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1. Introduction

A contact manifold (M, o9) is said to be homogeneous [8] if there is a connected
Lie group G acting transitively as a group of diffeomorphisms on M which leave the
contact form co invariant. As is well known, this class extends the class of contact
manifolds given by odd-dimensional spheres. If g is a metric associated to co and
G is a group acting transitively as a group of isometries which leave co invariant,
then (co, g) is called a homogeneous contact Riemannian structure on M. When
(M, co) is a compact homogeneous contact manifold, by the Boothby-Wang fibration
one can consider a homogeneous Sasakian structures (co, g) on M. In this context
Goldberg 10] showed that the sphere is the only simply connected homogeneous
contact manifold which can be equipped with an invariant contact metric of positive
sectional curvature (we note that a homogeneous Riemannian manifold is complete
and hence compact when its sectional curvatures are positive). More recently, it has
been proved in [13],[14] that the spheres S3, S and the Stiefel manifold TI(s3) are
the only compact simply connected n-dimensional manifolds, n 3, 5, which admit
a homogeneous contact structure.

The purpose of this paper is to study simply connected homogeneous contact
Riemannian 3-manifolds without the condition of compactness. In Section 3, we
prove that all these manifolds are Lie groups equipped with a left invariant con-
tact Riemannian structure. In the unimodular case the torsion r satisfies p 0,
where 6 is the Berger-Ebin operator [1] and p -rp, the so-called p-torsion.
Moreover, the Webster scalar curvature W and the torsion invariant Ilvll, intro-
duced by Chern-Hamilton [9], characterize such manifolds. In particular, the 3-
sphere S is the only simply connected 3-manifold which admits a homogeneous
contact Riemannian structure, with scalar curvature r > -2(1 Ilrll )2, More-

over, the Heisenberg group H and the Lie group SL(2, R) are the only simply
connected 3-manifolds which admit an unimodular homogeneous contact Rieman-
nian structure with Webster scalar curvature W 0. Finally, in Section 4 we
show that unimodular homogeneous contact Riemannian 3-manifolds are locally p-
symmetric.
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Remark 1.1. Boothby-Wang ([8] p. 729) proved that if G is a semi-simple Lie
group on which is defined a contact form to, invariant under left translations, then G
is locally isomorphic with either SO(3) or SL(2, R).

Remark 1.2. The unimodular Lie groups found in Theorem 3.1 admit a contact
metric structure with (k, #)-nullity distribution [5].

2. Preliminaries on contact Riemannian manifolds

A contact manifold is a differentiable (2n + 1)-manifold M equipped with a global
1-form to such that to/x (dto)n 7 0 everywhere on M. It has an underlying almost
contact structure (to, q, ) where is a global vector field (called the characteristic
vector field) and 4) a global tensor of type (1,1) such that

to() 1, qb() O, and 2 _l + to (R) .
A metric g can be found such that

to(X) g(, X), (dto)(X, Y) g(X, Y), g(X, qbY) -g(X, Y).

We refer to (to, g) or (to, g, , 40 as a contact Riemannian structure. In the sequel the
curvature tensor R of (M, g) is defined by

R(X, Y)Z V[x, rl Z VxVrZ + VrVxZ

where V is the Levi-Civita connection with respect to g.
Given a contact Riemannian structure on M, we can define the tensors

h -L r= Lg, R(,.)s

where L, denotes the Lie derivation by . The tensors h, r and are symmetric and
satisfy (see [2], [11]):

r(X, Y) 2g(qbX, hY), hb -qh, h() 0, r(s, X) 0,

r(x, Cr) -r(x, r), r(x, Y) r(x, CY),

Vx -epx hX,

q14 2(h2 + b2).

(2.1)

(2.2)
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The tensors Vh and Vr satisfy the same properties as h and r, respectively. Since
h anticommutes with b, if e is an eigenvector of h corresponding to the eigenvalue .,
then 4e is an eigenvector of h corresponding to the eigenvalues -..

If is a Killing vector field with respect to g, then M is said to be K-contact
manifold. Clearly, M is K-contact if and only if r 0 (or equivalently h 0). If the
almost complex structure J on M x R defined by

J (X, fd/dt) (qbX f, w(X)d/dt)

is integrable, M is said to be Sasakian. This condition is satisfied if and only if

R(X, Y) co(X)Y co(Y)X.

Note that, by (2.2), a Sasakian manifold is K-contact, but the converse holds only
in dimension 3. Moreover, for a 3-dimensional contact Riemannian manifold, the
Webster scalar curvature is given by (see [9], p. 284)

1( 11r112)4W= (r-o(,)+4)= r+2+ (2.3)

where 0 is the Ricci tensor, r the scalar curvature and the length IIv is the torsion
invariant introduced by Chern and Hamilton [9] in their study of contact Riemannian
3-manifolds.
Now we consider the so-called q-torsion p introduced in [11 ], namely the (0,2)

symmetric tensor

ap(X, Y) 2g(hX, Y) -r(X, 4Y),

and denote by TgA the tangent space at g to the space A of all Riemannian metrics
on M. Then we have the following result:

PROPOSITION 2.1. In a contact Riemannian 3-manifolds M, co, g), thefollowing
properties are equivalent:

(a) 0(, X) Ofor every X Ker co;
(b) (Sr)(X) Ofor every X
(c) 6p 0, i.e., the tangent vector TgA is perpendicular to the orbit Og of

g under the group ofdiffeomorphims ofM (see ]).

Proof. Since 3(S)(X) -tr(VS)(X,., .), where S is a (0,2) symmetric tensor,
by a direct calculation one obtains

6r -20(, e)01 20(, 4e)02 + Ilrl12o, (2.4)

a 20(:, e)O 20(:, e)O2 (2.5)

where (0 2, co) is the dual basis ofthe q-basis (e, e, ). So Proposition 2.1 follows
from (2.4) and (2.5).
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Remark 2.1. From (2.4) and (2.5) we obtain the formula

z

3. Homogeneous contact Riemannian 3-manifolds

We start with the main result of this note. All manifolds are supposed to be
connected.

THEOREM 3.1. Let (M, co, g) be a simply connected homogeneous contact Rie-
mannian 3-manifold. Then M is a Lie group G and (co, g) is a left invariant contact
Riemannian structure. More precisely, we have thefollowing classification.

(1) If G is unimodular, then it is one of thefollowing Lie groups:
the Heisenberg group H when W r 0;
the 3-sphere group SU(2) when 4/W > Ilrll;
the group E(2), universal covering ofthe group ofrigid motions ofEuclidean
2-space, when 4,/W IIr > 0;
the group S-L(2, R) when
the group E(1, 1) of rigid motions of Minkowski 2-space when 4W

Moreover, in all these cases the contact Riemannian structure satisfies

p =0.

(2) If G is non-unimodular, its Lie algebra is given by

[el, e2] ce2 + 2s, [el, s ?’e2, [e2, s] 0,

where # O, with el, e2 eel e Kerco, and 4/W < Ilrll, Moreover,
if ’ 0 the torsion r 0 (i.e., the structure is Sasakian) and the Webster
scalar curvature W 2

4"

Since

4W Ilrll r ( Ilrll )
2

from Theorem 3.1 we get the following interesting consequence.

COROLLARY 3.2. The 3-sphere group SU(2) is the only simply connected 3-

manifold which admits a homogeneous contactRiemannian (resp. Sasakian) structure

with scalar curvature r > -2(1 11311 2

-) (resp. r > -2).
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Remark 3.1. Corollary 3.2 extends the Wallach’s theorem ([12] p. 297): SU(2)
is the only simply connected Lie group which admits a left invariant metric of positive
sectional curvature.

Another consequence of Theorem 3.1 is the following:

COROLLARY 3.3. The Heisenberg group and L(2, R) are the only simply con-
nected 3-manifolds which admit an unimodular homogeous contact Riemannian
structure with Webster scalar curvature W O.

Remark 3.2. Let (M, co) be a compact contact (2n+ 1)-manifold. Then the con-
dition 7 r -2p is the critical point condition of the functional E(g) 1/2 fM vII2
defined on the set of all metrics associated to the contact form co (see [3],[19]).
V r 0 and p 0 are, respectively, the critical point conditions, when dim M 3,
of the functionals l(g) f4 r and F(g) f4 W (see [15], [9]). On the other hand,
each of these unimodular Lie group G possesses a discrete subgroup F so that the
quotient I"\G is compact (see [12]).

Proofof Theorem 3.1. Let (M, co, g) be a simply connected homogeneous con-
tact Riemannian 3-manifold. Denote by G the Lie group acting transitively as a
group of isometries which leaves co invariant. Since (M, g) is a simply connected
homogeneous Riemannian 3-manifold, a result of Sekigawa [17] shows that (M, g)
is isometric to either

(I) a Lie group manifold endowed with a left invariant metric,

or

(II) a symmetric space.

We examine separately the two cases.

Case I In this case, G is diffeomorphic to M by the projection rr: G ----+
M, a aXo, where Xo is a fixed point of M, and g* r*g is a left invariant metric
on G (see [17]). Then to the homogeneous contact form co corresponds the contact
form co* r*co on G which is invariant under left translations. In fact, if we denote
by h an element a G when it is regarded as an isometry of M, then r o La t 7r

implies Lco* (rr La)*co (fi rr)*co rr*fi*co co*. Moreover, it is easy to see
that g* is a metric associated to co* with 4, r,-qr,. Therefore we can consider
M as a Lie group G and (co, g) as a left invariant contact Riemannian structure on
the Lie group G. Now, from (2.1), h -I + q7 + co (R) and hence h commutes
with left translations: (La),hx,, hax,, (La).. Consequently, the eigenvectors of h
are left invariant. In fact, if g =__ Txo(G) denotes the Lie algebra of G and e 6 g
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with hxoexo )exo then ex (La),exo, x aXo, is a left invariant vector field which
satisfies

hxex hx(La),exo (La),hxoexo )ex.

In particular, the eigenvalues, ,k and -), of h are constant. Following 12], our Lie
group G can be either unimodular or non-unimudular.

Unimodular case Recall that G is called unimodular if its left invariant Haar
measure is also right invariant. In terms of the Lie algebra g, G is unimodular if
and only if the linear transformation adx has trace zero for every X 6 g. Choose an
orientation for the Lie algebra g so that the cross product u x v is defined and hence
the formula L(u v) := [u, v] defines a linear mapping from g to itself. Then, since
G is unimodular, L is selfadjoint (see [12], p. 305).

Consider an orthonormal basis (e, e2, e3) of g given by a 4>basis; i.e., el, e

e2, qe e3 such that he2 ,ke2 and he3 -)e3. Then the linear map L is given by

L(el) [e2, e3], L(e2) [e3, el], L(e3) [el,e2].

Put L(ei)--- Yj3.=I ajiej, where aji are constants. Since L is self-adjoint, the matrix
A (aji) is symmetric and hence we have

[e2, e3] el + ore2 + fie3,

[e3, el] otel + ,k2e2 + Fe3,

[e, e2] /3e + ?’e2 + )3e3.

Since Ve is parallel to 4e, and 7e --( + 1)4)e by (2.1), then [el, e2] [, e] is
parallel to e3 qe and hence/3 , 0. Analogously, [el, e3] [, qe] is parallel
to e2 and hence we have ot 0. So our 4-basis (el, e2, e3) is an orthonormal basis
consisting of eigenvectors for L:

[e2, e3] ,ke, [e3, el] k2e2, [e, e2] .3e3. (3.1)

Let 01 co, 02, 0 be the dual 1-forms of the vector fields , e2, e3. Using (3.1), we
have

(dO1)(e2, e3) -(dOl)(e3, e2)

,kl
and (dO)(ei ej) 0 for (i, j) - (2, 3), (3, 2).

2

Since g is a metric associated to 01 co, we must have dO (e2, e3) g(e2, qe3)
and hence . 2. Using (3.1) and the first Cartan structural equations, we get

(Veiej) .2-)3-2
2 e 0 2 e (3.2)

)2 --’k3nt-2 )3 --)2 --2
2 e2 2 e 0
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Then, using (3.2), by a direct calculation we find

01160 @ co -I- 02202 @ 02 -t- 03303 @ 0

where

(Oll, 022, 033) (O(, ), o(e, e), O(qe, qe))

(2_()2--,k3)2 .22--.32-F4.3--4 .32--.22-k-4)2--4)2 2 2
(3.3)

In particular, 0(, X) 0 for every X 6 Ker co and hence, by Proposition 2.1, we
obtain

Using (3.2) again we get

)2 --)3 + 2
V

)2 )3 202 (R) e3 + 0 (R) e2,
2 2

r(x, r) (Lg)(X, r) g(Vx, Y) + g(X, vr)

(.2 .3)(02 () 03 -Jr- 0 @ 02)(X, Y). (3.4)

Moreover, from (3.3), (3.4) and (2.3), we have

()2 3)2 ().3
r 2()2+)3)--2-- )

2 2

and hence

Therefore, we have the following cases.

Ilrll 2 2()v3 )v2)2 8,2,

(a) If W Ilrll 0, then 2 3 0.
(b) If2W> ,thenZ2=2W-.> -.>0 and .3=2W+.>

(c) If2W 2llrll Ilrll> 0, then Z2 _._J Z and Z3 + Z, with r 0, imply
either X2 0 and X3 > 0 or X2 > 0 and X3 0.

(d) If-"" 2W < ,"r" then- "" -X X2 < "" -X and- +zllrll 3 <

2 + x’ so we have the following possibilities: (X2 < 0, 3 < 0), (2 <

0, X3 > 0), and (2 > 0, 3 < 0).
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(e) If 2W I111 I111 ,k and 3 Ilrll
2--’ < 0, then )2 2x/ --2-- + )’ with r # 0,

imply either ,k2 0 and ,k3 < 0 or )2 < 0 and )3 0.

On the other hand, Milnor ([ 12], p. 307) gave a complete classification of the unimod-
ular three-dimensional Lie groups considering the possible combinations of the signs
of,kl, )2, )3. Using this classification, the cases (a), (b), (c), (d), (e) give, respectively,
the Heisenberg group H, the 3-sphere group SU(2), ’(2), L(2, R) and E(1, 1).

Non-unimodular case In this case the Lie algebra g is not unimodular and its
unimodular kernel a {X 6 g: tradx 0} is 2-dimensional ([12], p. 320). Since

trad g([, X], X) + g([, OX], OX)

-g(Vx, X) g(V4x, qbX)

--r(x, x) r(x, 4,x) 0,
2

where X is an unit vector field orthogonal to , then 6 a.
Now, we consider an orthonormal basis (e2, e3 ) in a. Then el -4e2 does

not belong to a and (e, e2, e3) is an orthonormal basis of g. Moreover the map
L := ade, is a linear transformation from a to itself ([ 12], p. 320). Then, we can put

[el, e2] ore2 -k- fie3, (3.5)

[e, e3] ye2 -+- 3e3, (3.6)

where 6 g([el, e3], e3) -g(Vel, ) g(el, XT) 0 and hence c tr L
tr ade =/= O. Since g is a metric associated to co, we have (dco)(el, e2) g(e, 4e2)
-1. On the other hand, by (3.5), (dco)(el, e2) 7co([e, e2]) --, and so, we
get/3 2. Since g([e2, e3], e3) g(e2, XT) 0, we can put

[e2, e3] =/zel + #2e2. (3.7)

Jacobi’s identity

[[e, e2], e3] + lie2, e3], el] + [[e3, el], e2] 0,

with (3.5), (3.6) and (3.7), implies ot/ze 2#2e3 0 and hence #l #2 0.
Therefore

[el, e2] ore2 -+- 2e3, [e, e3] ’e2, [e2, e3] 0. (3.8)
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Using (3.8) and the first Cartan structural equations, we get

0 2-

)2 e3 -e2
y+2 2-y(Veiej) --0/e2 --e3 0 el

-(2+y) 2+y
2 e2 -5-el 0

Using (3.9), by a direct calculation we find

(3.9)

0 Ollco @ 60 q-- 02202 @ 02
nt- 03303 @ 0 q- 02302 @ 0 -+- 03203 @ 02

where (0 02, 03) is the dual basis of (el, e2, e3), and

Using (3.9) again we get

V
g 201 (R) e2 -+-

g -t- 202 (R) e,
2 2

and hence

l" ?’(01 () 02 -- 02 01).
Moreover, from (3.10) and (3.11), we obtain

(3.11)

2

r -20/2 2- 2?,
?,

4W _0/2 2 ?,2?’, Ilvll 2
2

from which 4,/W < Ilrll, If ?, 0, namely the Milnor isomorphism invariant D
is equal to zero, the contact metric structure (co, g) is K-contact, the basis (el, e2, )
diagonalizes the Ricci tensor, the scalar curvature r -20/2 2 and the Webster
curvature W is 2

4"

Case H In this case (M, g) is a symmetric space. Since g is also a metric
associated to co, a result of [4] shows that (M, g) has constant sectional curvature
c=Oorc: 1.

Assume c 0, so g is a flat metric. From (2.2), the eigenvalues of h are +l and
-1. Let e.qe 6 Ker co such that he -e and he 4e. Then, by (2. l), we get

Ve O, Vbe: 2e. (3.12)

Moreover, using (3.12) and R(X, ) 0 R(X, qX), we obtain

Ve V4e Vebe--0, 7ee =-2.
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Therefore we have

[4e, 2e, [e, 0, [e, 4e] 2. (3.13)

Now we recall the following result of Lie group theory (see [21 ], p. 10).

PROPOSITION. Let M be an n-dimensional connected and simply connected man-
ifold and let Xl Xn be complete vectorfields which are linearly independent at
each point ofM and satisfy [Si, Xj] n ckijXk, where the ckij are constants. Then,
for each point p M, the manifold M has a unique Lie group structure such that p
is the identity and the vectorfields Xi are left invariant.

Since , and also e and 4e (because M is simply connected) are global vector
fields defined on M, from (3.13) and the above proposition, we have that M has a
unique Lie group structure. Moreover, in this case the Webster curvature satisfies
4x/W 2,/ Ilvll and hence, by the study of case (I), we conclude that M is the
Lie group E (2).

Finally we assume c 1. Then the Ricci curvature 0(, ) 2 and hence
h 0. So, (M, o9, g, , 4) is a complete simply connected Sasakian 3-manifold with
4-holomorphic sectional curvature c 1. On the other hand, the 3-sphere group
SU(2) also has a Sasakian structure (o9o, go, o, 4o) with q-holomorphic sectional
curvature c (which corresponds to ,kl ,k2 )3 2). Then, by Proposition 4.1
of [18], there exists a diffeomorphism f: SU(2) ---+ M which maps the structure
tensors of SU(2) in the corresponding structure tensors of M:

f*g=go, f*og=ogo, f.o=, f.o=f..

In particular, the contact metric structure (o9, g) on M is left invariant with respect to
the Lie group structure induced by SU (2). In this case W and r 0.

Remark 3.3. We will exhibit homogeneous contact Riemannian structure on Lie
groups.

Let G be a 3-dimensional unimodular Lie group and g a left invariant metric on
G. Then there exists an orthonormal basis (e, e2, e3) of the Lie algebra g such that

[e2, e3] .lel, [e3, e] )2e2, [el, e2] .3e3,

where ,k, )2,3 are constants. Let (0 02, 03) be the dual basis of (e, e2, e3). Then

(dOl)(e2, e3) -(dOl)(e3, e2) and (dO l) (ei, ej) 0

for (i, j) 5 (2, 3), (3, 2). So 0 is a contact form if ,kl - 0 and el is the
characteristic vector field. Assuming .l 2 and defining 4, with respect to the basis
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(el, ee, e3), by the matrix

0 (3.14)

we have dO g(., ). Thus g is a metric associated to 01 and the Riemannian
connection is given by (3.2). Then it is easy to check, using Milnor’s classification,
that the Webster curvature and the torsion invariant distinguish the unimodular Lie
groups as in Theorem 3.1.
Now let G be a 3-dimensional non-unimodular Lie group with g left invariant

metric. Then there exists an orthonormal basis (el, e2, e3) of the Lie algebra g such
that

[el, e2] ore2 nt- fie3, [el, e3] ge2 + 6e3, [e2, e3] 0,

where or,/, ?,, 6 are constants satisfying ot + 6 - 0, or?, +/33 0 ([12] p. 321). In
particular,/ 2, 6 y 0 and ot 7 0 satisfy the above conditions. Moreover, if
(01 02, 03) is the dual basis of (el, e2, e3), by a direct calculation one obtains

(dO3)(el, e2) -(dO3)(e2, el) -1 and (dO3)(ei, ej) 0

for (i, j) 7 (1,2), (2, 1). So, 03 is a contact form and e3 is the characteristic
vector field. Defining 4, with respect to the basis (e3, e, e2), by the matrix (3.14),
we have dO g(., ). Thus g is a metric associated to 03 and the Riemannian
connection is given by (3.9) with y 0. Then, by (3.10), 0(, ) 0(e3, e3) 2
which gives that is a Killing vector. Furthermore, the scalar curvature is given by
r -2or2 2 and the Webster scalar curvature by W -ct2/4.

4. Locally q-symmetric spaces

T. Takahashi [20] introduced the notion of locally 4-symmetric spaces. These are
Sasakian manifolds satisfying the curvature condition

:(Vv e) x, v, z) 0 (4.1)

for all X, Y, Z, V 6 Ker w. The geometric meaning for Takahashi’s definition comes
from two facts. First, a Sasakian manifold is locally 4-symmetric if and only if
the base manifold, of the local fibering, is a Hermitian symmetric space. Second, a
Sasakian manifold is locally 4-symmetric if and only if all 4-geodesic symmetries
are isometric. In [6] the authors extended the Takahashi’s notion, to an arbitrary
contact Riemannian manifold by using the condition (4.1); it is analogous to the
notion of local symmetry in the Riemanniam case. More recently, Boeckx-Vanhecke
[7] give the following new definition: a contact Riemannian manifold is called locally
4-symmetric space if and only if all characteristic reflections are (local) isometries.
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This definition seems more restrictive, but it is more geometric. We note (see [7],
Theorem 9) that the standard contact Riemannian structure of the tangent sphere
bundle of a Riemannian manifold of constant sectional curvature c is locally
4-symmetric and it is not Sasakian. In this section we show the following theorem.

THEOREM 4.1. Let M be a homogeneous contact Riemannian 3-manifold with
0 in the non-unimodular case. Then M is locally alp-symmetricfollowing [6].

Proof. We recall that in the 3-dimensional case the curvature tensor is given by

R(X, Y)Z g(X, Z)QY g(Y, Z)QX g(QY, z)x + g(QX, Z)Y

--{g(X,Z)Y-g(Y,Z)XI,

where Q is the Ricci operator. So, if r const., we have

(VvR)(X, Y, Z) g(X, z)(VvQ)Y g(Y, z)(VvQ)X
+g((VvQ)X, z)Y g((VvQ)r, z)x. (4.2)

Now let (M, 09, g) be a homogeneous contact Riemannian manifold. From Theorem
3.1, the universal covering of M is a Lie group G equipped with a left invariant
contact metric structure. In the sequel we will use the same notations as in the proof
of Theorem 3.1.

Assume G unimodular. Since VeiOJ is the 1-form dual to Veiej, from (3.2) and
(3.3) we have

(,2 )3)()2 -- 3 2)2 (02 @ 03 + 03 @ 02),V0 2

Ve0
()3 2)(3 2 -]- ’),--,2 01 @ 03 -- 03 @ 01),

2

(2- ,2) (,k2 ,k3 + 2)2 02 027be0 2
(0 (R) + (R) 0 ). (4.3)

Assume G non-unimodular. From (3.9) and (3.10), where ?, 0, el e, e2 qe
and e3 , we obtain

V0 0,

Te0 (--0/2 4)(03 (R) 02 q- 02 (R) 03),

VOe0 (0/2 + 4)(0 (R) 03 + 03 (R) 0). (4.4)
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From (4.3) and (4.4) we get (VvO)(X, Y) 0 for all X, Y, V 6 Ker o9. Therefore,
by (4.2), M is locally q-symmetric.

Remark 4.1. It is well known that the Ricci tensor of a Sasakian 3-manifold is
given by

0 -1 g+ -+3 co(R)o). (4.5)

From (4.2) and (4.5) we get the following Watanabe’s result [22]: a homogeneous
Sasakian 3-manifold is locally 4-symmetric. So our Theorem 4.1 generalizes this
result.

Question. It would be interesting to find how the two definitions of locally 4-
symmetric space, given in [6] and [7], are related.
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