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AN INVARIANT MEAN VALUE PROPERTY
IN THE POLYDISC

JAESUNG LEE

I. Introduction

In [AFR], the authors showed that:
If f is a bounded function on an n-dimensional unit ball B, C C satisfying

f dm ((0)) for Aut(B,) (1)f every

(where rn is the normalized Lebesgue measure) then f is M-harmonic.
And if f L (B,, m) satisfies (1), then f is M-harmonic if and only if n < 1.
In this paper, we answer the question of whether the similar phenomenon happens

in the n-dimensional polydisc D".
Following Definition 2.1.1 from [Rul], we say that f 6 C2(D") is n-harmonic if

Af A2f Anf O.

We can see that if f 6 C2(D") is n-harmonic then f satisfies the invariant volume
mean value property, i.e.,

f)...ft) fodm...dm=f(O(O 0)), Aut(Dn, (2)

since f o p is n-harmonic and thus satisfies the ordinary volume mean value property.

This paper is about the converse of the above statement, asking if f Lp (D")
satisfies (2), is f is n-harmonic?

Furstenberg [Fur] has already given a positive answer in the space which includes
the unit ball and the polydisc of all dimension when p x, using the methods of
symmetric spaces. But his proof is not very widely known to analysts. Even in recent
years, many papers with related results such as [AC], [Eng], [AFR] were written
without noticing or mentioning the results of Funstenberg.

In this paper, we get the proof in the case when p x by using the results of
[AFR], giving a completely independent analytic proof of Furstenberg’s result in the
case of the polydisc (Theorem 3.1).
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When _< p < cx, we show that (2) does not imply that f is n-harmonic even
when n 2 (Theorem 2.1). Indeed, when < p < cx we show there are uncountably
many joint eigenfunctions of invariant Laplacians in LP(D2, m m) which satisfy
the invariant volume mean value property.

For n > 2, we introduce the linear operator defined by

(Bf)(z z,,)--fo...ft f(tpz(x) q%,(x,,))dm(x)...dm(x,,)

for f L(D’’, rn x x m), where tpa 6 Aut(D) is defined by

(/ga (Z)
a--z

Then from the structure of the automorphisms of the polydisc (p. 167 of [Rul]) and
the rotation invariance of m, it follows that f L(D") satisfies (2) if and only if

Bf f.

II. Bf f for f 6 LP (D2, rn m) when

In [AFR], the authors show that functions in L(B,,) which satisfy the invariant
mean value property are M-harmonic iff n < I1. But in the bidisc D D, the
analogue is not true. The next theorem states this.

THEOREM 2.1. For < p < cx, there exists f LP(D2, rn m)such that
Bf f and f is not 2-harmonic.

Before proving this, we need some preliminaries. Throughout this paper we use
the following notations as definitions. These notations agree with those in [AFR],
[Ru2].

Definition 2.2. We define z,/2 as the invariant Laplacians with respect to the
first and second variable respectively; i.e.,

(A.f)(z, w) (1 -IzlZ)2(Af)(z, w) for .f e C2(D2).

For X, # 6 C, we let t, 6 C be such that ,k -4c(I or),/z -4fl(l fl) and
define

Xx., {f e C (D2) .f Xf and h2f u.f }.

We also define g, the radial function on D, by

f0zr( l-r2 )g(r) - 11 rei[ 2
dO
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and define

{ ;ot6CI <Rec < 1+- forl
P p

{or CI0_<Rec < 1}.

LEMMA 2.3. For g as defined above, we get

g dm
root(1
sin(no)

Pro@ We use the formula - F(k + or)
( -z)

k=o
k! F(c)

z

and polar coordinates to obtain

g dm 2r r2)
I1 rei 12

dO dr

2r(l r2) (1 rei) (1 re-i) dO dr

lp2(k-i-t) ]iI 2)or
k=0 (k!)21-’z(t)

(1 r rZk2r dr

oo F2(k +o) F(c + l)k!

,=o (k!)2F2(e) F(k + c + 1)

F(c, o; oe + 2; 1)

oF(o)F(2 o)

(Fis the hypergeometric function)

(by the formula

F(c)
F(a, b, c, z)

F(b)F(c b)
ot(l- oe)F(oe)F(1

oe(I-oe)
sln(yro)

tb-( t)"-b- zt) dt)

This completes the proof.

LEMMA 2.4. For <_ p <

LP(D2, m xrn) C3X), =fi{0l o Z and[3 Zp P
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Proof. Let f Xx,u. Then the radialization

(Rf)(z, w) f02zr f02:rr(2:rr)2 f (zei’ wei dO d

belongs to Xx,u and by 4.2.3 of [Ru 2], Rf is a constant multiple of g(z)gt(w).
Hence we conclude that

X;,u 0 Lp {0} if and only if g e Lp and g/ Lp.

By 1.4 10 of [Ru2], if Re ot < 7 and ot -J: then

dO

is bounded in D while

2r

dO log
zeil Izl a"

Since g, g_, it follows that ga LP(D) if and only ifot 6 Z and the proof is
complete. I--I

LEMMA 25. For < p < oo, the equation

zrc(1 c) rr( -/)
sin(not) sin(n/J)

has infinitely many pairs of solutions

Proof. Define h on p by

zrz(1-z)
for z e Zh(z)

sin(fez) P
(1)

Then it is easy to check that

(i) h is holomorphic in y.p and
(ii) h(l)= 1.

Thus by the open mapping theorem for a holomorphic function, we can choose an
open ball B(I, e) with B(I, e) C Y.p, and h(B(l, e)) C Yp. And since h(B(l, e))
is an open neighborhood of the point z 1, it contains an arc of the unit circle around
z 1, namely

La {eiO 1-3 < 0 < 3}
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which consists of uncountably many pairs of (ot, ) Y, Yp satisfying h(ot)
1/h(). In other words,

sin(not) sin(zrfl)

This ends the proof. !-I

Now we are ready to prove Theorem 2.1.

2.6. Proofof Theorem 2.1 If f Xz,, then by 4.2.4 of [Ru2] we have

T
f ((pz(rrl), (pw(t)) dcr(rl) ga(r) f (z, (pw(t))

where T is the unit circle. Thus by repeating the previous step we get

f(qgz(rrl)’ qgw(t))dcr()dcr(rl) g(r) f(z, w). (1)g(t)

Using polar coordinates, we get

ffDf(cpz(x)’cp(y))dm(x)dm(y)2
f’fo’ 2r 2t f (qgz(rrl), qg,,(t)) dcr(rl) dcr() dr dt

2r g(r)dr 2t g[(t)dt, f(z, w) by (1)

=fogdmfogdm’f(z,w)
In other words, for f 6 X,u ["] Lp (D2, rn m) we have

(Bf)(z,w)=fogdmfogdm.f(z,w). (2)

Hence by Lemma 2.3, we get

(Bf)(z, w) h(ot)h()f (z, w) (3)

where

h(u)
zrot(l
sin(not)

But by Lemma 2.4 and Lemma 2.5 there are infinitely many (, #)’s satisfying
h(ot)h() while every f Xx,u ["] Lp satisfies Bf f This completes the
proof of Theorem 1. I--I
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Remark 2.7. The analogue of Theorem 2.1 for f L(D2) is not true. The
reason is that there is no bounded joint eigenfunction of ! and 2 which satisfies

Bf f (other than the 2-harmonic one.). By Lemma 2.4, it is enough to show that

(h(u) h(/)
sin(ha) sin(n/)

has no solution (or,/) in y -, except if both ct,/3 are either 0 or 1.

To prove that assertion: For 0 < Re z < 1,

sin(rr z) sin(zr z)
zrz(l z) z zrz

(h(z))-
z

z(-z)).n(n+ 1)

Thus when z x is real, 0 < x < 1, then

sin(n’x)
nx(l -x)

> except when x 0 or x 1.

When z x + y, from (1) we have

-I( x(I-x)+y2sin(nz)
1+ +i

y(l-2x)
rz(l -z) n(n + 1) n(n + 1)

Thus for fixed x,

(1)

/ cx as lYlO (2)

Thus from (1) and (2) we get Ih(z)l < on ’, except when z 0 or z 1. This
ends the proof. I-1

IIl. Bf=fforfL(D")

THEOREM 3.1. If f L Dn) satisfies Bf f then f is n-harmonic.

We will give a proof using the result of [AFR], which states ifu L (D) satisfies
Bu u, then u is harmonic, together with the main theorem of [KT].

To prove the above result, we need the following.
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Definition 3.2. For u 6 L(D, rn), z 6 D we define

(Tu)(z) fo u(qgz(x)) dm(x) ()

by replacing x by 99 (x), we obtain

(Tu)(z) fo u(x)Kl(z,x)dm(x) (2)

where

Here we can see that

Kl(z,x)
(1 Izl=) 2

I1 xl4
(3)

K (z, x) dm(x) 1, Vz D. (4)

Now let T be the iteration of T, n times; then by induction we can write

(Tnu)(z) fo u(x)K(z, x) dm(x) (5)

where

oKn(z,x)dm(x)--

1, Yz D,n 1.

Let # be a measure on D defined by

(6)

d#(z) (1 -Izla)- dm(z).

Then by 2.2.6 of [Ru2],

for u L(D, tt) and 6 Aut(D). The advantage of using the invariant measure tt
is that even though # is not a finite measure on D, the space L(D, tt) is the same as
L(D, m) (i.e., # is a measure equivalent to rn on D). Thus we consider L(D, m)
as the dual space of L(D, d#) on which the operator T has a nice behavior. (see
Lemma 3.3)

Finally, we denote the space L(D) as the subspace of Lp (Dn) which consists
of all radial functions, i.e.,

LPe(D) {f LP(Dn) f(z Zn) f(Izl Izl),

for any (zl z) D }.
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LEMMA 3.3. Let < p < cxz, - + (ifp then q cxa and vice versa).

(a) T is a bounded operator on LP(D, Ix) with IITIIp 1.
(b) For u E LP(D, Ix), v Lq(D, Ix) we have

fo Tu v d# fo U Tv dlz.

Proof. (a) Let u L (D, Ix). Then

IITull .[, ITu(z)l d#(z)

Ilull
(since fo g(x, z)din(z) 1.) Hence

IITII I.

Let v L (D). Then

IITvll sup [v(x)K(z,x)dm(x)
zD

[ g (z, x) din(x)sup
zD

by Fubini

Thus

Ilrlloo .
By (1), (2) and the Riesz-Thorin Interpolation Theorem we get (a).

DTIlullvld
IITlulllpllollq

Ilullpllollq < by(a)

Thus we can use Fubini’s Theorem:

] v(x)(Tu)(x) d(x)

This proves (b). I--1

(1)

(2)
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Note. In (a), actually T I1 T I1 since

when 0 < u e L(D, #) and Tu u when u is bounded and harmonic.

LEMMA 3.4. Let f L (D rn x rn). Thenfor any / Aut(Dn) we have

B(f o t) (By)

Proof It is enough to prove the lemma when

g,(z z,,) ((z) ,,(z.))

for some n e Aut(D).
For z z, 6 D there exist 0 0 6 [0, 2zr) such that

qgOk(Zk 0 litk 0 z.k eiO k ,2, n

since these antomorphisms take 0 to 0. Thus

B(f o /)(z Zn)

qgz,,(Xn))dm(xl)..’dm(x,)

o,(z,,)(ei"Xn))dm(xl)...dm(xn)

fo... fo q)O,,(z,,)(Xn))dm(Xl)’" "dm(xn)

[(Bf) o (zl(z Zn)

This ends the proof. I--I

LEMMA 3.5. Let u L D lz). Then

fD ITnu(z)ldlz(z)--0 ifand only if fDUd# --O.

Proof. The "only if" part is obvious from the fact that

fD Tnud#-- fDUd# forall n> l.

On the other hand, under the convolution

(u v)(z) f u(oz(x))v(x) d#(x), u, v 6 LR(#),
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L(#) is a commutative Banach algebra with the maximal ideal space

E={0<Reot < 1},

whose Gelfand transform is defined by

fi(ot) fo u(z)g(z) d#(z)

Since

for u 6 L(#)and c 6 E.

Tu--u,q whereq(z)=(l-lz]2)2 6L(#)

h(z)

Thus in view of Remark 2.7, we get

Ih(E)l < on E\{0, 1}

zrz(1 -z)
sin(zrz)

while h (0) h (1) 1. Hence we showed that T is a linear contraction on L(#)
whose spectrum intersects the unit circle only at one point z 1. Now we apply
Theorem of [KT] to the operator T on L (#) to get

lim Tn(l-T) 0

which implies that

lim fD T’uld#=O for all

Now let X be the subspace of Ll (#) defined by

Then obviously

on L(#)

u (I- T)L(#) (l)

X-- {u e L(lz) fDUdlz--O }.
(I-T)L C X.

Hence from (1), the proof is complete when we show that (I T)L is dense in X.
Now let w 6 L(D) satisfy

D(V- Tv). w d# 0 for every v 6 L (D, #).

by Lemma 2.3, where

the spectrum of T on LJ (#) is

(E)--lfpgdmlE}=h(E)
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Then by 3.3 (b) we get

ov.(w-
Tw) d#--O, Yv E Ll(D, tx).

Thus w Tto and, by [AFR], to is radial harmonic, hence a constant. Therefore we
get

dIX=0, for EX.every

By the Hahn-Banach Theorem, this implies that (I T)Ll is dense in X. This proves
the lemma. I--1

3.6. ProofofTheorem 3.1
the general case.

The proof is divided by two parts; the radial case and

Step (1). The radial case.
We will prove the radial case of Theorem 3.1 using induction on n where n is the

dimension of the polydisc.
When n 1, if u L(D) satisfies Tu u, then by [AFR], u is a constant.
Now assume Bf f for f L(Dn) implies that f is constant. Choose

g L(Dn+l) such thatBg g. Fix to (wl wn) D and forrn >

define (gw)m E LR (D) by

(gw)m(Z)--f.’" "f.g(z, Yl Yn)gm(tol, yl)’"gm(ton, yn) dm(yl)

(1)
(Km is defined in 3.2 (5).) Then for any rn > 1, II(go)mll < Ilgll-

[Tm(gw)ml(z)--fo’"fog(z, yl yn)Km(wl,yl)

Km(ton, Yn) dm(y).., dm(y)
(Bmg)(z, tol ton). (2)

Now pick u 6 L (D, Ix) satisfying

DUdix

--0.

Then we have

D
ll(Z)g(z, to)dix(z) .fr} bl(z)(Bm g)(z’ to) dix(z) (to is fixed)

./ U (T (gw)m) dix by (2)

f Tmu (gw)m dix by 3.3 (b)
Jo
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Hence

U(Z)g(z, W)dlz(z) T’" u dlz for any rn > 1.

But by Lemma 3.5,

Hence

lim

t)

u(z)g(z, w)d#(z) 0

for every u 6 L (D, p) with

)
ud# O.

This means for every fixed w D", g(z, w) is a constant. Hence there exists f
L(D") such that g(z, w) f(w) and Bg g implies that Bf f Now, by the
assumption, f is a constant. Therefore g is a constant.

by

Step (2). The general case.
Let f 6 L(D’’) satisfy Bf f. Consider Rf, the radialization of f, defined

(R.f)(z z,,) f (ZleiO’ z,,eiO’’) dO dO,,.

Since both R and B are contraction on L(D’’) we can use Fubini to get

B(Rf)-- R(Bf)-- Rf.

Thus by step (l), Rf is a constant. This means

eiO eiO,,.f(0 0)
(2rr)"

.f(x x,, )dO...dO,, (3)

Now pick z (z z,,) 6 D" and let p 6 Aut(D") be defined by

p(x x,,) (,p.. (x) ,p.,,(x,,)).

Then since B(f o p) (Bf) o p f o p (Lemma 3.4), (3) remains true when we
replace f by f o ; i.e.,

.f(z z,)
(2re)" .f (oz, (xeiO’ 99z,, (xei"))dOI dO,, (4)
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for any x x,, D. Now put x: x,, 0 in (4). Then since Bf f
implies that .f C(D"), by 4.2.4 of [Ru2] we get A,f 0. Similarly we can see
that

,f zx,, f o.

This completes the proof of Theorem 3. I. I-i

Now we have some corollaries.

COROLLARY 3.7. If f L(D",m x x m) satisfies Bf f and R(f oqg)
L (D")for eve. q9 Aut(D"), then f is n-harmonic.

Proq(. Let f 6 L(D", m x x m) satisfy the above conditions. Then since
R, B are contractions on L(D"), for every q9 6 Aut(D") we have

B(R(.f o qg)) R(B(.f o p))

R(B.f o p)

R(,foqg)

by 3.4

Thus by Theorem 3.1, R(f o qg) is a constant. This implies (4) in step (2) of 3.6.
Hence by the method of 3.6 we get the result.

Corollas. 3.8. For < p < cx, fu LI’(D, p) satisfies Tu u then u =- O.
Similarly f .f LI’(D", tt x x #) satisfies B.f .f then .f O.

Proq(. Since the only harmonic function on D which belongs LP(D, p) is the
constant 0, by Theorem 3.1 it is enough to show that u is bounded. When u 6

Lp (D,/z) since < p < cx we have

u(z) (Tu)(z) ,ft) u(x) (I Izl-) z

II Y.xl4

(1 -Izl2)2 f) u(x)

dm(x)

(1 Ixl2)2

I1 x 14
Thus

lu(z)l _< (1-Iz.12)211ulll,
II--Xl4q dm(x)

< (1 -Izl2)2llullpc(l -[z.12) -2 for some c > 0

cllullp.

dlz(x)

(’’)--+-=1
P q

(by 1.4.10 of [Ru2])

(1)
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When u L (D, dlz)

(1 Izl2)2(1 IX12) 2
I(Z)I ITu(z)I <_ sup

zD Zyl4
lu(x)l dl(X)

Ilull (2)

From (1) and (2), we complete the proof for u.
In the same way we can show that such f is bounded and Theorem 3.1 forces f

to be n-harmonic. And constant zero is the only n-harmonic function which belongs
to LP(D’’, lz ... It).
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