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A PARTIAL CONNECTION ON COMPLEX FINSLER
BUNDLES AND ITS APPLICATIONS

TADASHI AIKOU

Introduction

Let zr: E - M be a holomorphic vector bundle over a complex manifold M, and
p: PE --> M the projective bundle of E. If a complex Finsler structure F is given
on E, a natural Hermitian structure H on the pull-back p- E is defined, and the
differential geometry of (E, H) has been studied (cf. Abate-Patrizio[l], Aikou [2],
[3], [4], [5], Faran [7], Kobayashi [8], [10], Royden [11]). In particular, Kobayashi
[8] gave a differential geometric characterization of negative holomorphic vector
bundles, and proved a vanishing theorem for holomorphic sections of a complex
Finsler bundle.

In this paper, we are also concerned with a holomorphic vector bundle with a convex
Finsler structure. The main purpose of this paper is to prove vanishing theorems for
holomorphic sections and cohomology groups, which are generalizations of the ones
in Hermitian geometry (Theorem 3.1 and 3.2). For this purpose, we shall introduce a
partial connection so that local calculations have an invariant meaning. This partial
connection means a covariant derivation in transversal direction to the fibres of P E.
By using this partial connection, for example, the curvature of a canonical tautological
Hermitian line bundle is expressed in a simple form(Proposition 2.2).

First of all, we shall introduce some basic notations. Let M be a complex manifold
of dimension n, and E a holomorphic vector bundle of rank r over M. Each fibre E:.
is a complex vector space of complex dimension r. We denote by p: PE -- M the
projective bundle associated to E, and by the induced bundle p-E over P E. The
tautological line subbundle zrt" L E -- PE of is defined by

LE := {(v, V) 6 E PE; v 6 V}.

We denote by E (resp. LE) the open submanifold of E (resp. L E) consisting
of the non-zero elements. The holomorphic map r: E PE x E defined by
r(v) ([v], v) LE maps E biholomorphically to LE.

Let {U, (z’)} be a complex coordinate system of M, and {n- (U), (z’, i)} the
induced complex coordinate system on E with respect to a holomorphic frame field
{s Sr} on U. We denote by [] the point of PE corresponding to (z, ) 6 E.
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We define t,," V,, -- LE by

t,, ([1) "= [1 ---g
on V,, := {[] 6 PE; " 0}. Then IV,,, ta} defines a local trivialization ," Va
C -- zr- (V,,) on LE by ([se], ,k) ,kt,([]). Hence the biholomorphism r can
be written as

r(Z, b) ([b], ) (IDa([ ], a) ([], a)

on V,.
We shall use the following notation throughout this paper:

A t’ (resp. A;’’q) is the space of p-forms (resp. (p, q)-forms) on P E;

AP() (resp. AP’q ()) is the space of -valued p-forms (resp. (p, q)-forms) on P E.

1. Finsler structures and partial connections

1.1. Partial connection. First we shall make the following definition.

DEFINITION. A complex Finsler structure F on E is a real valued function satis-
fying the following conditions:

(1) F is C-class on E;
(2) F(z, ) > 0, and equals 0 if and only if 0;
(3) F(z, ,k) I,kl 2 F(z, ) for all ,k 6 C.

Since E is biholomorphic to LE, there exists a one-to-one correspondence
between Hermitian structures on LE and Finsler structures on E via the holomorphic
map r (cf. [7]). A complex Finsler structure F is said to be convex if the Hermitian
matrix (Fi]) defined by

(1.1)
02F

is positive-definite. In the following, we always assume the convexity of F, and call
(E, F) a convex Finsler vector bundle. By the condition (3) in the definition, matrix
components FiJ defined by (1.1) are functions on P E.

Putting Z i o p, we take ([], Z) (z z", r, Z Zr)
as a local coordinate systeria for /. Here and in the following, ( r) is
considered as a homogeneous coordinate system for fibres. For the convenience for
local calculations, we use the homogeneous coordinate system (1 r). Then
the line bundle LE is characterized by ( r) (Z zr).
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For all Z, W 6 A(), we shall define a Hermitian structure H on by

H(Z, W) "= E F ]Z J.
i,j

The Hermitian connection V: A() A() in (, H) is given by the form

(1.2)

For the cotangent bundle Te of P E, we shall introduce a C-splitting r of the
exact sequence

(1.3) 0 7-[* Te __(kerdp)* 0

by

(1.4)
J

The set of local l-forms {dz 1,..., dz", 0 I,..., Or}, 0 := r(di), is a local co-
frame field for T,E, and it defines a C-splitting

where 7-/* is locally spanned by {dz dz"}, and V* by {0 or}. We denote
by p" A(Tje) A(7-/*) and p" A(T,e) -- A(*) the natural projections
respectively. Then we shall define a partial connection D := D’ + D’" A(/) --a((7-/ )*(R) ) by

D’=(pT-t(R) l)oV.

The following diagram is commutative:

Ao(
v A((TPe ’Pe)* (R) )

A(/)
O A((7-/* )* (R)/)

We put d O + 7-t, O PT o d, and 7 p o d. Using this notation, the
connection form toj of D is given by

wj Fi’ oT-t Fja.
m=
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We shall give a local expression for the operator 84. If we put

U Z F ’’ O FJ
Oza J’

for any function f, 0f is defined by

07-tf Z 6z---ddz "= Z N;n dz"
m

Since the Hermitian connection V is compatible with the Hermitian structure H, we
have:

PROPOSITION 1.1.

dTH(Z, W) H(DZ, W)+ H(Z, DW)

.for all Z, W
_
A().

The following are also important in our local calculations.

(1.6) Oo+oAo--=O, OoO-O.
These identities are proved by direct calculations (cf. Lemma 2. and 2.2 in [5]).

1.2. Curvature ofpartial connections. Extending the partial connection D to the
space At’(E) in the usual way, D o D determines an End(E)-valued (1, l)-form R
called the curvature of D. From (I.6), the partial connection D D’ + D" satisfies
D’ o D’ = D" o D" 0, and so

(I.7) D o D D’o D" + D"o D’.

For all Z 6 A(), if we put D2Z R(Z), the right-hand side is written as

(R) s,,
i,j

where the curvature form 2j is given by

=E
The curvature tensor R] := F,,,R;" is defined by

62Fi]
(1.8) R) 8z6

k F18F] 6

From Proposition I. l, we have"
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PROPOSITION 1.2. The partial connection D satisfies

OT-tH(Z, Z) H(DZ, DZ) H(R(Z), Z)

for any holomorphic section Z of ,.
2. Negative vector bundles and Kobayashi’s theorem

In this section, we shall discuss negative holomorphic vector bundles, and recall
the theorem due to Kobayashi [8] from our point of view. For a convex Finsler vector
bundle (E, F), the curvature form of the corresponding Hermitian metric on LE
is given by 00 log F. For the natural projection p: E P E, direct calculations
implies that ker dp is locally spanned by e := j

-U’ and so ker dp is a holomorphic
line subbundle of TE. If we put

ann.Olog F := {X 6 TE; i(X)O log F 0},

we see easily that ann. log F ker dp. Moreover we have

log F 0,

where , is the Lie derivative with respect to e. This means that log F is invari-
ant under complex multiplication. Hence log F is invariant along the fibres of
ann.O log F. This fact implies that 0 log F may be considered as a (1, l)-form on
PE, that is, there exists a (1, l)-form on PE such that

(2.1) p*q 00 log F.

For the convenience of local calculations, however, we shall use the form 0 log F in
stead of The real (1 l)-form /7X log F on PE represents the first Chern class
c(LE) of LE.

2.1. Negative vector bundles. The ampleness of a holomorphic vector bundle E
is important in algebraic geometry, and it is well known that it is equivalent to weak
positivity in the sense of Griffith. By definition, E is said to be negative if its dual
E* is ample, and it is equivalent to the negativi.ty of its tautological line bundle L E.
Hence LE admits a Hermitian structure F satisfying

(2.2) 0 log F < 0.
2n"

Let E be a negative vector bundle over M. We shall construct a complex Finsler
structure on E satisfying (2.2). By definition, the tautological line bundle LE is
negative, and so its dual LE* is ample. Hence there exists an m >> 0 such that
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L := (LE*)m is very ample. Then, by definition, we can choose f0 fv
H (P E, L) so that

q9: PE [] (f0([]):... fU([])) e pN(c

is a holomorphic embedding. It is well known that L *H for the hypelane
bundle H over PS (C). Since PS (C) admits the Fubini-Study metric, the first Chern
form of H is given by

-1

2 Ir l
on U {IT :....; Tr] pN (C); T 0]. On Va C PE, weput fk {f}, (k
0. N), where yi; are holomohic functions on V. Then a canonical Hermitian
metric Fe,n of*H is defined by

-i

on - (U) V. Since H is ample and is holomohic embedding, we have

0 log F,.([I) > 0.(2.3)
2

The coesponding Hermitian metric F on L is given by the functions
-I

FL.a([e]) (EkO le(te )l 2)
on each V,. Since L (LE*)m, the corresponding Hermitian metric on LE is given
by the functions

on V. Then, since r(z, ) at,([]) ([], ) on V, we shall define a complex
Finsler structure F on E by

(2.4) F(z := Fe,,,ll2 :’/Pro ,,,2I.e 
This definition is independent of the choice of the neighborhood Va, since on V V
we have Fe, Il2 &E, lb[ 2. Because of (2.3), the Finsler structure F defined
by (2.4) satisfies (2.2). Hence we have proved:

PROPOSITION 2.1. Let E be a negative vector bundle over a compact complex
man(fold M. For the holonorphic embedding o: PE [] (f0([])
fN ([])) 6 pN (C), thefunction F defined by (2.4) is a convex Finsler structure with
negative curvature.
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2.2. Kobayashi’s theorem. Let F be a convex Finsler structure on E. We shall
express the curvature form 0 log F with respect to the basis dz, 0 }. The following
proposition shows the advantage of taking the splitting (1.4).

PROPOSITION 2.2. The curvatureform 90 log F of (L E, F) is given by

(2.5)

where Ri]a is the curvature tensor of the partial connection D of (E, F).

Proof This identity is obtained by calculations by using the identity DF
F 0 and the homogeneity of F (See also [6], Proposition 2.3). 121

Ifwe put (log F)ij "= 02 log F/OiOj andt := y Ri]t7 ([])i-j, the matrix

representation of (2.5) is given by

log F 0
In the following, we define the (1, l)-form by

Then we have:

"= Z dz A dt.

THEOREM 2.1 (Kobayashi [8]). A holomorphic vector bundle E is negative (fand
only if it admits a convex Finsler structure F with negative .

Proof. Because of

(2.6) 1 FiJ (log F)ij + -F5 FifFk]kI,
k,i

the convexity of F is equivalent to the fact that Hermitian matrix (log F)i] has r
positive eigenvalues and one zero eigenvalue. Hence, if the bundle E admits a convex

Finsler structure F with negative "= "/2---U Y dz/x d, then E is negative.
Conversely, if (2.2) is satisfied, then we first obtain the convexity of F from (2.6).

Hence we get the expression (2.5), which shows the negativity of . 121

Here we note that the curvature tensor Ri] is different from the one defined by
(3.15) in Kobayashi [8]. Our curvature , however, coincides with Kobayashi’s
defined by (3.19) in [8].
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EXAMPLE. A typical example of M with negative TM is a compact Kihler man-
ifold with negative bi-sectional curvature. In fact, if the metric F is Hermitian, say
F(z, )

_
hi](z)i(j, the partial connection D coincides with the Hermitian con-

nection of hi]. So we have tPi] Ri]ld(Z)ki. Hence, if M is a compact Kihler
k,l

manifold with negative bi-sectional curvature, then its tangent bundle TM is negative.

Here we shall give another proof of Kobayashi’s theorem (cf. [8], Corollary 6.3)
as an application of Proposition 2.2 and Theorem 2.1.
We suppose that a complex Finsler structure F is defined on the holomorphic

tangent bundle TM of a compact complex manifold M. Royden [11] defined the
holomorphic sectional curvature KF(Z, ) at (z, ) TM as follows. Let A be the
unit disk in C. For all (z, ) TM, there exists a holomorphic map p: A ---> M
satisfying (0) z and p,(0) . Since *F is a Hermitian metric on A, we can
calculate its Gaussian curvature K,F at the origin. Then, KF(Z, ) is defined by

KF(Z, ) :--- sup{K,F}.

Then (cf. [2]) we have:

LEMMA 2.1. If F is a convex Finsler structure on TM, then its holomorphic
sectional curvature KF(Z, ) at (Z, ) TM is given by

2 2 jktKF(Z, ) " . Iffi]iJ F---5 y Ri]k[i
t,j i,j,k,!

for the curvature Ri]k{ of D.

Hence the negativity of implies the negativity of KF, and so, since PE is
compact, KF is bounded above by a negative constant. The generalized Shcwarz
lemma implies FK > kF for a positive constant k (cf. [3], Theorem 5.1), where FK
is the Kobayashi metric on M. Hence we have proved

PROPOSITION 2.3 (Kobayashi [8]). Let M be a compact complex manifold. If its
holomorphic tangent bundle TM is negative, then M is Kobayashi hyperbolic.

3. Applications-Vanishing theorems

3.1. A vanishing theorem for holomorphic sections. In this section, we shall
state a Bochner-type vanishing theorem for holomorphic sections of a convex Finsler
bundle (E, F) (cf. [5]).
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Let ( Yi (i (Z)S be a non-vanishing holomorphic section over an open set
U. We denote by PEtv) C PE the image of ((U) by the natural projection
p: E -- P E; that is,

PE(u) := {[((z)] PE; z U}.

We also denote by ’p the corresponding holomorphic section of LE over PEtv.
For the holomorphic mapping f: z U --+ [((z)] P E, we get the following
commutative diagram:

LE

U

We say that a holomorphic section ( (i (z)si is parallel with respect to D if

it satisfies D(p 0 on PEtv, that is, if

Dot(
o(i

(m0z---g + (z)r,([ (z)]) 0,
m=l

where oj :-- Fj/dz
For a holomorphic section of E, we put f(z) F(z, ((z)) H((p, (p).

Applying (1.9) to the function f(z), we can give the complex Hessian of f (z) by

Ogf (z) -H(R((p), p) + H(D’(p, D’(p),

or, in local coordinates,

(3.1) , Ri]a([((z)])f(z)fJ(z) + F]([((z)I)DfiDt( j.

i,j i,j

If has at least one negative eigenvalue at every point of P E, the complex Hessian

Of has a positive eigenvalue at every point of P E. Hence, by (3.1) we have
Kobayashi’s vanishing theorem as follows.

PROPOSITION 3.1(Kobayashi [8]). Let (E, F) be a convex Finsler vector bundle
over a compact complex manifold. If has at least one negative eigenvalue at
every point of P E, then there exists no nonzero holomorphic sections:

H(M, E) 0.
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Remark 3.1. This vanishing theorem is due to Kobayashi [8]. The curvature

R;]t used in [8] is different from our Ri][. In fact, our curvature Rip.i_ is defined

by (1.8), and his curvature Ri][ is defined by

K
But the negativity or positivity of gi]aij coincides with the one of O,B, since

i,j

we can take a normal coordinate system at each point of P E.

Let (E, F) be a convex Finsler vector bundle over a compact Hermitian manifold
(M, g), where g Y gdz (R) d.. For the curvature tensor Ri]a of D, we put

Ki] "= ggi] and call it the mean curvature of (E, F) (cf. [5]). Then we shall
define a Hermitian form K by

K (Z, W) "= Ki]Z V
i,j

for all Z, W A(/). Then we get the following Bochner-type vanishing theorem
for holomorphic sections.

THEOREM 3.1. Let (E, F) be a convex Finsler vector bundle over a compact
Hermitian manifold (M, g).

(1) Ifthe mean curvature K is negative semi-definite on P E, then every holomor-
phic section of E is parallel with respect to D; that is,

Dfp --0,

and satisfies
K(p,p) --0.

(2) IfK is negative definite on P E, then E admits no nonzero holomorphic sections:
H(M, E) 0.

Proof.

(3.2)

By taking the g-trace of (3.1), we have

F-If(z) IID’C II
for any holomorphic section " of E, where

:= g(z)F]([g(z)])Dg D
a,[,i,j



COMPLEX FINSLER BUNDLES 491

and

0ef (z)
F-lf (z) Z gl

OzOl

From (3.2) and the maximum principle ofE. Hopf (cf. [8], Theorem 1.10) imply our
assertions. 121

3.2. A vanishing theorem for cohomology groups. In this last sub-section, we
shall show a vanishing theorem for cohomology groups as an application of Proposi-
tion 2.2.

Let (E, F) be a convex Finsler vector bundle over a compact Kihler manifold
(M, w), where w is its Kihler form. We assume that tp is semi-negative with rank
> k. Then the first Chern class c(LE) is semi-negative with rank >_ k + r 1.
Hence the bundle E is semi-negative of rank > k (cf. [9], p. 83).

Moreover, since M is compact Kihler, the projective bundle PE is also compact
Kihler. In fact, since ,P E is compact, we can take a sufficiently positive such that

gOpE 00 --(I)

defines a Kihler form on P E, where is the (1, 1)-form defined by (2.1). Then,
Theorem 6.17 of [9] may be generalized as follows:

THEOREM 3.2.
manifold M.

Let E, F) be a convex Finsler bundle of rank r over a complex

(1) The curvature q ofD is semi-negative ofrank > k ifand only ifthe curvature
0 log F of the corresponding Hermitian structure in LE is semi-negative of
rank > k + r- 1.

(2) If the curvature q of D is semi-negative of rank > k, then E is semi-negative
of rank > k.

(3) If the curvature of D is semi-negative ofrank > k, then

Hq(M,P(E)) --0

for p + q < k r, provided that M is compact Kiihler.

Proof The first and second are trivial from the definition of semi-negativity.
Hence we shall prove the third assertion. If we apply the Gigante’s vanishing theorem
(cf. [9], p. 69) to the Hermitian line bundle (L E, F), we get

HQ(PE, E2P (LE)) --0

for P + Q < k + r 2, where ’2 P (L E) denotes the sheaf of L E-valued holomorphic
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P-forms. On the other hand, we have the following isomorphism (cf. [9], p. 84):

Hq(M, P(E)) H"-q(M, "-P(E*))
H"-q(PE, "-P((LE)*))
Hq+r-(pE, g2P+r-I(LE)),

where and , denote the Serre duality and Le Potier isomorphism respectively. This
implies the third assertion. I-I

As a special case, if q is negative definite, Theorem 2.1 implies that E is negative.
Then Corollary 5.10 in [9] can be written as follows:

COROLLARY 3.1. Let E be a holomorphic vector bundle ofrank r over a compact
complex manifold M ofdimension n. If E admits a convex Finsler structure F with
negative q, then

Hq (M, ff2P (E)) --0

forp+q < n-r.

In the case where E is a holomorphic line bundle, any Finsler structure on E is
a Hermitian structure, so Corollary 3.1 (Corollary 5.10 in [9]) is a generalization of
Nakano’s vanishing theorem.

REFERENCES

1] M. Abate and G. Patrizio, Finsler metrics A Globalapproach with applications to geometricfunction
theory., Lecture Notes 1591, Springer, 1994.

[21 T. Aikou, On complex Finsler manifolds, Rep. Fac. Sci. Kagoshima Univ. 35 (1991), 9-25.
[3] Complex manifolds modeled on a complex Minkowski space, J. Math. Kyoto Univ. 24

(1995), 83-101.
[41 Some remarks on locally conformal complex Berwlad spaces, Contemporary Math. 196

(1996), 109-120.
[5] Einstein-Finsler vector bundles, to appear in Publ. Math. Debrecen (1997).
[61 J. Bland and M. Kalka, Variations ofholomorphic curvaturefor Kgihler Finsler metrics, Contemporary

Math. 196 (1996), 121-132.
[71 J. J. Faran, Hermitian Finsler metric and Kobayashi metric, J. Differential Geometry 31 (1990),

601-625.
[8] S. Kobayashi, Negative vector bundles and complex Finsler structures, Nagoya Math. J. 57 (1975),

153-166.
[9] Differential geometry ofcomplex vector bundles, lwanami-Princeton Univ. Press, 1987.
[10] Complex Finsler vector bundles, Contemporary Math. 196 (1996), 145-153.
[11] H. L. Royden, Complex Finsler metrics, Contemporary Math. 49 (1986), 261-271.

1-2-35 Korimoto Kagoshima, 890 Japan
aikou@sci.kagoshima-u.ac.jp


