AN INVARIANT MEAN VALUE PROPERTY IN THE POLYDISC

JaESung Lee

I. Introduction

In [AFR], the authors showed that:
If f is a bounded function on an n-dimensional unit ball $B_{n} \subset \mathbf{C}^{n}$ satisfying

$$
\begin{equation*}
\int_{B_{n}} f \circ \psi d m=f(\psi(0)) \quad \text { for every } \psi \in \operatorname{Aut}\left(B_{n}\right) \tag{1}
\end{equation*}
$$

(where m is the normalized Lebesgue measure) then f is M-harmonic.
And if $f \in L^{1}\left(B_{n}, m\right)$ satisfies (1), then f is M-harmonic if and only if $n \leq 11$.
In this paper, we answer the question of whether the similar phenomenon happens in the n-dimensional polydisc D^{n}.

Following Definition 2.1.1 from [Ru1], we say that $f \in \mathbf{C}^{2}\left(D^{n}\right)$ is n-harmonic if

$$
\Delta_{1} f=\Delta_{2} f=\cdots=\Delta_{n} f=0
$$

We can see that if $f \in \mathbf{C}^{2}\left(D^{n}\right)$ is n-harmonic then f satisfies the invariant volume mean value property, i.e.,

$$
\begin{equation*}
\int_{D} \cdots \int_{D} f \circ \psi d m \cdots d m=f(\psi(0, \ldots, 0)), \quad \forall \psi \in \operatorname{Aut}\left(D^{n}\right) \tag{2}
\end{equation*}
$$

since $f \circ \psi$ is n-harmonic and thus satisfies the ordinary volume mean value property.
This paper is about the converse of the above statement, asking if $f \in L^{p}\left(D^{n}\right)$ satisfies (2), is f is n-harmonic?

Furstenberg [Fur] has already given a positive answer in the space which includes the unit ball and the polydisc of all dimension when $p=\infty$, using the methods of symmetric spaces. But his proof is not very widely known to analysts. Even in recent years, many papers with related results such as [AC], [Eng], [AFR] were written without noticing or mentioning the results of Funstenberg.

In this paper, we get the proof in the case when $p=\infty$ by using the results of [AFR], giving a completely independent analytic proof of Furstenberg's result in the case of the polydisc (Theorem 3.1).

[^0]When $1 \leq p<\infty$, we show that (2) does not imply that f is n-harmonic even when $n=2$ (Theorem 2.1). Indeed, when $1 \leq p<\infty$ we show there are uncountably many joint eigenfunctions of invariant Laplacians in $L^{p}\left(D^{2}, m \times m\right)$ which satisfy the invariant volume mean value property.

For $n \geq 2$, we introduce the linear operator defined by

$$
(B f)\left(z_{1}, \ldots, z_{n}\right)=\int_{D} \cdots \int_{D} f\left(\varphi_{z_{1}}\left(x_{1}\right), \ldots, \varphi_{z_{n}}\left(x_{n}\right)\right) d m\left(x_{1}\right) \cdots d m\left(x_{n}\right)
$$

for $f \in L^{1}\left(D^{n}, m \times \cdots \times m\right)$, where $\varphi_{a} \in \operatorname{Aut}(D)$ is defined by

$$
\varphi_{a}(z)=\frac{a-z}{1-\bar{a} z}
$$

Then from the structure of the automorphisms of the polydisc (p. 167 of [Ru1]) and the rotation invariance of m, it follows that $f \in L^{1}\left(D^{n}\right)$ satisfies (2) if and only if $B f=f$.

$$
\text { II. } B f=f \text { for } f \in L^{p}\left(D^{2}, m \times m\right) \text { when } 1 \leq p<\infty
$$

In [AFR], the authors show that functions in $L^{1}\left(B_{n}\right)$ which satisfy the invariant mean value property are M-harmonic iff $n \leq 11$. But in the bidisc $D \times D$, the analogue is not true. The next theorem states this.

Theorem 2.1. For $1 \leq p<\infty$, there exists $f \in L^{p}\left(D^{2}, m \times m\right)$ such that $B f=f$ and f is not 2-harmonic.

Before proving this, we need some preliminaries. Throughout this paper we use the following notations as definitions. These notations agree with those in [AFR], [Ru2].

Definition 2.2. We define $\tilde{\Delta}_{1}, \tilde{\Delta}_{2}$ as the invariant Laplacians with respect to the first and second variable respectively; i.e.,

$$
\left(\tilde{\Delta}_{1} f\right)(z, w)=\left(1-|z|^{2}\right)^{2}\left(\Delta_{1} f\right)(z, w) \text { for } f \in \mathbf{C}^{2}\left(D^{2}\right)
$$

For $\lambda, \mu \in \mathbf{C}$, we let $\alpha, \beta \in \mathbf{C}$ be such that $\lambda=-4 \alpha(1-\alpha), \mu=-4 \beta(1-\beta)$ and define

$$
X_{\lambda . \mu}=\left\{f \in \mathbf{C}^{2}\left(D^{2}\right) \mid \tilde{\Delta}_{1} f=\lambda f \text { and } \tilde{\Delta}_{2} f=\mu f\right\}
$$

We also define g_{α}, the radial function on D, by

$$
g_{\alpha}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{1-r^{2}}{\left|1-r e^{i \theta}\right|^{2}}\right)^{\alpha} d \theta
$$

and define

$$
\begin{aligned}
& \sum_{p}=\left\{\alpha \in \mathbf{C} \left\lvert\,-\frac{1}{p}<\operatorname{Re} \alpha<1+\frac{1}{p}\right.\right\}, \text { for } 1 \leq p<\infty \\
& \sum_{\infty}=\{\alpha \in \mathbf{C} \mid 0 \leq \operatorname{Re} \alpha \leq 1\}
\end{aligned}
$$

Lemma 2.3. For g_{α} as defined above, we get

$$
\int_{D} g_{\alpha} d m=\frac{\pi \alpha(1-\alpha)}{\sin (\pi \alpha)}
$$

Proof. We use the formula

$$
(1-z)^{-\alpha}=\sum_{k=0}^{\infty} \frac{\Gamma(k+\alpha)}{k!\Gamma(\alpha)} z^{k}
$$

and polar coordinates to obtain

$$
\begin{aligned}
\int_{D} g_{\alpha} d m= & \int_{0}^{1} 2 r\left(1-r^{2}\right)^{\alpha} \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{\left|1-r e^{i \theta}\right|^{2 \alpha}} d \theta d r \\
= & \int_{0}^{1} 2 r\left(1-r^{2}\right)^{\alpha} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(1-r e^{i \theta}\right)^{-\alpha}\left(1-r e^{-i \theta}\right)^{-\alpha} d \theta d r \\
= & \sum_{k=0}^{\infty} \frac{\Gamma^{2}(k+\alpha)}{(k!)^{2} \Gamma^{2}(\alpha)} \int_{0}^{1}\left(1-r^{2}\right)^{\alpha} r^{2 k} 2 r d r \\
= & \sum_{k=0}^{\infty} \frac{\Gamma^{2}(k+\alpha)}{(k!)^{2} \Gamma^{2}(\alpha)} \frac{\Gamma(\alpha+1) k!}{\Gamma(k+\alpha+1)} \\
= & \frac{1}{\alpha+1} F(\alpha, \alpha ; \alpha+2 ; 1) \quad(F \text { is the hypergeometric function }) \\
= & \alpha \Gamma(\alpha) \Gamma(2-\alpha) \\
& (\text { by the formula } \\
& \left.F(a, b, c, z)=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-z t)^{-a} d t\right) \\
= & \alpha(1-\alpha) \Gamma(\alpha) \Gamma(1-\alpha) \\
= & \alpha(1-\alpha) \frac{\pi}{\sin (\pi \alpha)}
\end{aligned}
$$

This completes the proof.
Lemma 2.4. For $1 \leq p \leq \infty$,

$$
L^{p}\left(D^{2}, m \times m\right) \cap X_{\lambda, \mu} \neq\{0\} \quad \text { iff } \quad \alpha \in \sum_{p} \text { and } \beta \in \sum_{p}
$$

Proof. Let $f \in X_{\lambda, \mu}$. Then the radialization

$$
(R f)(z, w)=\frac{1}{(2 \pi)^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} f\left(z e^{i \theta}, w e^{i \xi}\right) d \theta d \xi
$$

belongs to $X_{\lambda, \mu}$ and by 4.2 .3 of [Ru 2], $R f$ is a constant multiple of $g_{\alpha}(z) g_{\beta}(w)$. Hence we conclude that

$$
X_{\lambda, \mu} \cap L^{p} \neq\{0\} \quad \text { if and only if } \quad g_{\alpha} \in L^{p} \text { and } g_{\beta} \in L^{p} .
$$

By 1.4.10 of [Ru2], if $\operatorname{Re} \alpha \leq \frac{1}{2}$ and $\alpha \neq \frac{1}{2}$ then

$$
\int_{0}^{2 \pi} \frac{1}{\left|1-z e^{i \theta}\right|^{2 \alpha}} d \theta
$$

is bounded in D while

$$
\int_{0}^{2 \pi} \frac{1}{\left|1-z e^{i \theta}\right|} d \theta \approx \log \frac{1}{1-|z|^{2}}
$$

Since $g_{\alpha}=g_{1-\alpha}$, it follows that $g_{\alpha} \in L^{p}(D)$ if and only if $\alpha \in \Sigma_{\infty}$ and the proof is complete.

LEmma 2.5. For $1 \leq p<\infty$, the equation

$$
\frac{\pi \alpha(1-\alpha)}{\sin (\pi \alpha)} \cdot \frac{\pi \beta(1-\beta)}{\sin (\pi \beta)}=1
$$

has infinitely many pairs of solutions (α, β) in $\sum_{p} \times \sum_{p}$.
Proof. Define h on \sum_{p} by

$$
\begin{equation*}
h(z)=\frac{\pi z(1-z)}{\sin (\pi z)} \quad \text { for } \quad z \in \sum_{p} \tag{1}
\end{equation*}
$$

Then it is easy to check that
(i) h is holomorphic in \sum_{p} and
(ii) $h(1)=1$.

Thus by the open mapping theorem for a holomorphic function, we can choose an open ball $B(1, \epsilon)$ with $B(1, \epsilon) \subset \sum_{p}$, and $h(B(1, \epsilon)) \subset \sum_{p}$. And since $h(B(1, \epsilon))$ is an open neighborhood of the point $z=1$, it contains an arc of the unit circle around $z=1$, namely

$$
L_{\delta}=\left\{e^{i \theta} \mid-\delta<\theta<\delta\right\}
$$

which consists of uncountably many pairs of $(\alpha, \beta) \in \sum_{p} \times \sum_{p}$ satisfying $h(\alpha)=$ $1 / h(\beta)$. In other words,

$$
\frac{\pi \alpha(1-\alpha)}{\sin (\pi \alpha)} \cdot \frac{\pi \beta(1-\beta)}{\sin (\pi \beta)}=1
$$

This ends the proof.
Now we are ready to prove Theorem 2.1.
2.6. Proof of Theorem 2.1 If $f \in X_{\lambda, \mu}$, then by 4.2 .4 of [Ru2] we have

$$
\int_{T} f\left(\varphi_{z}(r \eta), \varphi_{w}(t \xi)\right) d \sigma(\eta)=g_{\alpha}(r) f\left(z, \varphi_{w}(t \xi)\right)
$$

where T is the unit circle. Thus by repeating the previous step we get

$$
\begin{equation*}
\iint_{T^{2}} f\left(\varphi_{z}(r \eta), \varphi_{w}(t \xi)\right) d \sigma(\xi) d \sigma(\eta)=g_{\alpha}(r) g_{\beta}(t) f(z, w) \tag{1}
\end{equation*}
$$

Using polar coordinates, we get

$$
\begin{aligned}
& \iint_{D^{2}} f\left(\varphi_{z}(x), \varphi_{w}(y)\right) d m(x) d m(y) \\
& =\int_{0}^{1} \int_{0}^{1} 2 r 2 t \iint_{T^{2}} f\left(\varphi_{z}(r \eta), \varphi_{w}(t \xi)\right) d \sigma(\eta) d \sigma(\xi) d r d t \\
& =\int_{0}^{1} 2 r g_{\alpha}(r) d r \int_{0}^{1} 2 t g_{\beta}(t) d t \cdot f(z, w) \quad \text { by }(1) \\
& =\int_{D} g_{\alpha} d m \int_{D} g_{\beta} d m \cdot f(z, w)
\end{aligned}
$$

In other words, for $f \in X_{\lambda, \mu} \bigcap \mathrm{L}^{p}\left(D^{2}, m \times m\right)$ we have

$$
\begin{equation*}
(B f)(z, w)=\int_{D} g_{\alpha} d m \int_{D} g_{\beta} d m \cdot f(z, w) \tag{2}
\end{equation*}
$$

Hence by Lemma 2.3, we get

$$
\begin{equation*}
(B f)(z, w)=h(\alpha) h(\beta) f(z, w) \tag{3}
\end{equation*}
$$

where

$$
h(\alpha)=\frac{\pi \alpha(1-\alpha)}{\sin (\pi \alpha)}
$$

But by Lemma 2.4 and Lemma 2.5 there are infinitely many $(\lambda, \mu)^{\prime} s$ satisfying $h(\alpha) h(\beta)=1$ while every $f \in X_{\lambda, \mu} \bigcap L^{p}$ satisfies $B f=f$. This completes the proof of Theorem 1 .

Remark 2.7. The analogue of Theorem 2.1 for $f \in L^{\infty}\left(D^{2}\right)$ is not true. The reason is that there is no bounded joint eigenfunction of $\tilde{\Delta}_{1}$ and $\tilde{\Delta}_{2}$ which satisfies $B f=f$ (other than the 2-harmonic one.). By Lemma 2.4, it is enough to show that

$$
(h(\alpha) h(\beta)=) \quad \frac{\pi \alpha(1-\alpha)}{\sin (\pi \alpha)} \cdot \frac{\pi \beta(1-\beta)}{\sin (\pi \beta)}=1
$$

has no solution (α, β) in $\sum_{\infty} \times \sum_{\infty}$, except if both α, β are either 0 or 1 .
To prove that assertion: For $0 \leq \operatorname{Re} z \leq 1$,

$$
\begin{align*}
\frac{\sin (\pi z)}{\pi z(1-z)} & =\frac{1}{1-z} \frac{\sin (\pi z)}{\pi z}=(h(z))^{-1} \\
& =\frac{1}{1-z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)\left(1-\frac{z}{n}\right) \\
& =\prod_{n=1}^{\infty}\left(1+\frac{z(1-z)}{n(n+1)}\right) \tag{1}
\end{align*}
$$

Thus when $z=x$ is real, $0 \leq x \leq 1$, then

$$
\frac{\sin (\pi x)}{\pi x(1-x)}>1 \quad \text { except when } \quad x=0 \text { or } x=1
$$

When $z=x+i y$, from (1) we have

$$
\frac{\sin (\pi z)}{\pi z(1-z)}=\prod_{n=1}^{\infty}\left(1+\frac{x(1-x)+y^{2}}{n(n+1)}+i \frac{y(1-2 x)}{n(n+1)}\right)
$$

Thus for fixed x,

$$
\begin{equation*}
\left|\frac{1}{h}(x+i y)\right| \quad \nearrow \quad \infty \quad \text { as } \quad|y| \rightarrow \infty \tag{2}
\end{equation*}
$$

Thus from (1) and (2) we get $|h(z)|<1$ on \sum_{∞}, except when $z=0$ or $z=1$. This ends the proof.

$$
\text { III. } B f=f \text { for } f \in L^{\infty}\left(D^{n}\right)
$$

Theorem 3.1. If $f \in L^{\infty}\left(D^{n}\right)$ satisfies $B f=f$ then f is n-harmonic.
We will give a proof using the result of [AFR], which states if $u \in L^{\infty}(D)$ satisfies $B u=u$, then u is harmonic, together with the main theorem of [KT].

To prove the above result, we need the following.

Definition 3.2. For $u \in L^{1}(D, m), z \in D$ we define

$$
\begin{equation*}
(T u)(z)=\int_{D} u\left(\varphi_{z}(x)\right) d m(x) \tag{1}
\end{equation*}
$$

by replacing x by $\varphi_{z}(x)$, we obtain

$$
\begin{equation*}
(T u)(z)=\int_{D} u(x) K_{1}(z, x) d m(x) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{1}(z, x)=\frac{\left(1-|z|^{2}\right)^{2}}{|1-\bar{z} x|^{4}} \tag{3}
\end{equation*}
$$

Here we can see that

$$
\begin{equation*}
\int_{D} K_{1}(z, x) d m(x)=1, \forall z \in D . \tag{4}
\end{equation*}
$$

Now let T^{n} be the iteration of T, n times; then by induction we can write

$$
\begin{equation*}
\left(T^{n} u\right)(z)=\int_{D} u(x) K_{n}(z, x) d m(x) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\int_{D} K_{n}(z, x) d m(x)=1, \forall z \in D, n \geq 1 \tag{6}
\end{equation*}
$$

Let μ be a measure on D defined by

$$
d \mu(z)=\left(1-|z|^{2}\right)^{-2} d m(z)
$$

Then by 2.2.6 of [Ru2],

$$
\int_{D} u d \mu=\int_{D} u \circ \psi d \mu
$$

for $u \in L^{1}(D, \mu)$ and $\psi \in \operatorname{Aut}(D)$. The advantage of using the invariant measure μ is that even though μ is not a finite measure on D, the space $L^{\infty}(D, \mu)$ is the same as $L^{\infty}(D, m)$ (i.e., μ is a measure equivalent to m on D). Thus we consider $L^{\infty}(D, m)$ as the dual space of $L^{1}(D, d \mu)$ on which the operator T has a nice behavior. (see Lemma 3.3)

Finally, we denote the space $L_{R}^{p}\left(D^{n}\right)$ as the subspace of $L^{p}\left(D^{n}\right)$ which consists of all radial functions, i.e.,

$$
\begin{aligned}
L_{R}^{p}\left(D^{n}\right)= & \left\{f \in L^{p}\left(D^{n}\right) \mid f\left(z_{1}, \ldots, z_{n}\right)=f\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right),\right. \\
& \text { for any } \left.\left(z_{1}, \ldots, z_{n}\right) \in D^{n}\right\}
\end{aligned}
$$

Lemma 3.3. Let $1 \leq p \leq \infty, \frac{1}{p}+\frac{1}{q}=1$ (if $p=1$ then $q=\infty$ and vice versa).
(a) T is a bounded operator on $L^{p}(D, \mu)$ with $\|T\|_{p} \leq 1$.
(b) For $u \in L^{p}(D, \mu), v \in L^{q}(D, \mu)$ we have

$$
\int_{D} T u \cdot v d \mu=\int_{D} u \cdot T v d \mu
$$

Proof. (a) Let $u \in L^{1}(D, \mu)$. Then

$$
\begin{aligned}
\|T u\|_{1} & =\int_{D}|T u(z)| d \mu(z) \\
& \leq \int_{D} \int_{D}|u(x)| K_{1}(z, x) d m(x) d \mu(z) \\
& =\int_{D}|u(x)| \int_{D} K_{1}(x, z) d m(z) d \mu(x) \quad \text { by Fubini } \\
& =\|u\|_{1}
\end{aligned}
$$

(since $\int_{D} K_{1}(x, z) d m(z) \equiv 1$.) Hence

$$
\begin{equation*}
\|T\|_{1} \leq 1 . \tag{1}
\end{equation*}
$$

Let $v \in L^{\infty}(D)$. Then

$$
\begin{aligned}
\|T v\|_{\infty} & =\sup _{z \in D}\left|\int_{D} v(x) K_{1}(z, x) d m(x)\right| \\
& \leq\|v\|_{\infty} \sup _{z \in D}\left|\int_{D} K_{1}(z, x) d m(x)\right|=\|v\|_{\infty}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\|T\|_{\infty} \leq 1 \tag{2}
\end{equation*}
$$

By (1), (2) and the Riesz-Thorin Interpolation Theorem we get (a).
(b)

$$
\begin{aligned}
\int_{D} T\|u\| v \mid d \mu & \leq\|T|u|\|_{p}\|v\|_{q} \\
& \leq\|u\|_{p}\|v\|_{q}<\infty \quad \text { by (a) }
\end{aligned}
$$

Thus we can use Fubini's Theorem:

$$
\begin{aligned}
\int_{D} u(z)(T v)(z) d \mu(z) & =\int_{D} u(z) \int_{D} v(x) K_{1}(z, x) d m(x) d \mu(z) \\
& =\int_{D} v(x) \int_{D} u(z) K_{1}(x, z) d m(z) d \mu(x) \\
& =\int_{D} v(x)(T u)(x) d \mu(x)
\end{aligned}
$$

This proves (b) .

Note. In (a), actually $\|T\|_{1}=\|T\|_{\infty}=1$ since

$$
\int_{D} u d \mu=\int_{D} T u d \mu
$$

when $0 \leq u \in L^{1}(D, \mu)$ and $T u=u$ when u is bounded and harmonic.
Lemma 3.4. Let $f \in L^{1}\left(D^{n}, m \times \cdots \times m\right)$. Then for any $\psi \in \operatorname{Aut}\left(D^{n}\right)$ we have

$$
B(f \circ \psi)=(B f) \circ \psi
$$

Proof. It is enough to prove the lemma when

$$
\psi\left(z_{1}, \ldots, z_{n}\right)=\left(\psi_{1}\left(z_{1}\right), \ldots, \psi_{n}\left(z_{n}\right)\right)
$$

for some $\psi_{1}, \ldots, \psi_{n} \in \operatorname{Aut}(D)$.
For $z_{1}, \ldots, z_{n} \in D$ there exist $\theta_{1}, \ldots, \theta_{n} \in[0,2 \pi)$ such that

$$
\varphi_{\psi_{k}\left(z_{k}\right)} \circ \psi_{k} \circ \varphi_{z_{k}}=e^{i \theta_{k}}, k=1,2, \ldots, n
$$

since these antomorphisms take 0 to 0 . Thus

$$
\begin{aligned}
B & (f \circ \psi)\left(z_{1}, \ldots, z_{n}\right) \\
& =\int_{D} \cdots \int_{D}(f \circ \psi)\left(\varphi_{z_{1}}\left(x_{1}\right), \ldots, \varphi_{z_{n}}\left(x_{n}\right)\right) d m\left(x_{1}\right) \cdots d m\left(x_{n}\right) \\
& =\int_{D} \cdots \int_{D} f\left(\varphi_{\psi_{1}\left(z_{1}\right)}\left(e^{i \theta_{1}} x_{1}\right), \ldots, \varphi_{\psi_{n}\left(z_{n}\right)}\left(e^{i \theta_{n}} x_{n}\right)\right) d m\left(x_{1}\right) \cdots d m\left(x_{n}\right) \\
& =\int_{D} \cdots \int_{D} f\left(\varphi_{\psi_{1}\left(z_{1}\right)}\left(x_{1}\right), \ldots, \varphi_{\psi_{n}\left(z_{n}\right)}\left(x_{n}\right)\right) d m\left(x_{1}\right) \cdots d m\left(x_{n}\right) \\
& =[(B f) \circ \psi]\left(z_{1}, \ldots, z_{n}\right)
\end{aligned}
$$

This ends the proof.
Lemma 3.5. Let $u \in L_{R}^{1}(D, \mu)$. Then

$$
\lim _{n \rightarrow \infty} \int_{D}\left|T^{n} u(z)\right| d \mu(z)=0 \quad \text { if and only if } \quad \int_{D} u d \mu=0
$$

Proof. The "only if" part is obvious from the fact that

$$
\int_{D} T^{n} u d \mu=\int_{D} u d \mu \text { for all } n \geq 1
$$

On the other hand, under the convolution

$$
(u * v)(z)=\int_{D} u\left(\varphi_{z}(x)\right) v(x) d \mu(x), \quad u, v \in L_{R}^{1}(\mu)
$$

$L_{R}^{1}(\mu)$ is a commutative Banach algebra with the maximal ideal space

$$
\Sigma_{\infty}=\{0 \leq \operatorname{Re} \alpha \leq 1\}
$$

whose Gelfand transform is defined by

$$
\hat{u}(\alpha)=\int_{D} u(z) g_{\alpha}(z) d \mu(z) \quad \text { for } u \in L_{R}^{1}(\mu) \text { and } \alpha \in \Sigma_{\infty}
$$

Since

$$
T u=u * q \quad \text { where } q(z)=\left(1-|z|^{2}\right)^{2} \in L_{R}^{1}(\mu)
$$

the spectrum of T on $L_{R}^{1}(\mu)$ is

$$
\hat{q}\left(\Sigma_{\infty}\right)=\left\{\int_{p} g_{\alpha} d m \mid \alpha \in \Sigma_{\infty}\right\}=h\left(\Sigma_{\infty}\right)
$$

by Lemma 2.3, where

$$
h(z)=\frac{\pi z(1-z)}{\sin (\pi z)}
$$

Thus in view of Remark 2.7, we get

$$
\left|h\left(\Sigma_{\infty}\right)\right|<1 \quad \text { on } \Sigma_{\infty} \backslash\{0,1\}
$$

while $h(0)=h(1)=1$. Hence we showed that T is a linear contraction on $L_{R}^{1}(\mu)$ whose spectrum intersects the unit circle only at one point $z=1$. Now we apply Theorem 1 of [KT] to the operator T on $L_{R}^{1}(\mu)$ to get

$$
\lim _{n \rightarrow \infty}\left\|T^{n}(I-T)\right\|=0 \quad \text { on } L_{R}^{1}(\mu)
$$

which implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{D}\left|T^{n} u\right| d \mu=0 \quad \text { for all } \quad u \in(I-T) L_{R}^{1}(\mu) \tag{1}
\end{equation*}
$$

Now let X be the subspace of $L_{R}^{1}(\mu)$ defined by

$$
X=\left\{u \in L_{R}^{1}(\mu) \mid \int_{D} u d \mu=0\right\}
$$

Then obviously

$$
(I-T) L_{R}^{1} \subset X
$$

Hence from (1), the proof is complete when we show that $(I-T) L_{R}^{1}$ is dense in X.
Now let $w \in L_{R}^{\infty}(D)$ satisfy

$$
\int_{D}(v-T v) \cdot w d \mu=0 \quad \text { for every } v \in L_{R}^{1}(D, \mu)
$$

Then by 3.3 (b) we get

$$
\int_{D} v \cdot(w-T w) d \mu=0, \quad \forall v \in L_{R}^{1}(D, \mu)
$$

Thus $w=T w$ and, by [AFR], w is radial harmonic, hence a constant. Therefore we get

$$
\int_{D} u \cdot w d \mu=0, \quad \text { for every } u \in X
$$

By the Hahn-Banach Theorem, this implies that $(I-T) L_{R}^{1}$ is dense in X. This proves the lemma.
3.6. Proof of Theorem 3.1 The proof is divided by two parts; the radial case and the general case.

Step (1). The radial case.
We will prove the radial case of Theorem 3.1 using induction on n where n is the dimension of the polydisc.

When $n=1$, if $u \in L_{R}^{\infty}(D)$ satisfies $T u=u$, then by [AFR], u is a constant.
Now assume $B f=f$ for $f \in L_{R}^{\infty}\left(D^{n}\right)$ implies that f is constant. Choose $g \in L_{R}^{\infty}\left(D^{n+1}\right)$ such that $B g=g$. Fix $w=\left(w_{1}, \ldots, w_{n}\right) \in D^{n}$ and for $m \geq 1$ define $\left(g_{w}\right)_{m} \in L_{R}^{\infty}(D)$ by

$$
\begin{equation*}
\left(g_{w}\right)_{m}(z)=\int_{D} \cdots \int_{D} g\left(z, y_{1}, \ldots, y_{n}\right) K_{m}\left(w_{1}, y_{1}\right) \cdots K_{m}\left(w_{n}, y_{n}\right) d m\left(y_{1}\right) \cdots d m\left(y_{n}\right) \tag{1}
\end{equation*}
$$

(K_{m} is defined in 3.2 (5).) Then for any $m \geq 1,\left\|\left(g_{w}\right)_{m}\right\|_{\infty} \leq\|g\|_{\infty}$.

$$
\begin{align*}
{\left[T^{m}\left(g_{w}\right)_{m}\right](z)=} & \int_{D} \cdots \int_{D} g\left(z, y_{1}, \ldots, y_{n}\right) K_{m}\left(w_{1}, y_{1}\right) \\
& \cdots K_{m}\left(w_{n}, y_{n}\right) d m\left(y_{1}\right) \cdots d m\left(y_{n}\right) \\
= & \left(B^{m} g\right)\left(z, w_{1}, \ldots, w_{n}\right) \tag{2}
\end{align*}
$$

Now pick $u \in L_{R}^{1}(D, \mu)$ satisfying

$$
\int_{D} u d \mu=0 .
$$

Then we have

$$
\begin{aligned}
\int_{D} u(z) g(z, w) d \mu(z) & =\int_{D} u(z)\left(B^{m} g\right)(z, w) d \mu(z) \quad(w \text { is fixed }) \\
& =\int_{D} u \cdot\left(T^{m}\left(g_{w}\right)_{m}\right) d \mu \quad \text { by (2) } \\
& =\int_{D} T^{m} u \cdot\left(g_{w}\right)_{m} d \mu \quad \text { by } 3.3 \text { (b) }
\end{aligned}
$$

Hence

$$
\left|\int_{D} u(z) g(z, w) d \mu(z)\right| \leq\|G\|_{\infty}\left|\int_{D} T^{m} u d \mu\right| \quad \text { for any } m \geq 1
$$

But by Lemma 3.5,

$$
\lim _{m \rightarrow \infty}\left|\int_{D} T^{m} u d \mu\right|=0
$$

Hence

$$
\int_{D} u(z) g(z, w) d \mu(z)=0
$$

for every $u \in L_{R}^{1}(D, \mu)$ with

$$
\int_{D} u d \mu=0 .
$$

This means for every fixed $w \in D^{n}, g(z, w)$ is a constant. Hence there exists $f \in$ $L_{R}^{\infty}\left(D^{n}\right)$ such that $g(z, w)=f(w)$ and $B g=g$ implies that $B f=f$. Now, by the assumption, f is a constant. Therefore g is a constant.

Step (2). The general case.
Let $f \in L^{\infty}\left(D^{\prime \prime}\right)$ satisfy $B f=f$. Consider $R f$, the radialization of f, defined by

$$
(R f)\left(z_{1}, \ldots, z_{n}\right)=\frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} f\left(z_{1} e^{i \theta_{1}}, \ldots, z_{n} e^{i \theta_{n}}\right) d \theta_{1} \cdots d \theta_{n}
$$

Since both R and B are contraction on $L^{\infty}\left(D^{\prime \prime}\right)$ we can use Fubini to get

$$
B(R f)=R(B f)=R f
$$

Thus by step (1), $R f$ is a constant. This means

$$
\begin{equation*}
f(0, \ldots, 0)=\frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} f\left(x_{1} e^{i \theta_{1}}, \ldots, x_{n} e^{i \theta_{n}}\right) d \theta_{1} \cdots d \theta_{n} \tag{3}
\end{equation*}
$$

Now pick $z=\left(z_{1}, \ldots, z_{n}\right) \in D^{n}$ and let $\psi \in \operatorname{Aut}\left(D^{n}\right)$ be defined by

$$
\psi\left(x_{1}, \ldots, x_{n}\right)=\left(\varphi_{z_{1}}\left(x_{1}\right), \ldots, \varphi_{z_{n}}\left(x_{n}\right)\right)
$$

Then since $B(f \circ \psi)=(B f) \circ \psi=f \circ \psi($ Lemma 3.4), (3) remains true when we replace f by $f \circ \psi$; i.e.,

$$
\begin{equation*}
f\left(z_{1}, \ldots, z_{n}\right)=\frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} f\left(\varphi_{z_{1}}\left(x e^{i \theta_{1}}\right), \ldots, \varphi_{z_{n}}\left(x e^{i \theta_{n}}\right)\right) d \theta_{1} \cdots d \theta_{n} \tag{4}
\end{equation*}
$$

for any $x_{1}, \ldots, x_{n} \in D$. Now put $x_{2}=\cdots=x_{n}=0$ in (4). Then since $B f=f$ implies that $f \in \mathbf{C}^{\infty}\left(D^{n}\right)$, by 4.2 .4 of [Ru2] we get $\Delta_{\text {I }} f=0$. Similarly we can see that

$$
\Delta_{2} f=\cdots=\Delta_{n} f=0
$$

This completes the proof of Theorem 3.1.

Now we have some corollaries.

COROLLARY 3.7. If $f \in L^{1}\left(D^{n}, m \times \cdots \times m\right)$ satisfies $B f=f$ and $R(f \circ \varphi) \in$ $L^{\infty}\left(D^{\prime \prime}\right)$ for every $\varphi \in \operatorname{Aut}\left(D^{n}\right)$, then f is n-harmonic.

Proof. Let $f \in L^{1}\left(D^{n}, m \times \cdots \times m\right)$ satisfy the above conditions. Then since R, B are contractions on $L^{\infty}\left(D^{n}\right)$, for every $\varphi \in \operatorname{Aut}\left(D^{n}\right)$ we have

$$
\begin{aligned}
B(R(f \circ \varphi)) & =R(B(f \circ \varphi)) \\
& =R(B f \circ \varphi) \quad \text { by } 3.4 \\
& =R(f \circ \varphi)
\end{aligned}
$$

Thus by Theorem 3.1, $R(f \circ \varphi)$ is a constant. This implies (4) in step (2) of 3.6. Hence by the method of 3.6 we get the result.

Corollary 3.8. For $1 \leq p<\infty$, if $u \in L^{p}(D, \mu)$ satisfies $T u=u$ then $u \equiv 0$.
Similarly if $f \in L^{p}\left(D^{n}, \mu \times \cdots \times \mu\right)$ satisfies $B f=f$ then $f \equiv 0$.

Proof. Since the only harmonic function on D which belongs $L^{p}(D, \mu)$ is the constant 0 , by Theorem 3.1 it is enough to show that u is bounded. When $u \in$ $L^{p}(D, \mu)$ since $1<p<\infty$ we have

$$
\begin{aligned}
u(z)=(T u)(z) & =\int_{D} u(x) \frac{\left(1-|z|^{2}\right)^{2}}{|1-\bar{z} x|^{4}} d m(x) \\
& =\left(1-|z|^{2}\right)^{2} \int_{D} u(x) \frac{\left(1-|x|^{2}\right)^{2}}{|1-\bar{z} x|^{4}} d \mu(x)
\end{aligned}
$$

Thus

$$
\begin{align*}
|u(z)| & \leq\left(1-|z|^{2}\right)^{2}\|u\|_{p}\left(\int_{D} \frac{\left(1-|x|^{2}\right)^{2 q-2}}{|1-\bar{z} x|^{4 q}} d m(x)\right)^{\frac{1}{q}} \quad\left(\frac{1}{p}+\frac{1}{q}=1\right) \\
& \leq\left(1-|z|^{2}\right)^{2}\|u\|_{p} c\left(1-|z|^{2}\right)^{-2} \text { for some } c>0 \quad(\text { by } 1.4 .10 \text { of }[\mathrm{Ru} 2]) \\
& =c\|u\|_{p} . \tag{1}
\end{align*}
$$

When $u \in L^{1}(D, d \mu)$

$$
\begin{align*}
|u(z)| & =|T u(z)| \leq \sup _{z \in D} \frac{\left(1-|z|^{2}\right)^{2}\left(1-|x|^{2}\right)^{2}}{|1-z \bar{x}|^{4}} \int_{D}|u(x)| d \mu(x) \\
& =\|u\|_{1} \tag{2}
\end{align*}
$$

From (1) and (2), we complete the proof for u.
In the same way we can show that such f is bounded and Theorem 3.1 forces f to be n-harmonic. And constant zero is the only n-harmonic function which belongs to $L^{p}\left(D^{n}, \mu \times \cdots \times \mu\right)$.

REFERENCES

[AC] S. Axler and Z. Cuckovic, Commuting Toeplitz operator with harmonic symbols, Integral Equations and Operator Theory 14 (1991), 1-12.
[AFR] P. Ahern, M. Flores and W. Rudin, An invariant volume mean value property, J. Funct. Anal. 111 (1993), 380-397.
[Eng] M. Englis, Functions invariant under the Berezian transform, Preprint, 1992.
[Fur] H. Furstenberg, "Boundaries of Riemannian symmetric spaces" in Symmetric spaces (W. M. Boothby and G. L. Weiss, Editors), Marcel Dekker, New York, 1972, pp. 359-377.
[KT] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328.
[Ru1] W. Rudin, Function theory in polydiscs, Benjamin, New York, 1969.
[Ru2] , Function theory in the unit Ball of \mathbf{C}^{n}, Springer-Verlag, 1980.

Topology and Geometry Research Center, Kyungpook National University, Taegu 702-701, Korea
jalee@math.wisc.edu

[^0]: Received April 23, 1997.
 1991 Mathematics Subject Classification. Primary 31B05; Secondary 30C05, 47B38.
 Research partially supported by TGRC-KOSEF.

