese limits exist. Moreover, lzq)(h.Du) O,

This work was done as part of my doctoral dissertation under the supervision
of Professor Gerald A. Edgar. I thank him for all his criticism, help, advice and
encouragement. also thank Dr. Lars Olsen and Dr. Rolf Riedi for many useful
comments.
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