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SOME STRUCTURE THEOREMS FOR COMPLETE
H-SURFACES IN HYPERBOLIC 3-SPACE

BEATE SEMMLER

1. Introduction

LetM be aproperly embedded connected constantmean curvature surface (nonzero)
in hyperbolic 3-space H with boundary a strictly convex curve C. We assume M
is complete and C is contained in a geodesic plane P. Let 1HI3+ be one of the two
half-spaces determined by P.

In [NR] it is shown that when M is compact and transverse to P along C, then M
is entirely contained in a half-space of H determined by P. Then all the symmetries
of C are also symmetries of M; in particular, M is spherical if C is a circle.

In Euclidean 3-space, some interesting results on complete noncompact H-surfaces
are obtained in [RS. ]. Our main contribution is to extend this work to the hyperbolic
case.
We study complete noncompact M of finite topology that are transverse to P

along C.
In the first part of this paper, we further assume that M is contained in H3+. We

will prove that if M is contained in a solid half-cylinder (i.e., the integral curves of
the Killing vector field associated with the hyperbolic translation along a geodesic
at a bounded distance from this geodesic) orthogonal to P of lI-]I3+ outside of some
compact set of H3, then M inherits the symmetries of C.

Then we give a generalisation of this result; we allow M to have a finite number
of cylindrically bounded ends orthogonal to P contained in ]I-lI3+. In this case, M also
inherits the symmetries of C. In particular, M is equal to a Delaunay surface when
C is a circle.

In the second part of this paper, we give conditions that ensure M is contained in

IH[3+ when M is contained in H3+ only near C and when the ends of M are annular
ends orthogonal to P.

2. Symmetries of complete noncompact H-surfaces in a half-space of H

Let P be a geodesic plane in hyperbolic space H and let ]I-lI3+ be one of the two
half-spaces determined by P.
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THEOREM 2.1. Let M be a properly embedded complete noncompact constant
mean curvature surface offinite topology in ]I-I[3. Suppose 0M C is a strictly convex
curve in P, and M is transverse to P along C. IfM C H3+ and M is cylindrically
bounded outside ofsome compact set ofH3, then M inherits the symmetries of C.

Remark 2.2. The hypothesis that M is contained in a solid half-cylinder Z, out-
side of some compact set, implies that M has mean curvature greater than one:

First, cylinders of hyperbolic radius R have mean curvature Hz coth(2R) and
soHz > 1.

Second, the mean curvature of M is at least as big as the mean curvature of Z.
The proof of this latter result is inspired by [RS.2]. The idea is to deform a compact
annulus, say K, of height 4R of the half-cylinder Z (we choose K such that 8K N M
is empty along the one-parameter family of Delaunay surfaces with constant mean
curvature Hz that have maximum bulge at the height of 9K. The family converges
to one period of a chain of spheres, so there must be a Delaunay surface in the family
that first makes one-sided tangential contact at an interior point of M. Hence the
mean curvature of M is at least that of Z.

Remark 2.3. In [KKMS] it is proved that any noncompact properly embedded
constant mean curvature surface of finite topology in ]HI which is cylindrically
bounded and has a compact boundary, must approach a Delaunay surface exponen-
tially at infinity. So our first theorem works for one-end surfaces.

ProofofTheorem 2.1. We will prove that M is invariant by reflection in every
plane V that is a plane of symmetry of C. The idea is to show that M is almost
invariant by reflection in e-tilted planes from V, for every e > 0.

Let , be the geodesic orthogonal to P such that M stays in the solid half-cylinder
about ?, in EI3+ outside of some compact set. Denote ?, f3 P by q. The end has
asymptotically the direction of ,.
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Now we will prove that 9/must lie in V. Suppose, on the contrary, that ?, is in one
of the half-spaces determined by V, say V-. Let W(t) be a family of planes in V+
orthogonal to P along a geodesic in P such that W(0) V. The part of M in V+ is
compact. For large, W(t) is disjoint from M. We apply the Alexandrov reflection
technique to M and the planes W(t) (we will explain this technique in more detail
later). By increasing t, no accident will occur (i.e., the symmetry of an interior point
of M will not touch C before reaching 0 and then, at the two points C N W(0),
the boundary maximum principle implies that M is invariant by reflection in V and
therefore compact, which contradicts the assumption that ?, is in V- (Figure 1).

Let/ be the geodesic in P orthogonal to V tq P at q. Let e > 0 and let T be a
plane that forms an angle e with V at q and T N P V tq P. Since the end of M has
asymptotically the direction of ?,, one can translate T along y (i.e., every geodesi.c
uniquely determines a one-parameter group of hyperbolic translations) to a plane T
so that C and the end of M are in distinct half-spaces of H3 determined by i. Let L
be the half-space of ]HI3\" that contains C.

Let D C P be the simply connected domain bounded by C. Notice that M U D
is a properly embedded submanifold ofH3 (with comer along C) hence separates ]I-]I3

into two components. Parametrize so that/(0) q and for/(t) C L, will be
positive.

Let T (t) be the family of e-tilted planes along/(t), 0<t < o, such that T (0) T.
For large, T(t) is disjoint from M. We apply the Alexandrov reflection process to
M and the planes T(t).

Let L(t) be the half-space of H3 \ T(t) that contains/(r) for r larger than t.
Let M(t)* denote the symmetry of M tq L(t) through T(t). Notice that the sym-
metry of P tq L(t) through T(t) intersects P only in T(t) t3 P since T(t) is e-tilted
(Figure 2).
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Figure 3

As the planes T(t) approach T, consider the first point of contact of M(t)* with
M. This point cannot be the image of an interior point of M since this implies by the
maximum principle that M is invariant by this tilted plane, which is impossible (the
end of M is orthogonal to P).

Another possibility is that at the first contact point M is orthogonal to T (t). Then
the boundary maximum principle implies that M is invariant by reflection in the tilted
plane T(t), which is not possible. Therefore, the first point of contact must be the
image of a point of C or there is no contact point until 0. This is still true for e
as small as we want.
Now we will prove that M is invariant by reflection in V. Suppose, on the contrary,

that M is not symmetric in V. Then there are points p, q on M such that the Killing
segment [p, q] (i.e., the integral curve of the Killing vector field associated with the
hyperbolic translation along/5) joining p to q is orthogonal to V, p and q are on
opposite sides of V, and d(p, V) > d(q, V). (Each orbit of the Killing field of/5 is
invariant by symmetry in V.) Thus the symmetry p* of p through V is on the other
side of q, i.e., [q, p] C [p*, p] (Figure 3).
Now move V along/3 towards p to a plane f’ that is orthogonal to P, so that the

symmetry p) of p through still satisfies [q, p] C [p), p]. If I7’ is close to V, then
this is always the case.

It follows that the symmetry ofM through V (the side ofM containing p) intersects
M in more than just M f3 I7’, i.e., in interior points of M \ I7’. If 1 denotes the planes
f’ tilted an angle e at/5 q f’, then for e sufficiently small, the symmetry ofM through
7 still intersects M in more than M f) I7’. (,) (There are two ways to tilt I7’. We do
this so that the symmetry C* of the shorter arc of C \ 17 through is in H3+ and does
not touch P.)
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Now M is transverse to P along C, so for e sufficiently small, C* intersects M
only at the endpoints of C*; i.e., C* A ]?. Also, one can choose e > 0 so that this last
condition holds for symmetry in all planes sufficiently close to and e-tilted along/3.

Notice that C* is not tangent to M at its endpoints because C is strictly convex.
Let V(t) be a plane orthogonal to P along/3 and on the same side of Q as p,

intersecting C in two points, or one point. Since M is transverse to P along C and V
is a plane of symmetry of C, there is an e > 0 such that if T (t) denotes V (t) tilted by
e along/3, then the symmetry of the short arc of C \ T(t) through T(t) intersects M
only at its endpoints. Moreover, e can be chosen to work for all planes sufficiently
close to T (t) and e-tilted along/3.
Now by compactness of the shorter arc of C \ f’, there is an e > 0 such that this

property holds for all planes T (t) on the same side as p.
For sufficiently large, T (t) is disjoint from M. As the planes T (t) approach T,

consider the first point of contact of M(t)* with M.
As we have shown before, this first point of contact must be the image of a point

of C. However, by our choice of , there is no such point of C.
This contradicts (*) and, therefore, M is symmetric in V and we have proved

Theorem 2.1. [2]

THEOREM 2.4. Let M be a properly embedded complete noncompact constant
mean curvature surface offinite topology in H3. Suppose OM C is a strictly
convex curve in P and M is transverse to P along C. IfM C 3+ and M has only
cylindrically bounded ends with asymptotic axes all orthogonal to P, then M inherits
the symmetries of C. In particular, M is equal to a Delaunay surface when C is a
circle.

Proof. Let V be a plane of symmetry of C We have only to show that the
axes of all the ends are contained in V, then by a similar reasoning as in the proof of
Theorem 2.1. we can prove Theorem 2.4.

Consider one of the half-spaces determined by V in H3, say V-. Let/3(t) be a
geodesic in V- N P orthogonal to V N P, positive. Let e > 0 and let T be a plane
passing through V P that forms an angle e with V at/ (0) such that T q ]I-]I3+ C V-.
Let T (t) be the family of e-tilted planes along such that T (0) T and denoted by
T (t)- the half-space of EI determined by T (t) contained in V-.

Notice that M is transverse to P along C, so for e sufficiently small, the symmetry
of C fq T (t)- does not touch M, for all t.
M has a finite number of cylindrically bounded ends, so for large T (t) is disjoint

from M. We apply the Alexandrov reflection process to M and the planes T(t). As
the planes T (t) approach T, consider the first point of contact of the symmetries of
M f3 T (t)- through T (t) with M. This point cannot be the image of an interior point
of M by the maximum principle. Also, by our choice of e, this point is not the image
of a point of C.
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However, another possibility is that T (t) meets M at infinity and we cannot apply
the maximum principle. This means that M has an end in V-; let ot denote its axis.
The end stays in the Killing cylinder about ot and approaches a Delaunay surface D(ot)
exponentially at infinity. By our way of tilting T, if ot N 0H C T(r) so c C T(r)-.
Let A (or) be the Killing cylinder tangent to D(c) and containing D(a). For
and close to r, the symmetry of T (f)- A A (or) through T (?) is not contained in A (or).
Hence the symmetry of M C T()- intersects M (Figure 4).

This implies that there occurred a first contact point before reaching r. There-
fore there is no end in V-. We can repeat this process in V+.

So the result follows.

3. Conditions on complete noncompact H-surfaces to be in a half-space

Now we study surfaces M satisfying the hypothesis of Theorem 2.4 except we do
not assume M is globally contained in H3+. Our interest is to obtain natural geometric
conditions that force such a surface to be in a half-space. In Corollary 3.2 of this
section we will see that Theorem 3.1 gives such conditions.

With each annular end of M we associate its axis O/i (i.e., a half-geodesic in H3+
orthogonal to P and write ,A(o/i), _< _< n. Let 7)(ci) denote the limited Delaunay
surface which we parametrize by r/, the radius of a smallest circle orthogonal to oti.
For mean curvature H, one has tanh(2r/) _< 7. Let , be any geodesic orthogonal to
P and let Y(,) be the Killing vector field associated with the hyperbolic translation
along y. We choose the orientation of the vector field such that Y (?’) on P is pointing
in H3+.

Let D be the domain in P bounded by C.

THEOREM 3.1. Let M be a properly embedded complete noncompact constant
mean curvature surface in H3. Suppose OM C is a strictly convex curve in
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Figure 5

P and M is transverse to P. If M has a finite number of cylindrically bounded
ends, topologically an annulus with asymptotic axes all orthogonal to P, in
and M C ]I-]I3+ near C, then either M C EI3+ or there is a simple closed curve in
M f) ext D N P that generates zrj (ext D), and

fD IY(?’)I < zr cosh {dist(oti, y)} sinh(ri)(cosh(ri)
i=1

H

COROLLARY 3.2. Assume M satisfies the hypothesis of Theorem 3.1 and OM is

a circle of radius R with center at 9/A P If sinh2 R >nd i-/142- then M equals2H
a Delaunay surface. Here n is the number of ends and d sup/cosh {dist(oti, ?’)}.)

ProofofTheorem 3.1. Let D be a disk orthogonal to O/i whose boundary is a
simple closed curve of 4(i), a generator of Zrl (A(ti)). Let vi denote the conormal
to M along O Di oriented such that (vi, Y(oti)) is negative, and let v denote the
conormal to M along C oriented to point in

Notice that each Killing vector field associated with a geodesic orthogonal to P is
orthogonal at each point in P.

First we prove that M A ext D 0 and M f3 int D :fi 0 is impossible. So we
assume the contrary and arrive at a contradiction.

Let be the connected component of M f) lea+ that contains C, 0 C U C to
to Cm where the Cj, <_ j <_ m, are the simple closed curves of M in int D.
together with a proper subdomain Do of int D bound a 3-dimensional domain

noncompact in ]I-]I3+.
For each annular end A(ck) in/, we consider the disk Dk. We form a compact

embedded cycle/Q by removing from Q tO Do the part of each jt(otk) that is above
0Dk and attaching Dk (Figure 5).

Let Y (),) be the Killing vector field of3+associated with the hyperbolic translation

along ,, a half-geodesic orthogonal to P. The flux of Y(,) across/Q is zero and this
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yields the balancing formula [KKMS]"

if (Y(?,), v) fo(Y(y’),noo)+m,2H Oo k

(*)

where mk is the mass of the end in direction otk:

m zr cosh {dist(ot, V)} sinh(r)
/
/
csh(rk)
H

(m is positive) and n Oo is the normal orienting Do.
We indicate how (*) is derived: since the flux is zero across M,

fD (Y(?’)’ nDo) + fit (Y(Y), nit)+ Z fD (Y(Y)’ nDk) =0
k

(i)

Y(otk)where ./Q =/17/\ (Do to [..J D), nit and rink

Here nDo is a unit vector field of ]I-]I3 orthogonal to P and pointing in H3+. The
reason for this is that H points towards Do along C because there are no exterior
intersection curves of M with P by assumption.

Furthermore one has

fo (Y(Y)’ v), (ii)(Y(y),nit)
2H it

v the inward pointing conormal to
Each annular end .4(ctk) converges geometrically to a Delaunay end D(ak). Thus

D f (Y(y),

rr cosh {dist(ot,, ,)} sinh(r,)(cs-rk) sinh(r,)) (iii)

Here rk is the radius of a smallest circle orthogonal to otk of D(cti). The hyperbolic
distance between the geodesics otk and ?’ is realized by a geodesic segment in P
since both are orthogonal to P. To prove this last formula, one constructs a compact
cycle and applies the divergence theorem. Choose a planar disk , whose boundary
approximates a "shortest parallel" circle of 79(c) and do this so that 0D tO 0D
bounds an embedded annulus on A(tk). Then, using (ii) also,

r(k) and (Y(otk), 5k) > 0.where n bk Y(otk)l
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As the Dk get higher, O Dk converges geometrically to a shortest circle of D(ctk)
rk). Therefore the right side of the above equation isand hence fik converges to

constant and equals to the flux of the Delaunay surface evaluated with respect to
(we explain this calculation in more details in the appendix). This quantity mk is
positive since tanh(2ri) _<

Taking (i), (ii), (iii) together into account, one obtains (*).
Now (v, Y (,)) is positive along O Do, so (*) implies

2H
(Y(?’), v) < (Y(’), noo) + mk.

k

Next consider the cycle M U D. The flux of Y(?,) across this cycle is also zero;
more precisely, one obtains a compact cycle from M t_J D as before, attaching Di to
each annular end .A(oti) and removing the part of .A(ci) that is above O Di. The same
type of calculation as above yields

1 (Y(v), v) (Y(?’), riD) + mi.
2H D i=1

Clearly (**) and (***) both together are impossible since Zi=l mi >_ Yk mk and

foo (Y(’)’ noo) < fo (Y(?’), no). This proves that not all components ofM N P can
be in int D. So we may assume M tq ext D 13.

Next we will show that there cannot be more then one Jordan curve in ext D that
generates rr (ext D).

The idea is to apply the Alexandrov reflection principle using e-tilted planes. We
must do some cutting and pasting along the cycle of M A int D, to obtain a manifold
that separates E[3. This enables us to be sure that the mean curvature vectors are
pointing in the same direction when we do Alexandrov reflection.

Let cr be a geodesic orthogonal to P at a point of int D and let P (t) be the family
of planes orthogonal to tr such that P (0) P and -o < < x. Let C Cm
be the Jordan curves of M (3 int D. For each Cj, let Cj+ (e) be the planar curve on M,
near Cj, obtained by intersecting M with the plane P(e). Similary, let Cj-(e) be the

curve M P(-e) that is near Cj. We form an embedded surface by removing
from M, the annuli bounded by Cj+(e) t2 Cj-(e) and attaching the planar domains

D-(e) U Dj-(e) bounded by C-(e) LJ Cj-(e). Also, we attach D to M along C.

To ensure that A is embedded, one uses different values of e, when several Cj are

concentric (Figure 6). A is a properly embedded submanifold (with comers) of H3,
0A] 0, hence each connected component of separates H into two connected
components.

Let/Q be the component of that contains C. We orient A] by the mean curvature
vector H of M. Notice that this makes sense since, abstractly, M is a submanifold
of M (hence/ is defined over it) to which one has attached D and the disks Df (e).
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Figure 6

Figure 7

Clearly/ extends across the disks to define a normal field to/. The comers of
along the boundaries of the disks do not affect this.
Now we start to prove that QNext D is at most one cycle, that generates Zrl (ext D).
First we show that M Next D has no components that are null homotopic in ext D.

To see this, suppose that E were such a component. Let/5(t), 0 < < cx, be a
geodesic in P starting at a point of int D and intersecting E in at least two points. Let
Q(t) be the family of e-tilted planes along/(t) and denote by Q(t)- the half-space
of I3+ \ Q(t) that contains/5(r) for r larger then (Figure 7).

There are two ways to tilt the planes. We do this so that the symmetry of P N Q(t)-
through Q(t) is contained in ]I-I[3+.
We apply the Alexandrov reflection process to and the planes Q(t). For

large, Q(t) is disjoint from . Now if we approach by Q(t), there will be a first
contact point of some Q(t) with ,. One continues to decrease and considers the
symmetries of N Q(t)- through Q(t). Since/5 intersects E in at least two points,
there will be a Q (r) where the symmetry of E touches M at an interior point of M
near E. This occurs before reaching C since C is convex. Thus, has a plane of
symmetry, with C on one side of this plane which is impossible.
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We remark that our manner of tilting the planes ensures that no Q(t) touches M
at infinity for > r (we refer to the argument in the proof of Theorem 2.4).

Second we show that Mfqext D has no more than one component that is a generator
of rel (ext D). Suppose that E, E2 were two such components. Each of them bounds
a domain in P that contains D, so/3 meets both of the cycles in at least two points.
As before, Alexandrov reflection gives a plane of symmetry; more precisely, there
is one position of Q(t) before reaching C where a symmetry of El touches M at a
interior point near E2 (assuming E1 is the exterior cycle). Thus M has a plane of
symmetry before reaching C which is impossible.

This proves that M fq ext_. D is at most one cycle E and E generates re (ext D). The
mean curvature vector H points towards C along E hence H points towards ext D
along C.
Now we use the balancing formula

(Y(y), v) (Y(?’), riD) + mi2H D i=l

where (Y(?,), v) ispositive along C. Since H points towards ext D along C, (Y(?,), no)
is negative. Hence

fo lY(Y)l < -re cosh {dist(oti, y)} sinh(ri) (csh(ri)
i=1

H

Proofof Corollary 3.2. Consider the flux function m(r) of the one-parameter
family of Delaunay surfaces with constant mean curvature H"

cosh(r)
m(r) re sinh(r)

H

This function is zero at r 0 corresponding to a chain of spheres and takes its
maximum at rc where coth(2rc) H corresponds to the cylinder of radius rc. It is

t4-n4S-1 and sostraightforward to check that m(rc) re 2/-/

mi re cosh {dist(oti, y)} sinh(ri)/’/csh(ri)
H sinh(ri)) < cosh {dist(oti, ?’)}m(rc)

for < < n. Since fo IY(9/)1 re sinh2 R we get by assumption

H /H2

IY(’)l > rend
2H

where d sup/cosh {dist(oi, ?,)}.
So Theorem 3.1 implies that M is contained in the half-space and therefore M

inherits the symmetries of its boundary (by Theorem 2.4).
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4. Appendix

Let ?, be any geodesic orthogonal to a fixed plane P and let Y(?,) be the Killing
vector field associated with the hyperbolic translation along , We choose the
orientation of the vector field such that Y(,) on P is pointing in H3+.
We calculate now the flux of a Delaunay end 79(c) in ]I-I[3+ with respect to a Killing

vector field Y(,) where the axe ot is a geodesic orthogonal to the plane P. Let r be
the radius of a smallest circle of D(c) orthogonal to
We work in the upper half-space model of hyperbolic space, that is,

IE3 {(Xl, xv.,x3) 3 Ix3 > 0}

with the hyperbolic metric, i.e. the Euclidean metric divided by x3. After an ambient
isometry, we can assume that P is {x + x / x }. Let , be {xl x2 0}, so
Y(?,) is the radial vector field in H3 Y(x) (Xl, x2, x3). We translate 79(0t) along
c such that 79(0t) fq P is a planar disk denoted by D of radius r.
We want evaluate

() (Y(’),vO)rn (Y(?’), no) + - D

Y(a) Y(o)where no and PD
Notice that by the divergence theorem the choice of the planar disk orthogonal to

ot of radius r where its intersection with D(c) is a smallest circle, does not affect m.
At each point x in P, Yx(ot) and Yx(’) are both orthogonal to P so we must only

find an expression of the norm of Yx (’) for the points in D C P. This norm depends
on the hyperbolic distance from x to (0, 0, 1), i.e., on the x3 coordinate of x.

Let d be the distance between ot and ,. This distance is realized by a geodesic
segment in P, denote it by
is the angle between the geodesic segment in P joining x to the center c of D (i.e.,
c ot A P) and fi, and is the hyperbolic distance of this segment, 4) 6 [0, 2rr and

[0, r].
Using hyperbolic trigonometry formulas (cf.[B]), we have

and so

IY<,t)()l cosht coshd sinht sinhd costp

2rr

(Y(’), vo) IY(o,)(9/)I sinh vd
=0

(Y(?’), riD) IY(,,)()l sinhtddt.
0 =0

This equations together with (0) imply

rn -r sinh r cosh d + sinh r cosh r cosh d
H
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The mean curvature of 79(ot) is at least as small as the mean curvature of the cylinder
of radius of the smallest radius of 79(c). Therefore tanh(2r) < and this implies
that

cosh r
rn 7r cosh d sinh r

H
sinh r) > 0.
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