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BOMBIERI’S NORM VERSUS MAHLER’S MEASURE

JlR6ME DIGOT AND ODILE JENVRIN

Introduction

Factorization algorithms for polynomials with integer coefficients and one complex
variable use an a priori bound on the size of the coefficients in any factor of P.
The first bound of this type was given by Mignotte [5], using Mahler’s measure.
Then Beauzamy [2] and Beauzamy-Trevisan-Wang [4] gave sharper estimates, using
Bombieri’s norm. This leads to the natural question: for which polynomials is
Bombieri’s norm smaller than Mahler’s measure? We give an answer here, in terms
of the localization of the roots of P, more precisely a sufficient condition on the
modulus of the roots, for a polynomial with complex coefficients and one complex
variable to have its Bombieri’s norm smaller than its Mahler’s measure.

I. The results

Let

P(Z) anz +"" + ao an H(Z oti)
i=1

be a polynomial of degree n, with complex coefficients and with complex zeros
(oti)l<i <n. For our problem, we can obviously assume P to be monic, that is an 1.
Recall that, for a monic polynomial, Mahler’s measure of P, denoted by M(P), is

M(P) (-I max(l, lot/I)
i=1

and that Bombieri’s norm, denoted by [P], is

[e]-- (i=o lai]2 1/2

Let D be the open unit disk, D its closure and C be the unit circle. A first and trivial

observation is that if all roots of P lie in D, then M(P) _< [P]. Indeed, in this case
M(P) and [P] > 1. The same holds if all roots are outside D. So, if we want

[PI <_ M(P)
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this is possible only if some of the zeros are in D and the others are outside D. Our
main result is given by the following theorem:

THEOREM 1. Let n, n l, n2, n3 be positive integers such that n n 4- n2 4- n3.
Assume that P is a polynomial ofdegree n with n roots, say Or! Otn, inside the
closed disk ofcenter 0 and radius 0 < t < 1, n2 roots, otn+l Otnl+n2 outside the
closed disk ofcenter 0 and radius fl > 1.

If the integers n, n l, nz, n3 and the real numbers c, fl satisfy the condition

then [P] < M(P).

We first recall main results about the Bombieri norm and its associated scalar
product of polynomials in several variables in order to use their corollaries in the
context of one complex variable polynomials. We then proceed to the proof of
Theorem 1, after establishing an inequality independant ofthis context ofpolynomials.
We eventually give a special case where Theorem can be improved as well as
examples showing to which extent it only gives a sufficient condition.

II. Bombieri norm and its associated scalar product

We recall in this section general results about the Bombieri norm, and its associated
scalar product. For their proofs, see [3].

Let

be a homogeneous polynomial in N variables X XN, with complex coefficients
and degree m. As usual, we write c ( aN), I1 1 + + N.

For any i im, N im N, we define

omP
ci im m Oxi Oxi,,,

and by Taylor’s formula, we have

N

P (Xl XN) Z Cil imXi, "’’X .... (2)
im
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called the symmetricform of the polynomial.
For a polynomial P of degree m, Bombieri’s norm. is defined by

[P](m) Z ICi, im 12
i| im=l

If we start with any polynomial P given as in (1), it can be written in many ways
in the form

N

P(x XN) Z bi, imXil Xim (3)
il im=l

but the symmetric representation (2) has a particular property, given by the following
proposition.

PROPOSITION 2. Among all representations of P of the form (3), the symmetric
one in (2) is the onefor which the 12-norm is minimal.

There is a scalar product canonically associated with Bombieri’s norm: if P, Q
are two homogeneous polynomials with same degree m, written in symmetric form
as

P(Xl XN)
N

i im=l
Cil im Xi Xim

N

Q(Xl XN)
il im=l

then for the scalar product of P and Q we set

di im Xi Xi

N

[P, Q](m)- Ci, imdi, im"
i im=l

In fact, in order to define the scalar product, only one of the polynomials needs to
be written in symmetric form, according to the following proposition:

PROPOSITION 3. Let P i im Ci imXi Xim be written in symmetricform
(2), and let

jm

be any homogeneous polynomial of degree m (the d’s need not be invariant under
permutation of indices). Then

Q] Z Ci, im-i’ ira"P,
im
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We now investigate a few special situations which will be useful for the further
proofs.

PROPOSITION 4. Let P Pk be homogeneous polynomials in N variables

xl Xu, withdegreesml mk. Letm ml +...+mk, andalsoletql qm
be homogeneous polynomials ofdegree 1. Then

[PI P, ql’" "qm] m Z[p1 qc(1)""" qc(m,)] X"". x [P,, q(m-m+l)’"" qc(m)],
m.

where runs over the set of all permutations of m }.

COROLLARY 5. Let p Pm, q qm be homogeneous polynomials ofde-
gree 1, with variables xl Xu. Then

[P Pm, q qm] .. [Pl, q()]"" [Pm, q(m)],
ESm

where c runs over the set Sm ofall permutations of{ m }.

We now give an expression for the scalar product oftwo polynomials in one variable
z, with same degree m. This expression uses the zeros of both polynomials, and is an
obvious consequence of Corollary 5. We identify the one variable polynomial z a
with the homogeneous two variables polynomial z az’.

COROLLARY 6. Let P (z a) (z am), Q (z b) (z bm). Then

[P, QI .. Z (1 + a(l)).-. (1 + amber(m)),

where runs over the set Sm ofall permutations of m }.

III. Inequalities

In the following lemma we propose a wide extension of the well-known result

where n, m, k are positive integers, that is the number of subsets of k elements out of
a set of n +m items, itself divided in two parts of respectively n and m elements. This

equality can be further interpreted as the special case A B in the inequality

k n+m
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where A and B denote positive real numbers. In this paragraph we give an inequality
of this type with six real numbers where the binomial coefficients above have been
extended to generalized multinomial coefficients.

Let n, i, j be any positive integers such that < n and j < n. From now on we
n! ifi+j <n, else0.denote by (i,j) the trinomial coefficient i!j!(----i-j)!

Lemma 7. Let n l, n2, n3, n be positive integers such that n + n2 -+- n3 n, let
kl, k2 be positive integers, and let A, B, C, D, E, F be positive real numbers such
that A > C > E and B > D> F. We have

Z i, i2 j, j2 11,12
i+j+l=k
i2 +j2 +12 =k2

< ( n )(n’Z+nzC+n3E)k’(nB+nzD+n3F)kkl, k2 n n

Proof. The left-hand and right-hand sides of the inequality are the coefficients
of xk’ yk2 in the polynomials respectively p(x, y) and q (x, y) defined by

p(x, y) (1 + Ax + By)n’(1 + Cx + Dy)n(1 + Ex + Fy)n3,

n A + n2C -k- n3E
q(x, y) + x+ niB + n2D + n3F )nY

Hence, it suffices to show that the coefficients of q (x) p(x) are all positive. If we
now write A C + I, B D + J, C E + G, D F + H, the conditions become
G,H,I,J>O.

111 -[- 112
q(x) p(x) (1 +Ex+Fy)+(Gx+Hy)+--(Ix+Jy)

n

[(1 + Ex + Fy) + (Gx + Hy) + (Ix + Jy)]’’
[(1 + Ex + Fy) + (Gx + Hy)]n (1 + Ex + Fy)n3

It // t 1111--/’/2 t 111 k 111 t111+n2-ktlk,i n () -()
(1 + Ex + Fy)n-k-i(Gx + Hy)i(Ix + Jy)k

It now suffices to show that the coefficient

(n)(n’+n2)i n)n (‘-n (nk)(n, +nz-ki )
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is always nonnegative. In fact, a little factoring shows that it is equal to

nkl (n + n2)
k!i!

k j--0 n +n2 j=0 n j=0
n -+-n2 k

We have n > n and n > n + n2 k so for all j such that 0 < j < k + l,

l_J J J J
> and 1-- > 1-

n nl n nl + n2 k

Therefore

1-- > 1--- l-
j--0

n
j-0 j-0 n +n2-k

> 1- 1- 1-
nl + n2 /=0 nl j=o nl q- n2 k

ksince 0 < ,, +,: < 1, and this ends the proof. F-1

IV. Proof of Theorem I

In the context ofpolynomials with complex coefficients and one complex variable,
we now use the preceeding results to establish the following lemmas leading to the
proof of Theorem 1.
We are now in a position to compare the values of the Mahler measure of a

polynomial in one variable P, M(P), and its Bombieri norm, P]. Let us just recall
that for

zn-1 I-IP(z) z + an-1 - -k- ao (Z Oti),
i=1

M(P) -I max(l,
i=1

where an 1.
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LEMMA 8. Let n, n l, n2, n3, be positive integers such that n n + n2 -Jr- n3.
Assume that P is a polynomial of degree n with nl roots, say cl an, inside the
closed disk ofcenter 0 and radius ot <_ and n2 roots, ot,,+l un+n2 outside the
closed disk ofcenter 0 and radius > 1. Then

[P]
M(P)

[(Z -ol)n’(z ’21- )n2(z -]- 1)n3

Geometrically speaking, Lemma 8 confirms the fact shown by Beaucoup [1 that
[P] is maximum when all roots of P lie on the same line, for instance here the real
axis.

ProofofLemma 8. First consider any polynomial P with k roots, say ot Otk
inside the closed unit disk and the n k others outside. Then, by Corollary 6,

( [p] )2 Z_iAi(r(i)
M(P) " ores. i=1

where the complex numbers Aicr(i) may take the following values"

If < k is such that r (i) < k then Aid(i) +
If < k is such that r(i) > k + then Aicr(i ol -+- _1

Oto(i)

If > k + is such that o-(i) < k then Air,i) oti) q ,.
If/ > k + is such that (i) > k + then Ai(i)

Note that all those numbers Aic(i) have their moduli less than or equal to 2. We
now look for a better majorization of Pl 2,--(5, when P satisfies the hypothesis of
Lemma 8. For example, if < n and n + _< or(i) _< nl -+- n2, then ]Oti] IY

and [(cr(i)[ > / > then

IAicr(i)
+ Olic(i

oi +
O/or (i)

Similarly, we get the following majorizations on the ]Aicr(i)]"

If/ < nl and or(i) < nl, IAi{i)l < + ot 2.

If/ < nl and or(i) > nl + n2 q-- 1, ]Aicr(i)l <_ + .
If nl + < < n + n2 and r(i) < n, IAi{i)[ < ot + -.
If n + < < nl + n2 and n + < r(i) < nl + n2, IAicr(i)l <_ + -.
If nl + < < n + n2 and r(i) > n + n2 q- 1, IAicr(i)l <_ + -.
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If > nl + n2 / and o-(i) < nl,

If > n + n2 / and nl + <_ r(i) <_ nl + n2, [Aicr(i)J <_ - ft.

If > nl + n2 / and o-(i) > n + n2 / 1, [Aicr(i)l <_ 2.

This finishes the proof of Lemma 8.

Note that the above inequalities are all reached in the case of P (z + or)/7’
/ )n2 (Z / 1)n3.

As a consequence of Lemma 8, we may assume from now on for the proof of
theorem that P (z + or)/7’ (z + )/72 (z + 1)/73.

LEMMA 9. We have

[(Z _ql_ o/)nt (Z -- )n2 (Z -]- l)n3]2
f12n2

X
kll, k13 k31, k33 k21, k23k+k2+k3=n

k13+k23+k33=n3

x (1+2)" ( 1+)’3(1+)" (21+fll+fl l+fi 1+fl)33
X (1 +)k2’ ( + )k231+fig 1+ fig

/72 /73ProofofLemma 9. Let P (z + ot)/7’(z + fi)/72(z + 1)/73 ql’q2 q3 where
ql, q2, q3 denote respectively the factors of P, that is, z + or, z + fi, z / 1. Using
Proposition 4, we get

[p]2 Z /71 n2

n!
[ql q(1)""" q(/7,)] [q2 qcr(n,+l) qcr(n,+n2)]

E S,,

x[q_ qcr(nl+n2+l)’’" q{/7)]

For any fixed o- in &, let kl l, kl2, kl3 denote the number offactors equal respectively to

ql, q2, q3 in the product q(l) q(/7,). Similarly, define kzl, k22, k23 for the product
qrr(n+l)’’’qcr(n+n2) as well as k31, k32, k33 for qcr(n+n2+l)’’’qcr(n). Therefore the
integers (kij)l<_i,j<_3 satisfy the relations

j=l j=l

for i-- 1,2,3. (4)
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Thus, we get

For any given integers (kij)l<_i,j<_3 satisfying (4), let C(kij) be the number of permu-
tations of S, which map kl, kl2, k13 (respectively k2, k22, k23) indices in {1 n}
(respectively in {n + n +n2 }) ontok (respectively k2) indices in n },
kl2 (respectively k22)indices in {n + n +n2} and kl3 (respectively k23)indices
in {nl -+- n2 + n }. A routine computation of the coefficient C(kij) gives

C(kij) n! n2! n3!
k 1, k13 k21, k23 k31, k33

Then

Z C(kij)
n!

k +k21 -k-k31
k13+k23-Fk33--n

(1 + Ot2)k" (1 --]- f12)n2-2’-:323
x (1 + otfl)/’+n’-k’’-’3 (1 + ot)/"+3’ (1 + )k23"-123-k31-k33

n--. (1 + Ot/)n(1 +/2)n(1 + ’6)n Z C(kij)
k +kel +k31
k13+kz3+k33=n3

x +oq +c +/ +
k33

Oj k k23
x

+/2 --/t2

(l + O//)n’ (1 + /2)n2(1 .qt_ /)n3

k +k: -k-k31 =nl
k13 q-k23-I-k33 =n3

x
-]- j2 --1-

which is our claim.
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Proofof Theorem 1.
with k n l, k2 n3,

Apply Lemma 7 to Lemma9 as well as Lemma9 to Lemma 8

-l-Or 2 +or +or
D-

2
E-

+or/3 +/3
A--

+ofl
B

+oefl
C

+ fi’ + fl’ -+- fl2,
F

nt- fl2"

It is easily seen thatA>C> E >0andB > D> F >0.

Comment. One may be surprised that Lemma 7 requires six real numbers A, B,
C, D, E, F in the given order. One might expect this lemma to hold for any positive
real numbers but counterexamples show that an order between them has to be given.
In these two independent results, the most surprising is that these restricted hypothesis
of Lemma 7 happen to hold precisely in the context of Lemma 9. We do not believe
this to be a coincidence but the true reason is still an open question to us.

V. Special cases and examples

Some special cases of the sufficient condition for [P] _< M(P) given in Theorem
are worth mentioning here as an illustration. First consider a polynomial P whose

roots are well apart the unit circle, that is such that n3 0. Then a sufficient condition
on P is given by n, n2, n, o/,/3 such that

1+-- (1-+- Or2) n
n2 (1 -t- otfl) 2 )n2/7 1-+-fl2

_<1.

/’/oMoreover, add the condition for n even that n n2 , then Theorem gives

/3 > V/!@ and -/+’v/2(/34-/42-1)
2/42+1 < ot < 1.

A great simplification ofTheorem can also be obtained in the case ofa polynomial
P with n3 0, n! roots concentrated at the origin and n2 other roots outside the unit

n2n_, + -a- )n2 < but a bettercircle. Setting ot 0 in Theorem gives (1 + )"2
bound is given by/3 > x//. For a detailed proof of this result, ask the authors.

The table gives examples showing to what extent Theorem only gives a sufficient
condition.
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We denote by RES the left-hand side of the inequality in Theorem 1.

n P(z)
9 (z 0, 14)4 (z 2)4 (z q-
10 (z-0, 14)4(z-2)4(z+ 1)2
13 (z -0, 14)6(z 2)6(z t- 1)
14 (z -0, 14)6(z 2)6(z -+- 1)
13 (z- 0, 14)7(z- 2)5(z + 1)
14 (z- 0, 14)7(z- 2)5(z + 1)
12 (z 0, 14) (z 2)
12 (z 0, 14)6(z 2)
12 Z6(Z 2)
12 zT(z 1,31)

RES [P] M(P)
0, 979 13, 9 16
1,9 > 19,4 16

0, 6 43,5 64
1,3> 60,8 64
0,6 20, 32

1,2> 27,7 32
0, 341 14, 6 32
0, 356 31, 3 64
0, 18,7 64

1, > 3,4 3,8

Comments

Th. and claim unsat.

Th. unsat., claim sat.

Th. unsat., claim sat.
case n3 0, n = n2
case/7 0,/21 /’/2

case ot 0,//3 0,/’/i --//2

Th. unsat., claim sat.

f r- 1,309
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