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BIFURCATION SETS OF FUNCTIONS DEFINABLE IN
O-MINIMAL STRUCTURES

TA L LOI AND ALEXANDRU ZAHARIA

1. Introduction

1.1. Let g: X ---+ Y be a Cp map between two manifolds, for some p > 1,
where we allow p ec. Let < q < p. We say that Y0 6 Y is a Cq .pical value
of g if Y0 is a regular value of g and there exists an open neighborhood U of Y0 in Y,
such that the restriction g" g-l(U) U is a Cq trivial fibration, i.e., such that there
exists a Cq diffeomorphism h" g- (Y0) x U g- (U) satisfying g(h(y, u)) u,
for all (y,u) 6 g-(y0) x U. If y0 6 YisnotaCq typical value ofg, theny0is
called a Cq a.pical value of g. We denote by Bifq (g) the Cq btfurcation set of g,
i.e., the set of Cq atypical values of g. In the case of a complex polynomial function

.f" C" --+ C it follows from [15] that Bif(.f) is a finite set; see also [16], [12].
In [1] it is proved that the C bifurcation sets of real polynomial functions are also
finite.

The aim of this note is to show that, for U _c R" open, the bifurcation sets of
differentiable functions .f: U -- R definable in an o-minimal expansion of the real
field (see Definition 1.2) are finite. We proceed as in 0] and we give an upper bound
for the cardinality of the bifurcation sets. We also present a new proof for the fact that
the bifurcation set of a complex polynomial function of n variables is finite. Before
stating our results, we give some definitions.

1.2 DEFINITION. An o-minimal structure on the real field (R, +, .) is a sequence
79 (D,,),,eN such that, for each n 6 N"

(D1) D,, is a boolean algebra of subsets of R", i.e., 79,, is closed under taking
complements and finite unions.

(D2) If A 79,,, then A x R and R x A
(D3) If A 79,,+1, then rr(A) 79,,, where rr: R’’+ --+ R" is the projection on the

first n coordinates.
(D4) 79,, contains {x R" P(x) 0} for every polynomial P R[X X,,].
(D5) Each set belonging to D is a finite union of intervals and points. (This property

is called o-minimality.)

Received June 5, 1997.
1991 Mathematics Subject Classification. Primary 03C99, 57R35, 58C25.

@ 1998 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

449



450 TA L LOI AND ALEXANDRU ZAHARIA

A subset A

_
R" will be called definable (in the structure D) if A E D,,. A map

.f" A ---> R will be called definable if the graph of f is a definable set.

Sets definable in o-minimal structures have many nice properties similar to those
of semi-algebraic sets. We mention here only the fact that any definable set has
only finitely many connected components, and each of them is path connected and
definable. For more details, see for instance [3] and [4].

1.3.
that

Let U

_
R" be an open set and let us fix a C function p" U ---> R such

for any r E R, the "ball" Bf := u 6 U p(u) < r is compact. (1)

We also let Sf "= x 6 U p (x) r denote the corresponding "sphere". For a C
function g: U ---> R, we let

M(g" p) "= x 6 U zl;k 6 R, grad g (X) ,k grad p (x) }.

Note that u E M(g; p) if and only if either u is a critical point of g, or u is not a
critical point of g (hence grad p(u) 0) and the level set g- (g(u)) is a submanifold
of R near u, which is not transversal to the "sphere" Sf at u.

For a sequence {yk}
_
M(g; p) we consider the conditions

lim p(yk) o and lim g(yk) c. (2)

We denote by Zg the set of critical values of g, and we put

Sg..p C R there exists a sequence {yk}
_

M(g; p) such that (2) is satisfied }.

If p(x) [[x[[ 2 for all x R", we write Sg instead of Sg.p. The motivation for
considering the set Sg:p is given by the following result, which is similar to Theorem

in 10].

PROPOSITION. Let U

_
R" be open and let g, p" U ---> R be Cp+ .functions

.for some p N ty {o}. Assume, moreover, that Zp is bounded. Then for any open
interval J

_
g(R") \ (Zu t2 Su:;+), the restriction

g: g-l(j) j

is a Cp trivialfibration.

1.4. Let D be a fixed, but arbitrary, o-minimal structure on (R, +, .). "Definable"
will mean definable in D.

PROPOSITION. Let U c_ R" be an open definable set. Thenfor any p N there
exists p" U ----> R definable and Cp+ such that condition (1) is satisfied.
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Remark. Sometimes it is possible to prove this proposition for p x; for
2 We do not know ifexample, when U R" one can take p(x) x +... + x,,.

the conclusion of Proposition 1.4 is true for p cx and for any definable open set
U C R".

1.5 THEOREM. Let U c_ R" be open and let p" U -- R definable and C such
that condition (l) is satisfied. If f" U R is definable and C then Ef and St:p
are finite.

As a consequence of Propositions 1.3 and 1.4, and this theorem, we have:

COROLLARY. Let U c_ R" be ()pen and let f" U R be definable and Cp+
Let q E NJ cx be such that q <_ p. lfq o, assume moreover that the conclusion

ofProposition 1.4 holdsfor q. Then Bifq (f) is finite.

1.6. We will denote the cardinality of a set X by #(X). The following proposition
provides us an upperbound for #(St..p).

PROPOSITION. Let U c_ R" be open and let f, p" U R be definable and
C Suppose that condition (1) is satisfied by p. Then there exists R >_ 0 such that
#(St:p) is less than or equal to the number ofconnected components of M(f) f3 SPr
.for all r > R.

1.7. In the complex case, if U c_ C" is open, the gradient of a holomorphic
function f: U C is defined to be

Of O.f
(x)gradf(x) -x, (X)

where x (x, x,,) and the bar denotes conjugation.
For a polynomial f: C" C, we take p(x) "= Ilxll and we define

M(f)’-{xEC"Izl,kC gradf(x)-)x},

St := c 6 c there exists a sequence {yk}
_
M(f) such that (2) is satisfied }.

By Theorem in [10], Bif(f) c_ Ef U St.. The next result shows us that St is finite,
hence Bif (f) is also finite.

THEOREM.
finite.

Let f" C" --+ C be a complex polynomial function. Then St is

The next section contains the proofs. Several examples and related remarks are
given in the last section.
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2. Proofs

2.1. We keep the notations from Section 1. We denote by (a, b) the Euclidean
scalar product of a, b E R". We skip the proof of Proposition 1.3, since it is a routine
modification of the proof of Theorem in 10], obtained by using grad t9 (x), Brp, and
Srp instead of vector field z, usual ball and sphere.

ProofofProposition 1.4. Letup: R" (-1, )" be a definable C diffeomor-
phism. Then qg(U) is a bounded definable open set in R". By Theorem 4.22 in [4],
there exists a definable Cp+ function h: R" --+ R such that h
Moreover, by squaring if necessary, one can suppose that h is non-negative. Then

satisfies the conclusion of Proposition 1.4.p U ----+ R, defined by p(x)"
Note that if h is C, then p is also C. I--I

2.2 LEMMA. Let U c__ R" be open and let f, p: U -- R be definable and
C Suppose that condition (1) is satisfied by p. Let c R and suppose that
p(f- (c) f3 M(f p)) is unbounded. Then c E.f.

Proof By hypothesis and using Definable Choice and Monotonicity Theorems
from [4], there exist a definable C path y" (a, cxz) R" and definable X: (a, cx)
R, such that

foy=c, (gradf) oy=X.(gradp)oF and
d(po y)

dt

Then

0 (f o y)’ <(grad f) o y, y’> Z. <(gradp) o y, g’> Z.
d(po y)

dt

So X 0, every point of V is a critical point, and c

2.3 Proofof Theorem 1.5. Of course, Ef is finite by Cell Decomposition Theo-
rem 4.2 in [4]. So it suffices to show that Sr:p \ Ef is finite. Note that

A {(c, y, X, t) 6 RxR" xRR c f(y), grad f(y) Z grad p(y), tp(y) > 1}

is a definable set. We have

c SI:p == Ye > 0 V8 > 0 (c’, y, k, t) A, Itl < e, Ic’-cl < 8.

Using the interpretation of the logical symbols in terms of operations on sets, one can
see that SI:p is definable. Hence SI:p is a finite union of points and intervals.

Suppose, to the contrary, that Sr:p \ Ef contains an open interval I. Using Lemma
2.2, define rl" I R by rl(r) sup{ p(x) x .f-(r) 0 M(f" p) }. Then rl
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is definable. Monotonicity Theorem 4.1 in [4], applied to r/, provides us a nonempty
open interval J

_
I such that p(f-(J) (3 M(f; p)) is bounded. But given c 6 J,

there is a definable continuous path ?," (a, cxz) Rn, whose image is contained
in M(f; p), with p(,(t)) +c and f(},(t)) --+ c as ---+ +cx. So there
exists R > 0 such that if > R, then f(},(t)) J. This contradicts the fact that
p(f- (J) (’1M(f; p)) is bounded.

2.4 ProofofProposition 1.6. Since Sf:p is finite, we can choose 6 > 0 such that
< Is s’l/2 for every s, s’ 6 Sf:p with s - s’. For r > 0 and s 6 St:p, put

A(r, s) "= x M(f) N Sr If(x) sl < 8 }.

By Definable Choice Theorem 4.5 in [4], we get R > 0 such that A (r, s) - 0 for all
r > R and s 6 Sf:p moreover, s - s’ implies that A (r, s) and A (r, s’) are disjoint.

2.5 LEMMA. Let U c_ Rk be open and let F" U (0, e) R be a C
definable map. Suppose that there exists a constant K > 0 such that liE(s, t)ll _< K
for all (s, t) U (0, e). Then there exist a definable set V, closed in U and with
dim V < k, and continuous definable functions x, r" U \ V -----+ (0, cxz), such that

for all s U \ V and (0, r(s)),

_< x(s).

For the proof of this lemma, see [6].

2.6 LEMMA. Let F: (0, e) --+ R be a C definablefunction with limr-.0 F(t)
O. Then limrotF’(t) O.

Proof By Monotonicity Theorem 4.1 in [4], F is either constant, or strictly
monotone near 0. So, it is sufficient to consider the case when F and F’ are strictly
monotone on (0, e) and F > 0. Then F’ > 0. By Mean Value Theorem, we have
F(t) F’((t))t for ’(t) 6 (0, t). It is easy to see that : (0, e) ---+ (0, e) is
definable and limt0 ’(t) 0. Therefore,

0 _< lim (F’(() lim((t)F’(((t)) < limtF’(((t)) --0.
0 O t-+O

2.7 Proofof Theorem 1.7. In this proof we will denote by (a, b) the Hermitian
product of a, b 6 C".

Since the class of all semi-algebraic sets is an o-minimal structure on (R, +, .),
it follows, as in the proof of Theorem 1.5, that St is definable, i.e., a semi-algebraic
subset of R2 C. We will show that dim St < o.
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If dim St > 1, then there exist an interval J R and a definable and C curve
e: J ---+ Sf whose derivative satisfies e’(s) - 0, for all s 6 J. Therefore, for all
s 6 J and > 0 there exist p(s, t) 6 C" and X(s, t) 6 C such that

If (p(s, t)) e(s)l < (3)

grad f(p(s, t)) X(s, t)p(s, t) (4)

and

lip(s, t)ll >

By Definable Choice [4] and [11], after eventually shrinking the interval J, we get
e > 0 such that

p(s, t) a(s)t + a (s, t)t’

f (p(s, t)) (s) + b(s)t + b(s, t)t’
X(s, t) c(s)t + c (s, t)t’

where ct < 0, ct < ot fl < fl ?, < ?, and a" J C" is C with a(s) :/: O,
Ys J ;b,c" J CareC withb(s),c(s) 0,Vs 6 J ;av J x (0, e) C"
is C and bounded, and b, c" J x (0, e) C are C and bounded. Moreover,
using Lemma 2.5, after shrinking J and reducing e, if necessary, we may assume that
3a, Ob, and OCI., . are bounded on J X (0, 6). By (3), we have fl 1. Therefore

Of(p(s,t))
OS

’(s) when 0.

Relation (4) implies

Os -s’ gradf(p(s, t)) .(s, t) ----s p(s, t)

Hence

?, + 2o <_ 0. (5)

On the other hand, by Lemma 2.6, Of(p(s,t)) 0 when 0. Relation (4)3t
implies

Of (P(S’ t))
tX(s t) ( Op(s’ t) )3t 3------’ p(s, t) --+ 0 when ---+ 0.

Hence, + ?, + (2or 1) > 0; i.e., ?, + 2or > 0. This contradicts (5). El
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3. Examples and remarks

3.1. The Pfaffian functions (see [7] for the definition), for example, all functions
f R[x x,,, exp(x) exp(x,,)], are shown to be definable in a suitable
o-minimal structure. This is a consequence of a general result of Wilkie; see 18].

3.2 Remark. In Section 1.3, suppose moreover that the functions g and/9 are
definable. Then the trivialization obtained in Proposition 1.3 is not necessarily defin-
able. In general, it is not known even if definable C trivializations can be obtained;
compare with [2].

3.3 Remark. Let f: C" C be a complex polynomial.
(a) The finiteness of Sr was also proved in [14].
(b) If n 2, it follows from [17] that Bif(f) Sf (-j E.f.
(c) If n > 3, we do not know if Sf Bif(f) or not.

3.4 Remark. (a) The bifurcation values of a polynomial f: Re R are char-
acterized in [5].
(b) Let g: R R be defined by g(x) := x3. Then g is a CO trivial fibration, but
Bif (g) Eg {0}. More generally, for each q N there exists a semi-algebraic
Cq diffeomorphism h: R R which is not a Cq+ diffeomorphism. Therefore,
for such an h we have Bifq (h) 0 and Bifq+ (h) 0.
(c) The C bifurcation set of h (x) x sin x is infinite. Obviously, h is not definable
in any o-minimal structure.
(d) In general, the inclusions Ef

___
Bifq(f)

_
Ef U Sf cannot be replaced by

equalities, as the following examples show us.

3.5 EXAMPLE. (a) Let f: R Rbe defined by f(x) := xexpx. Then

Z.f {-1/e}, Sf {0} and Bifq (f) {0, -1/e}.
(b) Letg: Re R be defined by g(x, y) := xeye+2xy. Then Zg {0},
Sg {-1} and Bifq (g) {0, -1}.
(c) Let h: Re R be defined by h(x, y) y exp(2x) + exp x. Then Sh {0},
but Bif(h) El, 0 (one can check that H: Re h-(0) x R defined by
H(x, y) (x, -exp(-x), h(x, y)) is a C trivialization of h).

Note that in (a) and (b) we have Bifq (f) Z.f t2 Sf’, i.e., the equality can be
attained.

3.6 Remark. Theorem 2 in 10] describes an approximation from above of the
C bifurcation sets of complex polynomial functions, using the Newton polyhedron
at infinity. With the same proof as in 10] one can obtain a similar result for the case
of real polynomial functions.
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3.7 Remark. If .f is a Pfaffian function, then using Proposition 1.6 and Khovan-
skii’s theory on Fewnomials, see [7], one can estimate from above the cardinalities
of Sf, zf and Bifq (f). Note also that the conclusion of Proposition 1.6 is still true
when g: C" C is a complex polynomial, and hence, Khovanskii’s theory can be
applied to get a (rough) estimate of #(BifC(g)) in this case (when n 2, a better
estimate of #(Bif(g)) was obtained in [13]).

3.8 Remark. The referee kindly pointed out that, with minor modifications, The-
orem 1.7 and its proof are also valid when U

_
C" is open and f" U C is

holomorphic and definable in a polynomially bounded o-minimal expansion of the
real field. (See [4] and [9] for polynomially bounded o-minimal expansions of the
real field.) Namely, we have to use a C definable function p" U ---+ R satisfying
(1) and we have to replace M(f) by

M(f;p)’={x U 13,kC gradf(x)=,gradp(x)}.

Here, grad f(x) is as in 1.7, while for grad p (x), we identify C" with R2’’ in the usual
way. We also have to replace St by

St:p "= c c there exists a sequence {yk} c_ M(f; p) such that (2) is fulfilled

and to refer at Proposition 5.2 in [8] instead of 11 ]. We do not know if the assumption
of polynomial bounds is necessary, or only convenient, for obtaining the conclusion.

Acknowledgements. We are very grateful to Professor Lou van den Dries, for
several useful comments and remarks, and to the referee, whose criticism helped
us to improve this paper. We also thank The Fields Institute and the University of
Toronto, for hospitality and support during our work.

REFERENCES

Ill E Chazal, Un thdorkme de fibration pour les feuilletages algdbriques de codimension un de R", C.
R. Acad. Sci. Paris S6rie 1321 (1995), 327-330.

[2] M. Coste and M. Shiota, Nash triviality in.families ofNash man(folds, Invent. Math. 108 (1992),
349-368.

[3 L. van den Dries, Tame topology ando-minimal structures, LMS Lecture Notes, Cambridge University
Press, to appear.

[4] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84
(1996), 497-540.

[5] J. Ferrera and M. J. de la Puente, The asymptotic values qfa polynomial.function on the real plane,
J. Pure Applied Algebra 106 (1996), 263-273.

[61 T.L. Loi, Verdier and strict Thorn strat(fications in o-minimal structures, Illinois J. Math., 42 (1998),
347-356.

[7] A.G. Khovanskii, Fewnomials, Trans. Math. Monographs, Vol. 88, Amer. Math. Soc., Providence,
RI, 1991.

I8] C. Miller, Expansions o.fthe realfield with power.functions, Ann. Pure Appl. Logic 68 (1994), 79-94.



BIFURCATION SETS OF DEFINABLE FUNCTIONS 457

191 Infinite dfferentiability in polynomially bounded o-minimal structures, Proc. Amer.
Math. Soc. 123 (1995), 2551-2555.

[10] A. N6rnethi and A. Zaharia, On the b(furcation set of a polynomialfunction and Newton boundar3.’,
Publ. RIMS, Kyoto Univ. 26 (1990), 681-689.

11 W. Pawlucki, Le thorkme de Puiseux pour une application sous-analytique, Bull. Polish Acad. Sci.
Math. 32 (1984), 555-560.

12] E Pham, Vanishing homologies and the n variables saddlepoint method, Proc. Symp. Pure Math.,
vol. 40, Part 2, 1983, 319-333.

[! 3] L. V. Thanh and M. Oka, Note on estimation of the number of the critical values at infinity, Kodai
Math. J. 17 (1994), 409-419.

[14] M. Tibir, On the rnonodromy fibration ofpolynomial functions with singularities at infinity, C. R.
Acad. Sci. Paris S6rie 324 (1997), 1031-1035.

[15] R. Thom, Ensembles et morphismes strat(figs, Bull. Amer. Math. Soc. 75 (1969), 240-284.
16] A. N. Varchenko, Theorems on topological equisingularity offamilies of algebraic varieties and

.families ofpolynomial maps, Izvestiya Akad. Nauk 36 (1972), 957-1019.
[17] H. H. Vui, Nombres de Lojasiewicz et singularits gt l’infini des polynOmes de deux variables com-

plexes, C. R. Acad. Sci. Paris S6rie 1311 (1990), 429-432.
[18] A. Wilkie, A general theorem of the complement and some new o-minimal structures, manuscript,

1996.

Ta L Loi, Department of Mathematics, University of Dalat, Dalat, Vietnam

Alexandru Zaharia, Institute of Mathematics of the Romanian Academy, Bucharest,
Romania


