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ON A FAMILY OF ORTHOGONAL POLYNOMIALS
RELATED TO ELLIPTIC FUNCTIONS

MOURAD E. H. ISMAIL AND GALLIANO VALENT

I. Introduction

Chen and Ismail [7] studied orthogonal polynomials f’n (x) which satisfy the re-
currence relation

X.n(X) .)E’n+l (X) ’ 4nZ(4n2 1).T’n-1 (x), n > 0, (1.1)

and the initial data

,."0(X) 1, "1 (X) X. (1.2)

The polynomials Un (x) are symmetric in the sense that Un (-x) (-1)nf’n(X).
Berg and Ismail [4] derived the generating function

n (1 + t2) -/2 cosh(- (R)(v/)), (1.3)

where

w du
w 2F1(1/2 1/4; 5/4; ’034). (1.4)O(1/))

J1 /,/4

In this work we provide a nonsymmetric extension of the f’n’S. Our extension is
the one parameter system of polynomials {Gn(x; a)} generated by

-xGn(x; a) 2(n + 1)(2n + 1)Gn+l(x; a) + 2n(2n + 1)Gn_l(x; a) (1.5)

-2a(2n + 1)2Gn(x; a), n > 0,

with

Go(x; a) :-- 1, Gl(x; a) a x/2. (1.6)
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In 2 we establish the generating function

Z Gn(x; a) (1 2at + t2) -1/2 cos(*v/g(t)),
n--O

(1.7)

where

g(t) u-l/2(1 2au + u2)-1/2 du,

as well as a generating function for the numerator polynomials Gn* (x; a). We then use
(1.7) to develop the asymptotics of {Gn(x; a)} for large n and fixed x in the complex
plane.

It is easy to see from (1.5) and (1.6) that

Gn(x; a) (-1)nGn(-X; -a); (1.9)

hence there is no loss of generality in treating only the case

0 < a < cx. (1.10)

The monic polynomials an are given by

an(x) (-1)n(2n)! Gn(x; a), (1.11)

and satisfy

xQn(x)=Qn+l(X)-+-2a(2n+l)2 Qn(x)+4n2(4n2-1)Qn_l(x), n>O. (1.12)

When a and x is replaced by x 4 the Gn’s are special continuous dual Hahn
polynomials, [2], which come from a birth and death process [11 with

)n 2(n + 1)(2n + 1), /Zn 2n(2n + 1). (1.13)

In fact when a > the Gn’s come from a birth and death process with killing, or
absorption, where the birth and death rates are as in (1.13) and the absorption rate is

Yn 2(a 1)(2n + 1)2. (1.14)

General birth and death processes with killing were introduced by Karlin and Tavar6
in 14] and 15]; see 10] for a survey of the connection with orthogonal polynomials.

From (1.5), (1.6) and the general theory of orthogonal polynomials it follows that
there is a probability measure # such that

Gm(x; a)Gn(x; a) dlz(x) (2n + 1)m,n. (1.15)
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In 3 we shall prove that the Hamburger moment problem associated with the
Gn’s is determinate; i.e., # is unique for a 6 (1, cxz) (recall that a >_ 0 is assumed
here). Using the generating functions given in 2 we work out the asymptotics of
the polynomials Gn(x; a) and G(x; a). This gives the continued fraction and the
(discrete) orthogonality measure

In 4 we study the indeterminate case a 6 [0, 1). We find two of the four entire
functions of the corresponding Nevanlinna matrix. This allows us to get the equa-
tions giving the spectrum. In two cases the spectrum and the explicit orthogonality
measures are derived.
We also show that

with

1/2
W(x, a) :--

cos(fK/2) + cosh(f-K’/2)
(1.16)

l+a)k=K
2

K(k2
7/"

F(1/2, 1/2; 1; k2), (1.17)
2

is a weight function normalized by f w(x)dx 1. This weight function is only one
of an infinite family of weight functions derived in 4. Observe that when a 0,
(1.16) reduces to the weight function derived in [7]"

1/2 1"2(1/4)
w(x)

cos(K0/ +cosh(K0x/)’ K0 "= K(1/2)- 4--" (1.18)

One reason for our interest in the weight function (1.16) is that for large Ix] it behaves
as a Freud weight exp(-Ixl) for ot 1/2. One can find the moments of the Freud
weights but there are no explicit formulas known for the recursion coefficients or for
generating functions of the polynomials, except in the case of Hermite polynomials
when ot 2. For a survey of the literature on the Freud weights, see [16], [17].
Our explicit results can then be viewed as results on modified Freud polynomials for
or= 1/2.

The generating functions (1.7) and (1.18), when combined with the orthogonality
relation (1.15), lead to the evaluation of certain definite integrals. Indeed if we
multiply (1.15) by m s" and add for all rn >_ 0, n >_ 0 and then insert (1.7) in the
resulting integral we get

cos(v/g(s)) cos(v/g(t)) dx
cos(C-g(e-iO)) cos(r’g(eiO))

(1.19)

(1 2as + $2)-1/2(1 2at + t2) -1/2 1+st
(1 -st)2’
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for Isl < and Itl < 1.
From (1.5) and (1.6) it is clear that for every fixed x, Gn (x; a) is also a polynomial

in a of degree n. In fact as functions of a, {Gn(x; a)} is a system of orthogonal poly-
nomials which contains the Legendre polynomials as the special case x 0. These
polynomials are orthogonal with respect to a measure whose absolutely continuous
component is supported on [- 1, ]. Depending on the value of x, the measure may
have a discrete part.

In 5 we study the spectral properties of Gn (x; a) as polynomials in a and for fixed
x. We evaluate the corresponding J-fraction and find their measure of orthogonality.

The continued J-fraction associated with the three term recurrence relation (1.12)
for a > was studied by L. J. Rogers as was noted by H. S. Wall [22]. Rogers noted
the connection with elliptic functions. He proved

sn(u, k) cn(u, k)
e-zu du (1.20)

al an
Z2 -- bl- z2 -1 b2- z2 3f. bn+l-

where

an (2n 1)(2n)2(2n + 1), bn 2(2n- 1)2(2- k2). (1.21)

In 3 we shall provide an alternate representation of the continued fraction in (1.20),
see Theorem 3.3. Our results on the case -1 < a < correspond to having the
modulus k of the elliptic function on the unit circle, k - 1. To the best of our
knowledge this is the first analysis of continued fractions associated with Jacobian
elliptic functions with modulus on the unit circle. Recently Steve Milne [18] has
continued Rogers’s analysis and applied it to sums of squares.

Since the recurrence relation for the Gn’s is given explicitly one can use the
Hellmann-Feynman theorem to study the monotonicity of their zeros as functions of
a or use chain sequences to obtain inequalities satisfied by their extreme zeros, 12].
One can also use Markov’s theorem because we know a weight function explicitly.

2. Generating functions

We first briefly indicate why (1.5), (1.6) are equivalent to the generating function
(1.7). Let us observe that the right-hand side of (1.7) is analytic in for Itl < if
a 6 [0, 1) and [tl < a /a2 if a > 1. Hence we can expand G(x, t) in a power
series of t. Let

G(x; t) (1 2at -t- t2) -1/2 cos(.v/’g(t)) an(X)tn.
n--0

(2.1)
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Multiply both sides of (2.1) by (1 2at + t2) -1/2, differentiate with respect to
then multiply by v/t (1 2at + 2) and differentiate once more. This produces the
differential equation

4/- v/t(l 2at + t:)- v/(1 2at + tZ)G(x, t) -xG(x, t),

or in expanded form

OZG(x, t)
4t(l 2at + 2) + 2(1 8at + 7t2) OG(x, t)

Ot2 Ot

+ (x 2a + 6t)G(x, t) O. (2.2)

Upon equating coefficients of different powers of we see that an (X) satisfies the three
term recurrence relation (1.5). From (2.1) it is easy to verify that ao(x) G0(x; a)
and a (x) G (x; a). Thus Gn (x; a) an (x) for all n and we have established that
(1.7) implies (1.5) and (1.6). To show the converse one can simply reverse the steps
in this argument.

Observe that another generating function for the Gn’s follows by multiplying (2.1)
by -1/2 and then integrating over t. The result is

sin(/g(t))y Gn (x" a)
n’-0

2n +
(2.3)

Our next task is to find a generating function for the numerators {Gn* (x; a)}. To do
so we multiply (1.5) by and then add for n > 0. After using the initial conditions

G(x; a) O, G (x; a) 1/2, (2.4)

we see that the generating function

G* (x, t) "= G* (x; a)t"
n--0

(2.5)

satisfies the differential equation

4t(1 2at -+- 2) 02G*(x,t) + 2(1-8at+7t2) OG*(x,t)
Ot

+ (x 2a + 6t)G* (x, t) 1.

Since

G(x, t) := (1 2at + t2) -1/2 cos(c/g(t)) (2.6)

solves the corresponding homogeneous equation we set

G*(x, t) G(x, t)H(x, t). (2.7)
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Now H satisfies

O2H(x, t)
Ot2 OH(x,t)[2 OG(x,t)

+ +
3(t-a) J+ Ot G(x, t) Ot - 2at + 2

sec(/g(t))

4t/1 2at + 2

Multiply the above equation by the integrating factor G2(x, t)t 1/2 (1 2at + t2) 3/2
and then integrate over to get

1/2 (1 2at + t2) 3/2 G2(x, t) OH(x,ot t) fo COS(Cg(u))4/_ff
du.

Then

f0 sec2 ("v/g(v))(foVCOs(Cg(u))H(x, t)
4v/v(1 2av + V2) 4/-ff du)dv, (2.8)

since H(x, t)/t -1/2 as --+ 0. In view of (1.2) we can integrate by parts in the
v integral and obtain

fot fotsin(/g(u))tan(ffg(t)) cs(/’g(u))
du + du.H(x, t)

2.v/ 2ff
This and (2.8) establish the desired generating function

G* (x t) -(1 2at + t)-/ sin(.,/%(g(t) g(u)))
2/__ff

du. (2.9)

For x 0 the polynomials Gn(O, a) and G, (0, a) are multiples of the Legendre
polynomials Pn(a)and their numerators Pnl)(a), respectively. Indeed

1/9(1 (a) (2.10)Gn(O, a) Pn(a), G(O, a) --. n-

These relations can be checked at the level of the generating functions since from
(2.6) we have

G(0, t) -(1 2at + t2)-/2

and from (2.9) it follows that

du
G* (0, t) -(1 2at + t2) -/2 (g(t) g(u))

2rff.
Using the definition in (1.8) we get a double integral representation for G*(0, a),
which after we reverse the order of the integration simplifies to

G* (0, t) -(1 2at + t)-/ du

2/1 2au + u’ (2.1 l)

in agreement with the result of Barrucand and Dickinson quoted on page 202 in [8].
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3. The determinate case

Since the cases a 4-1 are essentially the continuous dual Hahn polynomials,
their asymptotics follow from [13] or from the more general results in [11]. It is
known that the moment problem is determinate in this case 11 ].
We therefore consider a (1, cx), which, in view of (1.10), also covers the

remaining case a (-cx, -1). We shall use the notation

Let us begin with:

a cosh p, p > 0. (3.1)

THEOREM 3.1. Ifa (1, cxz) then

Gn(x; a) [2zrn sinhcp]-/ee(n+/2)4 cos[,v/g(e-)] [1 + o(1)],

a cosh q,

as n --e cxfor all x, real or complex.

Proof
e- with smallest absolute value. Hence Darboux’s method [20] gives

Gn(x; a) (1 e-2O) -1/2 (1/2)nen4) COS(C/-g(e-O)),
n!

which simplifies to (3.2) due to the relation

l-’(a +n) ha-b[1 at- o(1)], n -+ x.
l-’(b + n)

Using the first complete elliptic integral K one has

zr -/2 -20 e-/2 -2g(e-) e F(1/2, 1/2; 1; e )-- K(e ).

(3.2)

(3.3)

(3.4)

THEOREM 3.2. The Hamburger momentproblem associated with the Gn ’s is de-
terminate for a (1, cx) or a (-c, 1).

Proof. In view of (1.16) the polynomials {n(X; a)}, defined by

,(x; a) G,(x; a)//2n + 1, (3.5)

are orthonormal. Theorem 2.9 in 19] asserts that the divergence of Yn%0 In (x; a)12
for one complex x is sufficient for the determinacy ofthe Hamburgermomentproblem.
If a > then from (3.4) it is clear that g(e-4’) is positive when q > 0; hence there
is a complex x for which cos(4ff g(e-O)) 0 and the series Yn%0 In(X; a)l 2 will
indeed diverge for this complex x.

Since a > 1, the generating function (1.7) has only one singularity,
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THEOREM 3.3. For a > the continued J-fraction associated with the Gn ’S
converges to J (x; a), where

Jl (X" a) "= l’l
e-o/2 sin(s/ff(g (e-0 g(u2)))

d0 C’ cos(C’g(e-0))
du, a cosh p. (3.6)

Proof The t-singularity of G* (x, t) of smallest absolute value is e-. Thus
(2.9) and Darboux’s method give

Gn* (x; a) re-+ sin(s/’(g(e-+) g(u)))
lim
n--,cx Gn(x; a) 2/cos((g(e-O)))L du. (3.7)

The continued J-fraction converges to the left-hand side of (3.7), hence (3.6) follows
and the proof is complete.

It is important to note that a formula equivalent to (3.6), due to Rogers, is stated
as (94.21) in Wall [22].

Let/z be the measure with respect to which the Gn’s are orthogonal. Then the
Stieltjes transform of/x is J(x; a) [19]. Thus

dl.l,(bl) fo
e-4/2 sin(/’(g(e-4’) g(u2)))

x u cos(,f(g(e-0)))
du, x [0, oct). (3.8)

The right-hand side of (3.6) is clearly a meromorphic function and its only singularities
are isolated simple poles. Thus/z is purely discrete and has point masses at the poles
of the right-hand side of (3.6), which are given by

(n + 1/2)27r 2
X

g2(e_4
n 0, (3.9)

Furthermore the mass at Xn is the residue of the right-hand side of (3.7) at x xn.
Thus

2 fo
e-4/2

#(Xn)
g(e-4’)

cos((n + 1/2)rrg(u2)/g(e-4’)) du. (3.10)

To evaluate/z(xn) we need the theory of elliptic integrals. Set

g(e-e) := K(k2), k := a v/a2 e-0 < 1. (3.11)

In this form the mass points in (3.9) are

(n + 1/2)2 7/’2
x= n=0,1 (3.12)

kK2
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Furthermore (3.10) becomes

cos n + g
g(U2) du. (3.13)(x)

/
We now introduce the new variable

g(u2 f0"2 dt 11" dr
v’= = 2t(1-2at+t2) l-2ar2+r4" (3.14)

The Jacobi inversion theorem [23] gives

u/ sn(v, k2), du cn v dnv dr.

Therefore the masses

U(x,)= cos n+ cnv dnvdv (3.15)

are the Fourier coefficients of cn v dn v. Starting from [23, 22.6],

2 q"+’/2 ( v)snv
n=0 qZn+l

sin (2n + 1) (3.16)

upon differentiation we have the Fourier series

kK (2nl +- 1) qn+’/2q2n+’ (,v)cnv dnv= cos (n+l/2) (3.17)
n=0

Thus (3.14) and (3.16) imply

2 (2n + 1)qn+/
U(x,) n 0, (3.18)

kK2 qZn+l
Dividing (3.16) by v 0 and then letting v 0 show that the total mass is indeed
equal to 1. Thus we have established the following theorem.

THEOREM 3.4. The orthogonality relation of the Gn’s is

2 (2j + 1)q j+l/2

kK2 qZj+l
j=0

Gm(xj; a) Gn(xj; a) (2n + 1) m,n,

with xj given by (3.9) or (3.12).

(3.19)

It is worth noting that the orthogonality relation (3.19) is equivalent to

qj+l/2
4 sin(4CYg(t)) sin(4g(s))

.= (1 qZJ+)(2j + 1)

In(1 + /) st ln(l st),

(3.20)

with the xj’s as in (3.12).
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4. The indeterminate case

so that

From now on we shall use the notation

a cos p [0, 1), 4) (0, zr/2], (4.1)

e+i4 --a -t- v/a2 1, (4.2)

and the branch of the square root in (4.2) is taken so that /x2 1/x as x -- cxz.
This is equivalent to requiring

le-i4 < lei4’l. (4.3)

Equality in (4.3) holds if and only if a 6 [-1, ].
Our objective now is to determine the large n behavior of G (x; a).

THEOREM 4.1. Let a [0, 1). Thenfor all x and large n we have

[e-i(n+l/2)ep+ir/4 (4.4)Gn(x; a)
2:r n sinp

cos(/-g(ei4)

-I-ei(n+l/2)ep-ir/4 cos(q/-g(e-i4))] [1 -+-o(1)].

Proof. The singularities of the generating function (1.7) are e+io and
cos(, g(ei4)) is continuous as -- e+i4 from within the open unit disc of the
complex plane. Thus Darboux’s method [20], gives

Gn(x; a) (1 e2i4) -1/2 (1/2)ne-in4 cos(q/-g(ei4)) [1 -+- o(1)] (4.5)
n!

-+-(1 e-2i4) -1/2 (1/2)nein4 cos(-g(e-i4)) [1 q- o(1)],
n!

which simplifies to (4.4).

It is useful to observe:

THEOREM 4.2. For a [0, 1) or qb (0, zr/2] one has the relation

g(e+i4) 1/2 (K(cos2 4/2) 4- iK(sin2 4/2))

((l+a)+iK(1-a))=l/

where K is the first complete elliptic integral.
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Proof

Thus

Let us first note that

[ei4
U -I/2 (1 uei49) -1/2 (1 ue-i49) -1/2 dug(ei49)

ao

ei49/2 foo u -1/2 (1 tle2i49) -1/2 (1 u) -1/2 du.
2

7r e:l:i49/2g(e+i49) 2 F1 (1/2, 1/2; 1; e+2i49),

using Euler’s integral representation [9, (2.1.3) p. 59].

In terms of the complete elliptic integral we have

g(ei49) ei49/2K (e2i49).

(4.6)

and then

to first get

k
2V

and --+ 7,l+k’ k

(11K 2 cos(q/2)ei49/2K (e2i49)
cos2(4/2)

( )K cos(4)/2) (K (cos2 4)/2) + K (sin2 4/2)).cos2(q/2)

Combining these relations, and taking into account the fact that g(e+i49) are complex
conjugate, we have the theorem.

In the sequel we will use the simplified notations

K K(cos:/2)=K(l+a),2

K’ K (sin2 4/2) K( 1-a ) a cos 4).
2

Let us now prove:

THEOREM 4.3. The Hamburger momentproblem associated with the G, (x; a) is
indeterminatefor a 6 (-1, 0] or a [0, 1).

It is now possible to use the transformation theory of the elliptic integrals summarized
in [9, p. 3 9]. We use successively the transformations
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Proof. From relation (1.9) we need consider only a [0, 1). Theorem 2.9 in
[19] asserts that the Hamburger moment, problem is indeterminate if and only if

Yn=0 ](n(X; a)] 2 converges for all complex x. Now (4.4) shows that if 0 < a <
then

[rn(X a)[ 2
]Gn(x; a)lz 0(n-3/2);
2n+l

hence Yn=0 [(n(X; a)[ 2 converges for every complex x and the indeterminacy fol-
lows. 1-1

As a by-product, for x 0, relation (4.4) simplifies to

2
Gn(O,a)

yrn sin q cos((n + 1/2)q zr/4)[1 + o(1)], (4.7)

in agreement with Theorem 8.21.2 in [20].
We shall mostly follow the notation and terminology in Shohat and Tamarkin 19].

Let {Qn (z)} and {Qn* (z)} be the solutions of the second order difference equation

O)n+l (Z) (Z Oln)O)n(Z) nO)n-I (Z), n > O, (4.8)

which satisfy the initial data

Qo(z) :-- 1, Q (z) z c0, Q)(z) :--- 0, QT (z) 1. (4.9)

Shohat and Tamarkin [19] use Pn instead of Q,]. We take/3o in [19], so that all
measures are normalized to have total mass equal to unity. The Qn’s are orthogonal
with respect to a positive measure whose moments of all orders exist. If the moment
problem associated with (3.1) and (3.2) is indeterminate then the polynomials An (z),
nn (z), Cn (Z) and Dn (z), given by

An+l (z) "-- [Q* (z) Q* Q* *
n+l n(O) n+l(O)Qn(z)](l2 fin) -1

Bn+l (Z) [Qn+l (z) Q* (0) Q*n n+l(O)an(z)](l2" fln)-I

Cn+I(Z) :’-- [a+l(z)an(O) an+l(O)a(z)](l2. fin) -1,

On+l(Z) := [Qn+(z)On(O) Qn+l(O)Qn(z)](fll2. fin)-,

(4.10)

(4.11)

(4.12)

(4.13)

converge uniformly on compact subsets of the complex plane to entire functions A (z),
B(z), C(z), D(z), [19]. Furthermore the probability measures with respect to which
the an’s are orthogonal are parameterized by functions or(z) which are analytic in
the open upper and lower half planes, satisfy a (z) a(2), and map the open upper
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(lower) half plane into z < 0 (3z > 0), respectively. The orthogonality measures
gr (., or) are related to A, B, C, D and cr through

d(t, tr) A(z) r(z)C(z)
z- B(z) -cr(z)D(z)’ .z O. (4.14)

The zeros of A(z), B(z), C(z) and D(z) are real and simple and the zeros of B(z)
and D(z) interlace 19]. The orthogonality relation of the Qn’s is

Qm(x) Qn(x)dp(x, or) k m,n. (4.15)

We now evaluate B(x) and D(x).

THEOREM 4.4. When a [0, 1), the functions B(x) and D(x) for the Gn’s
Hamburger moment problem are given by

4
D(x) sin(x/K/2) sinh(-K’/2) (4.16)

2
B(x) log(cot(4/2)) sin(v/’K/2) sinh(K’/2) (4.17)

+ cos(/K/2) cosh(x/%K’/2).

Proof From (1.12) it follows that fin 4n2 (4n2 1); hence

LIflk (2n)! (2n + 1)!.
k=l

Let us define the angle by

cos(x/% g(e-i4’)) cos(r g(e-i4))leiP.

We then apply (4.4), (4.8) and (4.14) to see that for x >_ 0 we have

4
D(x) lim cos(x/%g(e-i4))l, rr sin 4

x [cos((n + 3/2)4 rr/4)cos((n + l/2)q zr/4)

cos((n + 3/2)4 rr/4) cos (n + 1/2)q rr/4)]

cos(x/ g(e-i4))l sin

---. cos(v/ g(e-iCk)),
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where we used (2.6). The result now simplifies to the right-hand side of (4.18) using
Theorem 4.2. This establishes (4.18) for x >_ 0. Since both sides of (4.18) are entire
functions, they must be equal for all x, by the identity theorem for analytic functions.
We now come to (4.19). Relation (2.11) gives a generating function for the associated
polynomials G* (0, a). Darboux’s technique implies the asymptotics

G(0 a)= -2,[exp(i(n 1/2)ck-izr/4)
/2zrnsin

2F(1/2, 1; 3/2; e-2i)[1 +o(1)]

But

[log(1 + Z) --log(1 Z)]Z 2F1(1/2, 1; 3/2; Z2)

-ei4 [log(cot(q/2)) 4- irr/2],
2

which is relation (16) in [9].
Thus we have established

G*(0, a) -(27rn sin q) -1/2 [1 4- o(1)] (4.18)

x log(cot(4/2)) cos((n 4-1/2)4 r/4) sin((n + 1/2)4 r/4)

For x > 0 the relationships (4.4), (4.11) and (4.18) lead to

B(x) --r log(cot(4/2)) sin + cos cos(-g(eie))l, (4.19)

cos(/ g(e-ie)) + 2/r, cos( g(e-ie))

which proves (4.17) for x > 0 upon use of Theorem 4.2. Finally we invoke the
identity theorem and extend (4.17) to the whole complex plane. Now the proof of
Theorem. 4.4 is complete.

We now examine the so-called Nevanlinna extremal measures, for which

r (z) or, (4.20)

where cr is some real number, possibly cx. The Stieltjes transform ofthe corresponding
measures q, which are all discrete, is then given by (4.14) and it is known from [1 ],
[19] that the polynomials Gn(x; a) are dense in L2(dq).

The masses are located at xn, determined by

n(xn) crD(xn) 0, (4.21)

while the masses are p(xn). Relation (2.24) in [6] gives the p function

Z 2 (X) B’(x) D(x) B(x) D’(x) (4.22)OO
p(x) n=0

for real x. The next theorem records the simplest Nevanlinna extremal measures.
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THEOREM 4.5. When a [0, 1) one has the orthogonality measures

qo KK,3(xo)
2r { 2nrK’/K+ KK; sinn---’TK) 6(x’) +

n--I

2nrr K/K’
sinh(2nrr K/K’)

3(x;’)’ (4.23)

with

Xo O, Xn 47r2n2/K2, _47r2n2/K,2,xn n 1, 2 (4.24)

and

KK’ sinh((2n + 1)rrK’/K)n=0

(2n+ I)rrK/K’ }3y,,)+sinh((2n+l)rcK/K,)3y,,), (4.25)

with

Yn (2n + 1)27r2/K2, Y’n --(2n + 1)27r2/K’2, n 0, (4.26)

Proof For cr oa the Stieltjes transform of Pa is given by

dqoo C(z)
z u D(z)

It follows that the spectrum is given by (4.24). r"l

Relation (4.22) and Theorem 4.4 give for real x

KK’ ( sin(C-K) sinh(/K’) )p(x) 27r /-K + -K’ (4.27)

from which it follows that the measure 0 is given by (4.25). Taking cr

1/2 In cot(/2) we get the measure q0 as given by (4.25) and (4.26).
We now mention some weight functions for the Gn’s. It has been shown in [3]

that the choice

{ t+iv, .z>0,

o- (z) ?,, z < 0,
(4.28)

for real and ?, > 0 gives the weight function

w(x; t, ?,) (4.29)
(D(x)- tB(x))2 + y2BZ(x)
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The function w(x; t, ’) is a weight function for the Qn’s and is normalized to have
unit total mass.

With the choice

2 + ,2 2
In cot(4/2),

the denominator in (4.29) simplifies and we obtain the weight function

w(x; rl)
/4

cos(4ffK/2) cosh(%K’/2) + i" sin(/K/2) sinh(C’K’/2)[2’

(4.30)
with

4),

" n.(t2 + ,2)
> O. (4.31)

When ( 1, (4.30) simplifies considerably and we obtain the weight function stated
in (1.18).

5. The polynomials in a

Now, let us consider G (x; a) as polynomials in the variable a, while x becomes
a parameter.

The corresponding monic polynomials are

n!
Qn(x; a) 2n(1/2)nGn(x a), (5.1)

with the recurrence relation

x/2 )Qn+l(X; a) a
(2n + 1)2

Q,(x; a)
n2

4n2
Qn-l(X; a), n > 1, (5.2)

and the initial conditions

x
Q0(x; a) 1, Q(x; a) - +a. (5.3)

From (5.2), (5.3) and the general theory of orthogonal polynomials it follows that
there is a probability measure such that their orthogonality relation will be

Gm(x; a)Gn(x" a) d(a)
o 2n+

(5.4)

From the recurrence relation (5.2) it is clear that the orthogonality is now on a bounded
subset of (-cx, cx) and Theorems 3.1 and 4.1 indicate that the polynomials are
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oscillatory only if a [-1, ]; hence the absolutely continuous component of the
measure is supported on [-1, 1].
A theorem of Mat6, Nevai and Totik (see the survey [21, Theorem 6]) asserts that

if

Z (]1- 4an2+l] + 2]bn]) < oo,
n--0

then the polynomials Qn (x) generated by (5.2) and (5.3) are orthogonal with respect
to a measure whose absolutely continuous component @’ is supported on [-1,
and

12I Qn (cos qg) flj
7rj=

cos(v(q, n))
/sin(40 ’(cos #)

[ + o()], (5.5)

and v(q, n)/n --, 0 as n -+ oo. Here the previous hypotheses hold since we have

Ixl/2 2Ibn (2n + 1)2’ l1 4a
4n2

From (4.4) and (5.5) one obtains

with

’(a)
cos(4ffg(eiO)) cos(q/_g(e_i4))

(5.6)

2

cos(vK) + cosh(’K’)
a --cosq (--1, 1),

(l+a) K,=K(1-a)K K
2 2

(5.7)

We have all the information needed to determine the Stieltjes transform of !/r. As
polynomials in a, we replace (4.1) by

G(x; a) "= 0, GT(x; a) 1. (5.8)

Hence the corresponding continued J-fraction, say J2 (x; a) is

dlz(u)
Jz(x;

J a--g

e-*/2

du a " 1, 1] (5.9)
sin(qC-(g (e-iO) g(u2)))

2
cos(qC-g(e-i4))

For a > 1, and x > 0 the masses are given by

g(e_4, (n + l/2)zr, (5.10)



ORTHOGONAL POLYNOMIALS 31

where g(e-e), given by (3.11), is monotonously decreasing from o to 0. It follows
that (5.10) has a unique solution for every n, which we denote by an. This agrees
with the general theory [21]. Now the residue of J2(x, a) at a an is (an), where

2 f0
e-o/2

(an) g,X (e-e)
cos((n + 1/2)7rg(u2)/g(e-e)) du,

where g’ (e-e) is the derivative with respect to the variable a. Comparing with (3.10)
we get

and

g(e-e)
(an)

xg’(e-e)

( 2E(k2) ) -v/a2g’(e-e)
k’2

k a
g(e-e) 2/a- g(k)

For x 6 (0, +cx], it follows from (1.9) that we get the spectrum -an. For large
n, relation (5.10) shows that the q-an accumulate to 4-1.
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