SOME STRUCTURE THEOREMS FOR COMPLETE H-SURFACES IN HYPERBOLIC 3-SPACE \mathbb{H}^{3}

Beate Semmler

1. Introduction

Let M be a properly embedded connected constant mean curvature surface (nonzero) in hyperbolic 3 -space \mathbb{H}^{3} with boundary a strictly convex curve C. We assume M is complete and C is contained in a geodesic plane P. Let \mathbb{H}_{+}^{3} be one of the two half-spaces determined by P.

In [NR] it is shown that when M is compact and transverse to P along C, then M is entirely contained in a half-space of \mathbb{H}^{3} determined by P. Then all the symmetries of C are also symmetries of M; in particular, M is spherical if C is a circle.

In Euclidean 3-space, some interesting results on complete noncompact H-surfaces are obtained in [RS.1]. Our main contribution is to extend this work to the hyperbolic case.

We study complete noncompact M of finite topology that are transverse to P along C.

In the first part of this paper, we further assume that M is contained in \mathbb{H}_{+}^{3}. We will prove that if M is contained in a solid half-cylinder (i.e., the integral curves of the Killing vector field associated with the hyperbolic translation along a geodesic at a bounded distance from this geodesic) orthogonal to P of \mathbb{H}_{+}^{3} outside of some compact set of \mathbb{H}^{3}, then M inherits the symmetries of C.

Then we give a generalisation of this result; we allow M to have a finite number of cylindrically bounded ends orthogonal to P contained in \mathbb{H}_{+}^{3}. In this case, M also inherits the symmetries of C. In particular, M is equal to a Delaunay surface when C is a circle.

In the second part of this paper, we give conditions that ensure M is contained in \mathbb{H}_{+}^{3} when M is contained in \mathbb{H}_{+}^{3} only near C and when the ends of M are annular ends orthogonal to P.

2. Symmetries of complete noncompact H-surfaces in a half-space of \mathbb{H}^{3}

Let P be a geodesic plane in hyperbolic space \mathbb{H}^{3} and let \mathbb{H}_{+}^{3} be one of the two half-spaces determined by P.

Figure 1

THEOREM 2.1. Let M be a properly embedded complete noncompact constant mean curvature surface of finite topology in \mathbb{H}^{3}. Suppose $\partial M=C$ is a strictly convex curve in P, and M is transverse to P along C. If $M \subset \mathbb{H}_{+}^{3}$ and M is cylindrically bounded outside of some compact set of \mathbb{H}^{3}, then M inherits the symmetries of C.

Remark 2.2. The hypothesis that M is contained in a solid half-cylinder Z, outside of some compact set, implies that M has mean curvature greater than one:

First, cylinders of hyperbolic radius R have mean curvature $H_{Z}=\operatorname{coth}(2 R)$ and so $H_{Z}>1$.

Second, the mean curvature of M is at least as big as the mean curvature of Z. The proof of this latter result is inspired by [RS.2]. The idea is to deform a compact annulus, say K, of height $4 R$ of the half-cylinder Z (we choose K such that $\partial K \cap M$ is empty) along the one-parameter family of Delaunay surfaces with constant mean curvature H_{Z} that have maximum bulge at the height of ∂K. The family converges to one period of a chain of spheres, so there must be a Delaunay surface in the family that first makes one-sided tangential contact at an interior point of M. Hence the mean curvature of M is at least that of Z.

Remark 2.3. In [KKMS] it is proved that any noncompact properly embedded constant mean curvature surface of finite topology in \mathbb{H}^{3}, which is cylindrically bounded and has a compact boundary, must approach a Delaunay surface exponentially at infinity. So our first theorem works for one-end surfaces.

Proof of Theorem 2.1. We will prove that M is invariant by reflection in every plane V that is a plane of symmetry of C. The idea is to show that M is almost invariant by reflection in ε-tilted planes from V, for every $\varepsilon>0$.

Let γ be the geodesic orthogonal to P such that M stays in the solid half-cylinder about γ in \mathbb{H}_{+}^{3} outside of some compact set. Denote $\gamma \cap P$ by q. The end has asymptotically the direction of γ.

Figure 2

Now we will prove that γ must lie in V. Suppose, on the contrary, that γ is in one of the half-spaces determined by V, say V^{-}. Let $W(t)$ be a family of planes in V^{+} orthogonal to P along a geodesic in P such that $W(0)=V$. The part of M in V^{+}is compact. For t large, $W(t)$ is disjoint from M. We apply the Alexandrov reflection technique to M and the planes $W(t)$ (we will explain this technique in more detail later). By increasing t, no accident will occur (i.e., the symmetry of an interior point of M will not touch C) before reaching $t=0$ and then, at the two points $C \cap W(0)$, the boundary maximum principle implies that M is invariant by reflection in V and therefore compact, which contradicts the assumption that γ is in V^{-}(Figure 1).

Let β be the geodesic in P orthogonal to $V \cap P$ at q. Let $\varepsilon>0$ and let T be a plane that forms an angle ε with V at q and $T \cap P=V \cap P$. Since the end of M has asymptotically the direction of γ, one can translate T along γ (i.e., every geodesic uniquely determines a one-parameter group of hyperbolic translations) to a plane \tilde{T} so that C and the end of M are in distinct half-spaces of \mathbb{H}^{3} determined by \tilde{T}. Let L be the half-space of $\mathbb{H}^{3} \backslash \tilde{T}$ that contains C.

Let $D \subset P$ be the simply connected domain bounded by C. Notice that $M \cup D$ is a properly embedded submanifold of \mathbb{H}^{3} (with corner along C) hence separates \mathbb{H}^{3} into two components. Parametrize β so that $\beta(0)=q$ and for $\beta(t) \subset L, t$ will be positive.

Let $T(t)$ be the family of ε-tilted planes along $\beta(t), 0 \leq t<\infty$, such that $T(0)=T$. For t large, $T(t)$ is disjoint from M. We apply the Alexandrov reflection process to M and the planes $T(t)$.

Let $L(t)$ be the half-space of $\mathbb{H}^{3} \backslash T(t)$ that contains $\beta(\tau)$ for τ larger than t. Let $M(t)^{*}$ denote the symmetry of $M \cap L(t)$ through $T(t)$. Notice that the symmetry of $P \cap L(t)$ through $T(t)$ intersects P only in $T(t) \cap P$ since $T(t)$ is ε-tilted (Figure 2).

Figure 3

As the planes $T(t)$ approach T, consider the first point of contact of $M(t)^{*}$ with M. This point cannot be the image of an interior point of M since this implies by the maximum principle that M is invariant by this tilted plane, which is impossible (the end of M is orthogonal to P).

Another possibility is that at the first contact point M is orthogonal to $T(t)$. Then the boundary maximum principle implies that M is invariant by reflection in the tilted plane $T(t)$, which is not possible. Therefore, the first point of contact must be the image of a point of C or there is no contact point until $t=0$. This is still true for ε as small as we want.

Now we will prove that M is invariant by reflection in V. Suppose, on the contrary, that M is not symmetric in V. Then there are points p, q on M such that the Killing segment $[p, q]$ (i.e., the integral curve of the Killing vector field associated with the hyperbolic translation along β) joining p to q is orthogonal to V, p and q are on opposite sides of V, and $d(p, V)>d(q, V)$. (Each orbit of the Killing field of β is invariant by symmetry in V.) Thus the symmetry p^{*} of p through V is on the other side of q, i.e., $[q, p] \subset\left[p^{*}, p\right]$ (Figure 3).

Now move V along β towards p to a plane \tilde{V} that is orthogonal to P, so that the symmetry p_{0}^{*} of p through \tilde{V} still satisfies $[q, p] \subset\left[p_{0}^{*}, p\right]$. If \tilde{V} is close to V, then this is always the case.

It follows that the symmetry of M through \tilde{V} (the side of M containing p) intersects M in more than just $M \cap \tilde{V}$, i.e., in interior points of $M \backslash \tilde{V}$. If \tilde{T} denotes the planes \tilde{V} tilted an angle ε at $\beta \cap \tilde{V}$, then for ε sufficiently small, the symmetry of M through \tilde{T} still intersects M in more than $M \cap \tilde{V}$. (\star) (There are two ways to tilt \tilde{V}. We do this so that the symmetry C^{*} of the shorter arc of $C \backslash \tilde{T}$ through \tilde{T} is in \mathbb{H}_{+}^{3} and does not touch P.)

Now M is transverse to P along C, so for ε sufficiently small, C^{*} intersects M only at the endpoints of C^{*}; i.e., $C^{*} \cap \tilde{T}$. Also, one can choose $\varepsilon>0$ so that this last condition holds for symmetry in all planes sufficiently close to \tilde{T} and ε-tilted along β.

Notice that C^{*} is not tangent to M at its endpoints because C is strictly convex.
Let $V(t)$ be a plane orthogonal to P along β and on the same side of \tilde{V} as p, intersecting C in two points, or one point. Since M is transverse to P along C and V is a plane of symmetry of C, there is an $\varepsilon>0$ such that if $T(t)$ denotes $V(t)$ tilted by ε along β, then the symmetry of the short arc of $C \backslash T(t)$ through $T(t)$ intersects M only at its endpoints. Moreover, ε can be chosen to work for all planes sufficiently close to $T(t)$ and ε-tilted along β.

Now by compactness of the shorter arc of $C \backslash \tilde{V}$, there is an $\varepsilon>0$ such that this property holds for all planes $T(t)$ on the same side as p.

For t sufficiently large, $T(t)$ is disjoint from M. As the planes $T(t)$ approach \tilde{T}, consider the first point of contact of $M(t)^{*}$ with M.

As we have shown before, this first point of contact must be the image of a point of C. However, by our choice of \tilde{T}, there is no such point of C.

This contradicts (\star) and, therefore, M is symmetric in V and we have proved Theorem 2.1.

THEOREM 2.4. Let M be a properly embedded complete noncompact constant mean curvature surface of finite topology in \mathbb{H}^{3}. Suppose $\partial M=C$ is a strictly convex curve in P and M is transverse to P along C. If $M \subset \mathbb{H}_{+}^{3}$ and M has only cylindrically bounded ends with asymptotic axes all orthogonal to P, then M inherits the symmetries of C. In particular, M is equal to a Delaunay surface when C is a circle.

Proof. Let V be a plane of symmetry of C. We have only to show that the axes of all the ends are contained in V, then by a similar reasoning as in the proof of Theorem 2.1. we can prove Theorem 2.4.

Consider one of the half-spaces determined by V in \mathbb{H}^{3}, say V^{-}. Let $\beta(t)$ be a geodesic in $V^{-} \cap P$ orthogonal to $V \cap P, t$ positive. Let $\varepsilon>0$ and let T be a plane passing through $V \cap P$ that forms an angle ε with V at $\beta(0)$ such that $T \cap \mathbb{H}_{+}^{3} \subset V^{-}$. Let $T(t)$ be the family of ε-tilted planes along β such that $T(0)=T$ and denoted by $T(t)^{-}$the half-space of \mathbb{H}^{3} determined by $T(t)$ contained in V^{-}.

Notice that M is transverse to P along C, so for ε sufficiently small, the symmetry of $C \cap T(t)^{-}$does not touch M, for all t.
M has a finite number of cylindrically bounded ends, so for t large $T(t)$ is disjoint from M. We apply the Alexandrov reflection process to M and the planes $T(t)$. As the planes $T(t)$ approach T, consider the first point of contact of the symmetries of $M \cap T(t)^{-}$through $T(t)$ with M. This point cannot be the image of an interior point of M by the maximum principle. Also, by our choice of ε, this point is not the image of a point of C.

Figure 4

However, another possibility is that $T(t)$ meets M at infinity and we cannot apply the maximum principle. This means that M has an end in V^{-}; let α denote its axis. The end stays in the Killing cylinder about α and approaches a Delaunay surface $D(\alpha)$ exponentially at infinity. By our way of tilting T, if $\alpha \cap \partial \mathbb{H}^{3} \subset T(\tau)$ so $\alpha \subset T(\tau)^{-}$. Let $A(\alpha)$ be the Killing cylinder tangent to $D(\alpha)$ and containing $D(\alpha)$. For $\tilde{\tau}>\tau$ and close to τ, the symmetry of $T(\tilde{\tau})^{-} \cap A(\alpha)$ through $T(\tilde{\tau})$ is not contained in $A(\alpha)$. Hence the symmetry of $M \subset T(\tilde{\tau})^{-}$intersects M (Figure 4).

This implies that there occurred a first contact point before reaching $t=\tau$. Therefore there is no end in V^{-}. We can repeat this process in V^{+}.

So the result follows.

3. Conditions on complete noncompact H-surfaces to be in a half-space

Now we study surfaces M satisfying the hypothesis of Theorem 2.4 except we do not assume M is globally contained in \mathbb{H}_{+}^{3}. Our interest is to obtain natural geometric conditions that force such a surface to be in a half-space. In Corollary 3.2 of this section we will see that Theorem 3.1 gives such conditions.

With each annular end of M we associate its axis α_{i} (i.e., a half-geodesic in \mathbb{H}_{+}^{3} orthogonal to P) and write $\mathcal{A}\left(\alpha_{i}\right), 1 \leq i \leq n$. Let $\mathcal{D}\left(\alpha_{i}\right)$ denote the limited Delaunay surface which we parametrize by τ_{i}, the radius of a smallest circle orthogonal to α_{i}. For mean curvature H, one has $\tanh \left(2 \tau_{i}\right) \leq \frac{1}{H}$. Let γ be any geodesic orthogonal to P and let $Y(\gamma)$ be the Killing vector field associated with the hyperbolic translation along γ. We choose the orientation of the vector field such that $Y(\gamma)$ on P is pointing in \mathbb{H}_{+}^{3}.

Let D be the domain in P bounded by C.

ThEOREM 3.1. Let M be a properly embedded complete noncompact constant mean curvature surface in \mathbb{H}^{3}. Suppose $\partial M=C$ is a strictly convex curve in

Figure 5
P and M is transverse to P. If M has a finite number of cylindrically bounded ends, topologically an annulus with asymptotic axes all orthogonal to P, in \mathbb{H}_{+}^{3} and $M \subset \mathbb{H}_{+}^{3}$ near C, then either $M \subset \mathbb{H}_{+}^{3}$ or there is a simple closed curve in $M \cap \operatorname{ext} D \cap P$ that generates $\pi_{1}(\operatorname{ext} D)$, and

$$
\int_{D}|Y(\gamma)|<\sum_{i=1}^{n} \pi \cosh \left\{\operatorname{dist}\left(\alpha_{i}, \gamma\right)\right\} \sinh \left(\tau_{i}\right)\left(\frac{\cosh \left(\tau_{i}\right)}{H}-\sinh \left(\tau_{i}\right)\right)
$$

Corollary 3.2. Assume M satisfies the hypothesis of Theorem 3.1 and ∂M is a circle of radius R with center at $\gamma \cap P$. If $\sinh ^{2} R \geq n d \frac{H-\sqrt{H^{2}-1}}{2 H}$, then M equals a Delaunay surface. (Here n is the number of ends and $d=\sup _{i} \cosh \left\{\operatorname{dist}\left(\alpha_{i}, \gamma\right)\right\}$.)

Proof of Theorem 3.1. Let D_{i} be a disk orthogonal to α_{i} whose boundary is a simple closed curve of $\mathcal{A}\left(\alpha_{i}\right)$, a generator of $\pi_{1}\left(\mathcal{A}\left(\alpha_{i}\right)\right)$. Let ν_{i} denote the conormal to M along ∂D_{i}, oriented such that $\left\langle\nu_{i}, Y\left(\alpha_{i}\right)\right\rangle$ is negative, and let ν denote the conormal to M along C oriented to point in \mathbb{H}_{+}^{3}.

Notice that each Killing vector field associated with a geodesic orthogonal to P is orthogonal at each point in P.

First we prove that $M \cap \operatorname{ext} D=\emptyset$ and $M \cap \operatorname{int} D \neq \emptyset$ is impossible. So we assume the contrary and arrive at a contradiction.

Let \tilde{M} be the connected component of $M \cap \mathbb{H}_{+}^{3}$ that contains $C, \partial \tilde{M}=C \cup C_{1} \cup$ $\ldots \cup C_{m}$ where the $C_{j}, 1 \leq j \leq m$, are the simple closed curves of M in int D. \tilde{M} together with a proper subdomain D_{0} of int D bound a 3-dimensional domain noncompact in \mathbb{H}_{+}^{3}.

For each annular end $\mathcal{A}\left(\alpha_{k}\right)$ in \tilde{M}, we consider the disk D_{k}. We form a compact embedded cycle \bar{M} by removing from $\tilde{M} \cup D_{0}$ the part of each $\mathcal{A}\left(\alpha_{k}\right)$ that is above ∂D_{k} and attaching D_{k} (Figure 5).

Let $Y(\gamma)$ be the Killing vector field of \mathbb{H}_{+}^{3} associated with the hyperbolic translation along γ, a half-geodesic orthogonal to P. The flux of $Y(\gamma)$ across \bar{M} is zero and this
yields the balancing formula [KKMS]:

$$
\begin{equation*}
\frac{1}{2 H} \int_{\partial D_{0}}\langle Y(\gamma), \nu\rangle=\int_{D_{0}}\left\langle Y(\gamma), n_{D_{0}}\right\rangle+\sum_{k} m_{k} \tag{}
\end{equation*}
$$

where m_{k} is the mass of the end in direction α_{k} :

$$
m_{k}=\pi \cosh \left\{\operatorname{dist}\left(\alpha_{k}, \gamma\right)\right\} \sinh \left(\tau_{k}\right)\left(\frac{\cosh \left(\tau_{k}\right)}{H}-\sinh \left(\tau_{k}\right)\right)
$$

(m_{k} is positive) and $n_{D_{0}}$ is the normal orienting D_{0}.
We indicate how (\star) is derived: since the flux is zero across \bar{M},

$$
\begin{equation*}
\int_{D_{0}}\left\langle Y(\gamma), n_{D_{0}}\right\rangle+\int_{\hat{M}}\left\langle Y(\gamma), n_{\hat{M}}\right\rangle+\sum_{k} \int_{D_{k}}\left\langle Y(\gamma), n_{D_{k}}\right\rangle=0 \tag{i}
\end{equation*}
$$

where $\hat{M}=\bar{M} \backslash\left(D_{0} \cup \bigcup_{k} D_{k}\right), n_{\hat{M}}=\frac{\vec{H}}{\mid \vec{H}}$ and $n_{D_{k}}=-\frac{Y\left(\alpha_{k}\right)}{\left|Y\left(\alpha_{k}\right)\right|}$.
Here $n_{D_{0}}$ is a unit vector field of \mathbb{H}^{3} orthogonal to P and pointing in \mathbb{H}_{+}^{3}. The reason for this is that \vec{H} points towards D_{0} along C because there are no exterior intersection curves of M with P by assumption.

Furthermore one has

$$
\begin{equation*}
\int_{\hat{M}}\left\langle Y(\gamma), n_{\hat{M}}\right\rangle=-\frac{1}{2 H} \int_{\partial \hat{M}}\langle Y(\gamma), \nu\rangle, \tag{ii}
\end{equation*}
$$

v the inward pointing conormal to \hat{M}.
Each annular end $\mathcal{A}\left(\alpha_{k}\right)$ converges geometrically to a Delaunay end $\mathcal{D}\left(\alpha_{k}\right)$. Thus

$$
\begin{align*}
& \int_{D_{k}}\left\langle Y(\gamma), n_{D_{k}}\right\rangle-\frac{1}{2 H} \int_{\partial D_{k}}\left\langle Y(\gamma), v_{k}\right\rangle \\
& \quad=\pi \cosh \left\{\operatorname{dist}\left(\alpha_{k}, \gamma\right)\right\} \sinh \left(\tau_{k}\right)\left(\frac{\cosh \left(\tau_{k}\right)}{H}-\sinh \left(\tau_{k}\right)\right) \tag{iii}
\end{align*}
$$

Here τ_{k} is the radius of a smallest circle orthogonal to α_{k} of $\mathcal{D}\left(\alpha_{k}\right)$. The hyperbolic distance between the geodesics α_{k} and γ is realized by a geodesic segment in P since both are orthogonal to P. To prove this last formula, one constructs a compact cycle and applies the divergence theorem. Choose a planar disk \tilde{D}_{k}, whose boundary approximates a "shortest parallel" circle of $\mathcal{D}\left(\alpha_{k}\right)$ and do this so that $\partial \tilde{D}_{k} \cup \partial D_{k}$ bounds an embedded annulus on $\mathcal{A}\left(\alpha_{k}\right)$. Then, using (ii) also,

$$
\int_{D_{k}}\left\langle Y(\gamma), n_{D_{k}}\right\rangle-\frac{1}{2 H} \int_{\partial D_{k}}\left\langle Y(\gamma), v_{k}\right\rangle=-\int_{\tilde{D}_{k}}\left\langle Y(\gamma), n_{\tilde{D}_{k}}\right\rangle+\frac{1}{2 H} \int_{\partial \tilde{D}_{k}}\left\langle Y(\gamma), \tilde{v}_{k}\right\rangle
$$

where $n_{\tilde{D}_{k}}=\frac{Y\left(\alpha_{k}\right)}{\left|Y\left(\alpha_{k}\right)\right|}$ and $\left\langle Y\left(\alpha_{k}\right), \tilde{v}_{k}\right\rangle>0$.

As the \tilde{D}_{k} get higher, $\partial \tilde{D}_{k}$ converges geometrically to a shortest circle of $\mathcal{D}\left(\alpha_{k}\right)$ and hence \tilde{v}_{k} converges to $\frac{Y\left(\alpha_{k}\right)}{\left|Y\left(\alpha_{k}\right)\right|}$. Therefore the right side of the above equation is constant and equals to the flux of the Delaunay surface evaluated with respect to γ (we explain this calculation in more details in the appendix). This quantity m_{k} is positive since $\tanh \left(2 \tau_{i}\right) \leq \frac{1}{H}$.

Taking (i), (ii), (iii) together into account, one obtains (\star).
Now $\langle\nu, Y(\gamma)\rangle$ is positive along ∂D_{0}, so (\star) implies

$$
\frac{1}{2 H} \int_{C}\langle Y(\gamma), \nu\rangle<\int_{D_{0}}\left\langle Y(\gamma), n_{D_{0}}\right\rangle+\sum_{k} m_{k}
$$

Next consider the cycle $M \cup D$. The flux of $Y(\gamma)$ across this cycle is also zero; more precisely, one obtains a compact cycle from $M \cup D$ as before, attaching D_{i} to each annular end $\mathcal{A}\left(\alpha_{i}\right)$ and removing the part of $\mathcal{A}\left(\alpha_{i}\right)$ that is above ∂D_{i}. The same type of calculation as above yields

$$
\frac{1}{2 H} \int_{\partial D}\langle Y(\gamma), \nu\rangle=\int_{D}\left\langle Y(\gamma), n_{D}\right\rangle+\sum_{i=1}^{n} m_{i}
$$

Clearly ($\star \star$) and ($\star \star \star$) both together are impossible since $\sum_{i=1}^{n} m_{i} \geq \sum_{k} m_{k}$ and $\int_{D_{0}}\left\langle Y(\gamma), n_{D_{0}}\right\rangle<\int_{D}\left\langle Y(\gamma), n_{D}\right\rangle$. This proves that not all components of $M \cap P$ can be in int D. So we may assume $M \cap$ ext $D \neq \emptyset$.

Next we will show that there cannot be more then one Jordan curve in ext D that generates $\pi_{1}(\operatorname{ext} D)$.

The idea is to apply the Alexandrov reflection principle using ε-tilted planes. We must do some cutting and pasting along the cycle of $M \cap$ int D, to obtain a manifold that separates \mathbb{H}^{3}. This enables us to be sure that the mean curvature vectors are pointing in the same direction when we do Alexandrov reflection.

Let σ be a geodesic orthogonal to P at a point of int D and let $P(t)$ be the family of planes orthogonal to σ such that $P(0)=P$ and $-\infty<t<\infty$. Let C_{1}, \ldots, C_{m} be the Jordan curves of $M \cap \operatorname{int} D$. For each C_{j}, let $C_{j}^{+}(\epsilon)$ be the planar curve on M, near C_{j}, obtained by intersecting M with the plane $P(\epsilon)$. Similary, let $C_{j}^{-}(\epsilon)$ be the curve $M \cap P(-\epsilon)$ that is near C_{j}. We form an embedded surface \tilde{M} by removing from M the annuli bounded by $C_{j}^{+}(\epsilon) \cup C_{j}^{-}(\epsilon)$ and attaching the planar domains $D_{j}^{+}(\epsilon) \cup D_{j}^{-}(\epsilon)$ bounded by $C_{j}^{+}(\epsilon) \cup C_{j}^{-}(\epsilon)$. Also, we attach D to M along C.

To ensure that \tilde{M} is embedded, one uses different values of ϵ, when several C_{j} are concentric (Figure 6). \tilde{M} is a properly embedded submanifold (with corners) of \mathbb{H}^{3}, $\partial \tilde{M}=\emptyset$, hence each connected component of \tilde{M} separates \mathbb{H}^{3} into two connected components.

Let \bar{M} be the component of \tilde{M} that contains C. We orient \bar{M} by the mean curvature vector \vec{H} of M. Notice that this makes sense since, abstractly, \bar{M} is a submanifold of M (hence \vec{H} is defined over it) to which one has attached D and the disks $D_{j}^{ \pm}(\epsilon)$.

Figure 6

Figure 7

Clearly \vec{H} extends across the disks to define a normal field to \bar{M}. The corners of \bar{M} along the boundaries of the disks do not affect this.

Now we start to prove that $\bar{M} \cap$ ext D is at most one cycle, that generates π_{1} (ext D).
First we show that $\bar{M} \cap$ ext D has no components that are null homotopic in ext D. To see this, suppose that E were such a component. Let $\beta(t), 0 \leq t \leq \infty$, be a geodesic in P starting at a point of int D and intersecting E in at least two points. Let $Q(t)$ be the family of ε-tilted planes along $\beta(t)$ and denote by $Q(t)^{-}$the half-space of $\mathbb{H}_{+}^{3} \backslash Q(t)$ that contains $\beta(\tau)$ for τ larger then t (Figure 7).

There are two ways to tilt the planes. We do this so that the symmetry of $P \cap Q(t)^{-}$ through $Q(t)$ is contained in \mathbb{H}_{+}^{3}.

We apply the Alexandrov reflection process to \bar{M} and the planes $Q(t)$. For t large, $Q(t)$ is disjoint from \bar{M}. Now if we approach \bar{M} by $Q(t)$, there will be a first contact point of some $Q(t)$ with \bar{M}. One continues to decrease t and considers the symmetries of $\bar{M} \cap Q(t)^{-}$through $Q(t)$. Since β intersects E in at least two points, there will be a $Q(\tau)$ where the symmetry of E touches \bar{M} at an interior point of \bar{M} near E. This occurs before reaching C since C is convex. Thus, \bar{M} has a plane of symmetry, with C on one side of this plane which is impossible.

We remark that our manner of tilting the planes ensures that no $Q(t)$ touches \bar{M} at infinity for $t>\tau$ (we refer to the argument in the proof of Theorem 2.4).

Second we show that $\bar{M} \cap$ ext D has no more than one component that is a generator of $\pi_{1}(\operatorname{ext} D)$. Suppose that E_{1}, E_{2} were two such components. Each of them bounds a domain in P that contains D, so β meets both of the cycles in at least two points. As before, Alexandrov reflection gives a plane of symmetry; more precisely, there is one position of $Q(t)$ before reaching C where a symmetry of E_{1} touches \bar{M} at a interior point near E_{2} (assuming E_{1} is the exterior cycle). Thus \bar{M} has a plane of symmetry before reaching C which is impossible.

This proves that $\bar{M} \cap$ ext D is at most one cycle E and E generates π_{1} (ext D). The mean curvature vector \vec{H} points towards C along E hence \vec{H} points towards ext D along C.

Now we use the balancing formula

$$
\frac{1}{2 H} \int_{\partial D}\langle Y(\gamma), v\rangle=\int_{D}\left\langle Y(\gamma), n_{D}\right\rangle+\sum_{i=1}^{n} m_{i}
$$

where $\langle Y(\gamma), \nu\rangle$ is positive along C. Since \vec{H} points towards ext D along $C,\left\langle Y(\gamma), n_{D}\right\rangle$ is negative. Hence

$$
\int_{D}|Y(\gamma)|<\sum_{i=1}^{n} \pi \cosh \left\{\operatorname{dist}\left(\alpha_{i}, \gamma\right)\right\} \sinh \left(\tau_{i}\right)\left(\frac{\cosh \left(\tau_{i}\right)}{H}-\sinh \left(\tau_{i}\right)\right)
$$

Proof of Corollary 3.2. Consider the flux function $m(\tau)$ of the one-parameter family of Delaunay surfaces with constant mean curvature H :

$$
m(\tau)=\pi \sinh (\tau)\left(\frac{\cosh (\tau)}{H}-\sinh (\tau)\right)
$$

This function is zero at $\tau=0$ corresponding to a chain of spheres and takes its maximum at τ_{C} where $\operatorname{coth}\left(2 \tau_{C}\right)=H$ corresponds to the cylinder of radius τ_{C}. It is straightforward to check that $m\left(\tau_{C}\right)=\pi \frac{H-\sqrt{H^{2}-1}}{2 H}$ and so
$m_{i}=\pi \cosh \left\{\operatorname{dist}\left(\alpha_{i}, \gamma\right)\right\} \sinh \left(\tau_{i}\right)\left(\frac{\cosh \left(\tau_{i}\right)}{H}-\sinh \left(\tau_{i}\right)\right)<\cosh \left\{\operatorname{dist}\left(\alpha_{i}, \gamma\right)\right\} m\left(\tau_{C}\right)$
for $1 \leq i \leq n$. Since $\int_{D}|Y(\gamma)|=\pi \sinh ^{2} R$ we get by assumption

$$
\int_{D}|Y(\gamma)| \geq \pi n d \frac{H-\sqrt{H^{2}-1}}{2 H}
$$

where $d=\sup _{i} \cosh \left\{\operatorname{dist}\left(\alpha_{i}, \gamma\right)\right\}$.
So Theorem 3.1 implies that M is contained in the half-space and therefore M inherits the symmetries of its boundary (by Theorem 2.4).

4. Appendix

Let γ be any geodesic orthogonal to a fixed plane P and let $Y(\gamma)$ be the Killing vector field associated with the hyperbolic translation along γ. We choose the orientation of the vector field such that $Y(\gamma)$ on P is pointing in \mathbb{H}_{+}^{3}.

We calculate now the flux of a Delaunay end $\mathcal{D}(\alpha)$ in \mathbb{H}_{+}^{3} with respect to a Killing vector field $Y(\gamma)$ where the axe α is a geodesic orthogonal to the plane P. Let τ be the radius of a smallest circle of $\mathcal{D}(\alpha)$ orthogonal to α.

We work in the upper half-space model of hyperbolic space, that is,

$$
\mathbb{H}^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3}>0\right\}
$$

with the hyperbolic metric, i.e. the Euclidean metric divided by x_{3}. After an ambient isometry, we can assume that P is $\left\{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$. Let γ be $\left\{x_{1}=x_{2}=0\right\}$, so $Y(\gamma)$ is the radial vector field in $\mathbb{H}^{3}: Y(\mathbf{x})=\left(x_{1}, x_{2}, x_{3}\right)$. We translate $\mathcal{D}(\alpha)$ along α such that $\mathcal{D}(\alpha) \cap P$ is a planar disk denoted by D of radius τ.

We want evaluate

$$
m=-\int_{D}\left\langle Y(\gamma), n_{D}\right\rangle+\frac{1}{2 H} \int_{\partial D}\left\langle Y(\gamma), v_{D}\right\rangle
$$

where $n_{D}=\frac{Y(\alpha)}{|Y(\alpha)|}$ and $\nu_{D}=\frac{Y(\alpha)}{|Y(\alpha)|}$.
Notice that by the divergence theorem the choice of the planar disk orthogonal to α of radius τ where its intersection with $\mathcal{D}(\alpha)$ is a smallest circle, does not affect m.

At each point \mathbf{x} in $P, Y_{\mathbf{x}}(\alpha)$ and $Y_{\mathbf{x}}(\gamma)$ are both orthogonal to P so we must only find an expression of the norm of $Y_{\mathbf{x}}(\gamma)$ for the points in $D \subset P$. This norm depends on the hyperbolic distance from \mathbf{x} to $(0,0,1)$, i.e., on the x_{3} coordinate of \mathbf{x}.

Let d be the distance between α and γ. This distance is realized by a geodesic segment in P, denote it by β. The points $\mathbf{x} \in D$ are parametrized by (ϕ, t) where ϕ is the angle between the geodesic segment in P joining \mathbf{x} to the center c of D (i.e., $c=\alpha \cap P)$ and β, and t is the hyperbolic distance of this segment, $\phi \in[0,2 \pi]$ and $t \in[0, \tau]$.

Using hyperbolic trigonometry formulas (cf.[B]), we have

$$
\left|Y_{(\phi, t)}(\gamma)\right|=\cosh t \cosh d-\sinh t \sinh d \cos \phi
$$

and so

$$
\begin{gathered}
\int_{\partial D}\left\langle Y(\gamma), v_{D}\right\rangle=\int_{\phi=0}^{2 \pi}\left|Y_{(\phi, \tau)}(\gamma)\right| \sinh \tau d \phi \\
\int_{D}\left\langle Y(\gamma), n_{D}\right\rangle=\int_{t=0}^{\tau} \int_{\phi=0}^{2 \pi}\left|Y_{(\phi, t)}(\gamma)\right| \sinh t d \phi d t
\end{gathered}
$$

This equations together with (\diamond) imply

$$
m=-\pi \sinh ^{2} \tau \cosh d+\frac{\pi}{H} \sinh \tau \cosh \tau \cosh d
$$

The mean curvature of $\mathcal{D}(\alpha)$ is at least as small as the mean curvature of the cylinder of radius of the smallest radius of $\mathcal{D}(\alpha)$. Therefore $\tanh (2 \tau) \leq \frac{1}{H}$ and this implies that

$$
m=\pi \cosh d \sinh \tau\left(\frac{\cosh \tau}{H}-\sinh \tau\right)>0 .
$$

References

[B] W. Ballmann, Manifolds of nonpositive curvature, Birkhäuser.
[RS.1] R. SA EARP and H. Rosenberg, Some structure theorems for complete Constant mean curvature surfaces with boundary a convex curve, Proc. Amer. Math. Soc. 113, (1991), 1045-1053.
[RS.2] \longrightarrow, Some remarks on surfaces of prescribed mean curvature, Differential Geometry, Pitman Monographs and Surveys in Pure and Applied Mathematics, no. 52, (1991), pp. 123-145.
[KKMS] N. Korevaar, R. Kusner, W. H. Meeks III, and B. Solomon, Constant mean curvature surfaces in hyperbolic space, Amer. J. Math. 114, (1992), 1-43.
[NR] B. Nelli and H. Rosenberg, Some remarks on embedded hypersurfaces in hyperbolic space of constant curvature and spherical boundary, Annals of Global Analysis and Geometry 13, (1995), 23-30.

15, Rue Danielle Casanova, 75001 Paris
semmler@math.jussieu.fr

