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AN INVARIANT MEAN VALUE PROPERTY
IN THE POLYDISC

JAESUNG LEE

I. Introduction

In [AFR], the authors showed that:
If f is a bounded function on an n-dimensional unit ball B, C C" satisfying

/ fovdm= f(¥(0)) foreveryy € Aut(B,) (1)
B,

(where m is the normalized Lebesgue measure) then f is M-harmonic.
Andif f € L'(B,, m) satisfies (1), then f is M-harmonic if and onlyifn < 11.
In this paper, we answer the question of whether the similar phenomenon happens
in the n-dimensional polydisc D".
Following Definition 2.1.1 from [Rul], we say that f € C%(D") is n-harmonic if

Af=Mf=-=Af=0.

We can see that if f € C2(D") is n-harmonic then f satisfies the invariant volume
mean value property, i.e.,

f foydm---dm= f(¥@O,...,0), VyeAu®d) (2
D

D

since f o is n-harmonic and thus satisfies the ordinary volume mean value property.

This paper is about the converse of the above statement , asking if f € LP(D")
satisfies (2), is f is n-harmonic?

Furstenberg [Fur] has already given a positive answer in the space which includes
the unit ball and the polydisc of all dimension when p = oo, using the methods of
symmetric spaces. But his proof is not very widely known to analysts. Even in recent
years, many papers with related results such as [AC], [Eng], [AFR] were written
without noticing or mentioning the results of Funstenberg.

In this paper, we get the proof in the case when p = oo by using the results of
[AFR], giving a completely independent analytic proof of Furstenberg’s result in the
case of the polydisc (Theorem 3.1).
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AN INVARIANT MEAN VALUE PROPERTY 407

When 1 < p < oo, we show that (2) does not imply that f is n-harmonic even
whenn = 2 (Theorem 2.1). Indeed, when 1 < p < oo we show there are uncountably
many joint eigenfunctions of invariant Laplacians in L”(D?, m x m) which satisfy
the invariant volume mean value property.

For n > 2, we introduce the linear operator defined by

Bz, .. yz0) = / s | fler () @, (X)) dm(xy) - - - dmi(xy)
D D

for f € L'(D",m x --- x m), where ¢, € Aut(D) is defined by

a—7z2
‘pa(Z)=] —.
—az

Then from the structure of the automorphisms of the polydisc (p. 167 of [Rul]) and
the rotation invariance of m, it follows that f € L'(D") satisfies (2) if and only if

Bf = f.

IL. Bf = ffor f € L"(D*,m x m) when 1 < p < co

In [AFR], the authors show that functions in L'(B,) which satisfy the invariant
mean value property are M-harmonic iff n < 11. But in the bidisc D x D, the
analogue is not true. The next theorem states this.

THEOREM 2.1. For | < p < oo, there exists f € LP(D?* m x m) such that
Bf = f and f is not 2-harmonic.

Before proving this, we need some preliminaries. Throughout this paper we use
the following notations as definitions. These notations agree with those in [AFR],
[Ru2].

Definition 2.2.  We define A, A, as the invariant Laplacians with respect to the
first and second variable respectively; i.e.,

(A1 )z, w) = (1 = 21)H%(A1 )z, w) for f € CH(D?).

For A, u € C,we leta, B € Cbe such that A = —4a(l — @), u = —4B8(1 — B) and
define

Xou={f €eCHDY) | Aif =Afand Ay f = uf).
We also define g,, the radial function on D, by

| e 1 —r? *
= — — ] df
8a(r) 2 /(; (|l - re"’|2>
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and define
1 1
Z =jaoeC|——<Rea<l+—}, forl <p <o
P 14 p
2

LEMMA 2.3.  For gy as defined above, we get

/ gydm =209
D

sin(ra)

fee C|O<Rea <1}.

Proof. We use the formula
~Tk+a) ,
1—2)7% = —
-2 ,;) KT (@)

and polar coordinates to obtain

1 5 l 2 1
dm = 2r(l — o —_—dbd
fpg“ " /0 e ”2:1/0 T rempe 404

1 1 2 ) )
= / 2r(1 — r?)*— (1 =re”y™ (1 = re "y do dr
0 21 Jo

0 2 |
= Z—r (k + o) / (1 =r»*r*2rdr
£ (k)’T2(a) Jo
B i Ik +a) T+ Dk!
k12T () Tk + o + 1)

k=0

1
= —F(a,a;a+2; 1) (Fis the hypergeometric function)

o+ 1
= alNa)I'2 —a)
(by the formula
Doy I'(©) ! b=l _ ne=b=l/1 _ _\—a
F(a,b,c,z)——_r(b)r(c_b)[) 7' (1 —=1) (1 —zt) ™ dr)
=a(l —a) I ()1 —a)
= o _a)sin(na)'

This completes the proof. O

LEMMA 24. For1 < p < oo,

LP(D:m xm)N Xy, #{0) iff ae Z,, and B € Z,,'
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Proof. Let f € X, ,. Then the radialization

1 2n 2 ; ;
(Rf)(Z.w)=m/0 A f(ze®, we') do de

belongs to X, , and by 4.2.3 of [Ru 2], Rf is a constant multiple of g,(z)gg(w).
Hence we conclude that

XpuNLP #£({0} ifandonlyif g, € L” andgg € L”.

By 1.4.10 of [Ru2], if Re & < § and o 5 § then

2 1
—_——df
/(; |] _ Ze:9'2a

S I
—d0’~\’10 _—
fo 11— ze] TR

Since gy = g1_a, it follows that g, € L7 (D) if and only if ¢ € X, and the proof is
complete. [

is bounded in D while

LEMMA 2.5. For 1 < p < oo, the equation

noa(l—o) 7np(1—Pp) _ |

sin(woar) sin(rrf)

has infinitely many pairs of solutions (o, 8)in -, x 3.

Proof. Define hon }_ by
wz(l —2)
h(z) = ——= fi . 1
@ sin(w z) or ze€ ZP (D
Then it is easy to check that

(i) h is holomorphic in 3 and
(ii) h(1) = 1.

Thus by the open mapping theorem for a holomorphic function, we can choose an
open ball B(1, ) with B(1,€) C 3, and h(B(1,€)) C 3 ,. And since h(B(1, €))
is an open neighborhood of the point z = 1, it contains an arc of the unit circle around
z = 1, namely

Ls=1{e?| -8 <6 <8}
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which consists of uncountably many pairs of (o, B) € }_, x }_, satisfying h(a) =
1/h(B). In other words,

ra(l—a) 7 —p) _ i

sin(ra) ' sin( )

This ends the proof. O
Now we are ready to prove Theorem 2.1.

2.6. Proof of Theorem 2.1 If f € X, ,, then by 4.2.4 of [Ru2] we have

/Tf(wz(rn), Pu(t8)) do () = ga(r) f (2, pu (1§))

where T is the unit circle. Thus by repeating the previous step we get

// f@:(rn), @u(t§))da (&) do(n) = g«(r) gp(t) f(z, w). (M
T2

Using polar coordinates, we get

[ [ 1600 0000 dmo) dmiy)
1 |
- fo fo 2 / /T F@rm), 9o (t€)) do(n) do (§) dr dt

I |
= / 2r ga(")d"f 2t gp()dt - f(z,w) by (1)
0 0

= /gadmfgﬂdm-f(z,w).
D D

In other words, for f € X, , ﬂL”(Dz, m x m) we have

(Bf)(z, w) = nga dmegﬂ dm - f(z, w). 2
Hence by Lemma 2.3, we get
(Bf)(z, w) = h(a)h(B) f (z, w) (3)
where
h(a) = %

But by Lemma 2.4 and Lemma 2.5 there are infinitely many (A, u)’s satisfying
h(a)h(B) = 1 while every f € X, , (| L? satisfies Bf = f. This completes the
proof of Theorem 1. 0O
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Remark2.7. The analogue of Theorem 2.1 for f € ~L""(Dz)~ is not true. The
reason is that there is no bounded joint eigenfunction of A; and A, which satisfies
Bf = f (other than the 2-harmonic one.). By Lemma 2.4, it is enough to show that

ra(l —a) #p(1—p)

sin(ra) sin(zr B)

(h(e) h(B) =)

has no solution («, B) in )", x Y, except if both «, B are either O or 1.
To prove that assertion: ForO < Re z <1,

sin(r z) _ 1 sin(z)
nz(l—2)  1—z

= llzﬂ(“f -2)
_ ﬁ(”_‘—;g:))) 0

n=I

= (h(z))™!

Thus when z = x isreal, 0 < x < 1, then

_sinry) except when x =0Oorx = 1.
ax(l —x)

When z = x + iy, from (1) we have

_sin(wz) > x(l—-x)+y2 y(1 =2x)
72l —2) ﬂ( nn+ 1) +’n(n+1>)'

n=1

Thus for fixed x,

‘%(x+iy) /1 oo as |y|— o0 )

Thus from (1) and (2) we get |h(z)| < 1on Y__, except when z = 0 or z = 1. This
ends the proof. O

III. Bf = f for f € L>°(D")
THEOREM 3.1. If f € L*°(D") satisfies Bf = f then f is n-harmonic.
We will give a proof using the result of [AFR], which states ifu € L° (D) satisfies

Bu = u, then u is harmonic, together with the main theorem of [KT].
To prove the above result, we need the following.
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Definition 3.2. Foru € L'(D, m), z € D we define

(Tu)(z) =fDu(<pZ(X))dm(x)

by replacing x by ¢,(x), we obtain

(Tu)(z) =f u(x)K(z, x)dm(x)
D

where
(1 —|z|%)?

K](Z,x) = |1 _2x|4 .

Here we can see that

/ Ki(z,x)dm(x) =1, Vz € D.
D

Now let T" be the iteration of T, n times; then by induction we can write

(T"u)(z) =/ u(x)Ky(z, x) dm(x)
D

where

f K,(z,x)dm(x) =1, Vze D,n > 1.
D

Let u be a measure on D defined by

du(z) = (1 — |22 dm(2).

/udu:/uon/fdu
D D

Then by 2.2.6 of [Ru2],

(H

2

3

“

)

(6)

foru € L'(D, u) and ¥ € Aut(D). The advantage of using the invariant measure 1
is that even though w is not a finite measure on D, the space L*°(D, w) is the same as
L (D, m) (i.e., u is a measure equivalent to m on D). Thus we consider L*° (D, m)
as the dual space of L'(D, du) on which the operator T has a nice behavior. (see

Lemma 3.3)

Finally, we denote the space L',:(D") as the subspace of L”(D") which consists

of all radial functions, i.e.,

LY(D") = (f € LP(D") | f(z1,---y22) = fAzil, -, |2al),

for any (zy,...,2,) € D"}.
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LEMMA 3.3, Letl < p < 00, % + ql = 1 (if p = | then q¢ = 00 and vice versa).

(a) T is a bounded operator on LP (D, ) with |T||, < 1.
(b) Foru € LP(D, n),v € L1(D, n) we have

/Tu-vd,u:fu-Tvdu.
D D

Proof. (a) Letu € LY(D, ). Then

ITully = fDITu(Z)Idu(Z)

< / / (OIK 1 (2, x) dm(x) dpa(2)
pJp
= / |u(x)|/ Ki(x,z)dm(z)du(x) by Fubini
D D
= |lull
(since [, Ki(x,z)dm(z) = 1.) Hence
IT]h < 1.
Let v € L*°(D). Then
ITvllw = sup f v(x)K(z, x) dm(x)
zeD D
< |lvlloo sup / Ki(z, x)dm(x)| = [|v]lco-
zeD D
Thus
ITlloo < 1.

By (1), (2) and the Riesz-Thorin Interpolation Theorem we get (a).
(b)

A

fTIIulledu < T lulllplvilq
D
"u"p”U”q < oo by(a)

IA

Thus we can use Fubini’s Theorem:

fu(z)(Tv)(z)du(z) = f u(z)f v(x) K (z, x) dm(x) dj(z)
D D D
= f v(x)f u()K(x,z)dm(z) du(x)
D D

- fD v () (Tu)(x) d(x)
This proves (b) . O

o))

€))
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Note. In (a), actually ||T||; = ||T||cc = 1 since

fudu:fTudu
D D

when O < u € L'(D, u) and Tu = u when u is bounded and harmonic.
LEMMA 34. Let f € L"(D",m x --- x m). Then for any ¥ € Aut(D") we have
B(foy)=(Bf)ov.
Proof. Itis enough to prove the lemma when

]//(Zl’ R ’Zn) = (]/,l(zl)’ R wn(zn))

for some Yy, ..., ¥, € Aut(D).
For zy, ..., z, € D there exist 0y, ..., 0, € [0, 27) such that

‘/"//k(zn"‘/fkowzk =ei9k, k=1,2,...,n

since these antomorphisms take O to 0. Thus

B(fo‘//)(zl""ﬂzn)
=/;)""/;(fOW)((pz|(xl)’~"»wz,,(xn))dm(xl)'"dm(xn)

=/D"'/ F @y @ x1), ..o Puan (€% x,)) dm(xy) - - - dm(x,)
D

=fD'-~/Df(w.<z..)(x1),.--,fpw,,<z,,>(xn))dm(x1)--'dm(xn)
=[(Bf)o¥(z1,...,2n)
This ends the proof. O

LEMMA 3.5. Letu € L&(D, ). Then
lim / IT"u(z)|du(z) =0 if and only if / udp =0.
n—>00 D D

Proof. The “only if” part is obvious from the fact that

/T”udu:/udu forall n> 1.
D D

On the other hand, under the convolution

(u*v)(2) = / u(p, () (x)du(x), u,v e Li(n),
D
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L}Q(,u) is a commutative Banach algebra with the maximal ideal space
Yoo ={0 <Rea < 1},

whose Gelfand transform is defined by

i) = f u(2)gqa(2)dpu(z) foru € Ly(u) and @ € L.
D

Since
Tu=uxq whereqg(z)=(— 1z1%)? € L}e(u)
the spectrum of T on Lk (u) is

(X)) = {fgadm | € Eoo} = h(Zs)
p

by Lemma 2.3, where
z(1 —
=24 =9
sin(z)
Thus in view of Remark 2.7, we get

|h(Zx)] <1 on Z\{0, 1}

while £(0) = h(1) = 1. Hence we showed that T is a linear contraction on L}e(u)
whose spectrum intersects the unit circle only at one point z = 1. Now we apply
Theorem 1 of [KT] to the operator 7' on L}Q(u) to get

lim | 7" —T)| = 0 onLk(n)
n—00
which implies that
lim f IT"u|du =0 forall ue (I —T)Lk(u) 1))
n—00 D

Now let X be the subspace of L}g(l/«) defined by

X = {u € L;(u)|f udu:O}.
D
Then obviously

(I -T)L} C X.

Hence from (1), the proof is complete when we show that (I — T') L}, is dense in X.
Now let w € LY (D) satisfy

/ (w—Tv) -wdu =0 foreveryv € L}((D, Ww.
D
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Then by 3.3 (b) we get
f v-(w—Tw)du=0, YvelLk(D,up).
D

Thus w = Tw and, by [AFR], w is radial harmonic, hence a constant. Therefore we
get

/ u-wdu =0, foreveryue X.
D

By the Hahn-Banach Theorem, this implies that (/ —T)L }Q isdense in X. This proves
the lemma. 0O

3.6. Proof of Theorem 3.1 The proof is divided by two parts; the radial case and
the general case.

Step (1). The radial case.

We will prove the radial case of Theorem 3.1 using induction on n where n is the
dimension of the polydisc.

When n = 1, if u € LE (D) satisfies Tu = u, then by [AFR], u is a constant.

Now assume Bf = f for f € L¥(D") implies that f is constant. Choose
g € LY (D" such that Bg = g. Fix w = (wy,...,w,) € D" and form > 1
define (g,)m € LT (D) by

(gw)m(z)=ff g(z, ylw-wyn)Km(w]’ yl)"'Km(wnv yn)dm(yl)dm(yn)
D D

(N
(K, is defined in 3.2 (5).) Then forany m > 1, |(gw)mlloo < llglloo-

[T" (gu)m](2) = f f 2z Y1s s ) K1, 1)
D D

<o KWy, yo) dm(yr) - - -dm(y,)
= (B"g)(z, wy, ..., wy). )

Now pick u € L(D, ) satisfying

/udu:O.
D

/u(z)g(z,w)du(z) = / u(2)(B" g)(z, w) du(z) (w is fixed)
D D

Then we have

= /u‘(T’"(gw)m)du by (2)
D

= f T"u - (8w)mdn by 3.3 (b)
D
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Hence

< IGlloo

/ u(2)g(z, w)du(z)
D

/ T'"udu‘ forany m > 1.
D

f T"u d,u\ =0.
D

f u(z)gz, w)du(z) =0
D

/udu:O.
D

This means for every fixed w € D", g(z, w) is a constant. Hence there exists f €
LY (D") such that g(z, w) = f(w) and Bg = g implies that Bf = f. Now, by the
assumption, f is a constant. Therefore g is a constant.

But by Lemma 3.5,

lim
m— 00

Hence

forevery u € Ly (D, ) with

Step (2). The general case.
Let f € L>®(D") satisfy Bf = f. Consider Rf, the radialization of f, defined
by

1 2n 2 ) )
Rzt - hzn) = m/ fzie?, ..., 2, ") dby - - db,.
0 0

Since both R and B are contraction on L*°(D") we can use Fubini to get
B(Rf) = R(Bf) = Rf.
Thus by step (1), Rf is a constant. This means

_ 1
- Q)"

2 2
£0,...,0) / . fxe®, . .. x,e®)deo, - --de, 3)
0 0

Now pick z = (z1,...,2,) € D" and let ¥ € Aut(D") be defined by

]//(-xlw MR ] xn) = (‘Pz. (X|), L] (pz,,(xn))-
Then since B(f o) = (Bf) o ¥ = f o ¢ (Lemma 3.4), (3) remains true when we
replace f by f o y;i.e.,

1 2 2 ) .
f@i,o )= —/ [z (xe'™), ... @, (xe'™))d6, - - db, (4)
2m)" Jo 0
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for any x,...,x, € D. Now put x, = --- = x, = 0in (4). Then since Bf = f
implies that f € C*°(D"), by 4.2.4 of [Ru2] we get A| f = 0. Similarly we can see
that

Aof == Ayf =0.

This completes the proof of Theorem 3.1. O
Now we have some corollaries.

COROLLARY 3.7. If f € L"(D",m x - - - x m) satisfies Bf = f and R(f o) €
L>°(D") for every ¢ € Aut(D"), then f is n-harmonic.

Proof. Let f € L'(D",m x --- x m) satisfy the above conditions. Then since
R, B are contractions on L*°(D"), for every ¢ € Aut(D") we have

B(R(f o9)) = R(B(f o))
R(Bfog) by34

= R(fop)

Il

Thus by Theorem 3.1, R(f o ¢) is a constant. This implies (4) in step (2) of 3.6.
Hence by the method of 3.6 we get the result.

Corollary3.8. For 1 < p < o0, ifu € L?(D, ) satisfies Tu = u thenu = 0.
Similarly if f € LP(D", u x --- x ) satisfies Bf = f then f = 0.

Proof.  Since the only harmonic function on D which belongs L”(D, ) is the
constant 0, by Theorem 3.1 it is enough to show that u is bounded. When u €
LP(D, u) since | < p < oo we have

112)2
()(l——_—'-f—'—~|§~d()

_ 242
(1—|z|)2/ ) T o)

I

u(z) = (Tu)(z)

Thus

| — |x[2)2-2 g L1
u@l < (- |z|2)2||un,,( %dm(x)) (— +1- 1)
p |1 —Zzx|% P q
< (1 = [z»*ull,c(1 = |z]»)72 for some ¢ > 0 (by 1.4.10 of [Ru2])
cllullp- ("

A
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Whenu € L' (D, du)

= 2220 — 1x2)?
7w < sup EEE K [ iauc
zeD 1 —zx| D
el @

lu(z)]

Il

From (1) and (2), we complete the proof for u.

In the same way we can show that such f is bounded and Theorem 3.1 forces f
to be n-harmonic. And constant zero is the only n-harmonic function which belongs
toLP(D", ux---xpu). O
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