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TWO UNIFORM INTRINSIC CONSTRUCTIONS FOR
THE LOCAL TIME OF A CLASS OF LIVY PROCESSES

BY
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Summary

We show that if X is a L6vy process with a regularly varying exponent
function and a local time, L, that satisfies a mild continuity condition, then
for an appropriate function ,

-m{s <_ tlX x} L Vt > 0, x R a.s.

Here -m(E) denotes the Hausdorff C-measure of the set E. In particular if X
is a stable process of index a > 1, this solves a problem of Taylor and Wendel.
We also prove that under essentially the same conditions, a construction of Lt
due to Kingman, in fact holds uniformly over all levels.

1. Introduction and statement of results

We study the local time and level sets of a broad class of L6vy processes, i.e.,
real-valued processes with stationary, independent increments that are continu-
ous in probability. Given such a process, we may select a version, Xt, having
right-continuous paths with left limits. Such a version is strong Markov. More
precisely, by passing to the canonical space of such paths, we may assume
(f, .’’, .t, Xt, Or, Px) is a Hunt process in the sense of Blumenthal and Getoor
[5, p. 45]. Here (t } denotes the canonical filtration for the L6vy process X,
augmented in the usual way (see [5, 1.5]). Write P and E for p0 and E,
respectively.
The characteristic measure of X is given by

(1.1) E(eixx,) e-t<x),
where

(1.2) k(X) -iah + 02,2/2-
o

e ihy 1
1 + y2 l(dy),
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and is a measure on R such that fn(1 A y
assume throughout that

2)/(dy) < o and/ {0) 0. We

(1.3) 0 is regular for (0}, and either 0
2 > 0 or/x(R) c

or, equivalently (see [6] or [14]),

( 1)s+q())
d)t< oeVs>O,

and either o > 0 or 121A 1 dt(x) .
Then for each x there is a local time, L, that is continuous in t, jointly
measurable in (t, x, o), and is normalized so that

(1.5) fotf(X) ds f?of(x)L: dx V >_ 0 and measurable f > 0 a.s.

(see Getoor and Kesten [11, Thm. 4]).
It is easy to check that if X is a stable process of index a > 1, then (1.4)

holds and a local time, L, exists. In this setting, Taylor and Wendel [20]
showed that if q(h) ht(logllog hi)x-0, where fl 1 l/a, then for some
constant c > 0,

(1.6) -m(s < tlSs-O) cLt, Vt > O a.s.

Here -m(E) denotes the Hausdorff -measure of the set E.
Fristedt and Pruitt [9] extended (1.6) to general L6vy processes (in fact, to

any strong Markov process with a local time at 0). In order to describe their
results in our setting we need some notation. Let

,x(t) inf(slLff > t)

and write z for 0. The strong Markov property of X shows that z is a
subordinator (Blumental and Getoor [5, V, Thm. 3.21]) and therefore has
Laplace transform

(1.7) E(e-s’(t)) e -tg(s),

where

g(s)=bs+ (1-e-sr)p(di,).
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v is the L6vy measure ofz and satisfies

(1.9) r A lv(dr) < oo, v(0} 0.

As fI(X O) ds 0 a.s. (by (1.3)), b must be zero and the continuity of L.
implies v(0, c)= . (Throughout this work I(A) denotes the indicator
function of the set A.) Using (1.8) and (4.9) of Getoor and Kesten [11], one
can obtain g from as follows"

(1.10) g(s) 2,r oResL+ k(X’) dX

(1.7) shows that g(s) is strictly increasing to o as s ’ c and so g has a
well-defined inverse, r/. For small enough,

logl log tl(1.11) h(t) ,/(t_logllogtl) (*1 g )

is increasing, and approaches zero as $ 0 (see (9) in Fristedt and Pruitt [9]).
Let

i.e., f is the continuous increasing inverse of h (f(0) 0). As we will only be
interested in the asymptotic behavior of f(t) as $ 0, the fact that f(t) is only
defined for small enough will not concern us. Fristedt and Pruitt [9, Theorem
3] showed that there is a constant c > 0 such that for each x,

f-m{s < tlXs- x) cL, >_ O a.s.

Hawkes [13, Thm. 1, 2] proved 1/2 < c < 1 and noted that in the a-stable
case,

c=fl(1-fl)- (/3=l-l/a),

thus showing that this range is best possible.
It is then natural to ask if

(1.14) f-m(s<tlg--x}--cL,t>O, xR a.s.

It is not hard to see that the left side of (1.14) defines a measurable (in(t, x))
version of cL, and in general this is as much as one can say. If, however, the
local time of X has a jointly continuous version L, then (1.14) becomes an
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interesting question concerning the "continuity" of the level sets in the space
variable. This problem was posed by Taylor and Wendel [20] in the stable case
and solved by Perkins [18] if X is a Brownian motion. In the Brownian case we
have [18, Theorem 1]

(1.15) -m(s < tlX x} L Vt > O, x R,

where (t) (2t loglog l/t)1/2. We will extend this result to a broad class of
L6vy processes, including the stable processes of index a > 1, and thus give a
complete answer to the question posed in [20]. Before stating the theorem, we
recall that sufficient conditions for the existence of a jointly continuous local
time given by Getoor and Kesten [11, Thm. 4] and improved by Barlow [1].

Notation.

(1.16)

(1.17)

t 1 )80(x) =r-1 .(1-cshx)Re l+(h) dh

( < by (1.4)),
sup  o(X)
lul<x

p(y) f0Y(log u-X)/: d(8/2(u)) (0 < y < 1).

THEOREM 1.1 (Barlow [1, Thm. 1.1]). If # is finite, then X has a jointly
continuous local time, L. Moreover, there is a constant c > O, and for each
> O, an el(to ) > 0 a.s. such that

)1/2(1.18) suplL’ LI _< c supL7 p(Ib- al)
s<t x

for all Ib al <- ’t (tO)"

Notation. If fl [0,11, let c(fl) fla(1 fl)-a, where 0 1.

Recall that : [0, ) [0, ) varies regularly at with exponent , if

lim g}(ct)/(t) c Vc > O.
t---}

We are ready to state our first theorem.

THEOREM 1.2. Let X be a Lbvy process with characteristic function given by
(1.1) and let g and be given by (1.10) and (1.16), respectively. Assume (1.4),
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(Rt) g varies regularly at oo with exponent fl,
and

(H) 8(x) < (log l/x)-3-* for small x > 0 and some e > O.
Then 0 < fl <_ 1/2 and X has a jointly continuous local time, L, which we
normalize by (1.5). Iff is given by (1.11), (1.12), then

f-m(s<_tIX=x}-c([3)L Vt>_O,xR a.s.

The proof is given in Sections 4 and 5. The existence of a jointly continuous
local time is immediate from Theorem 1.1. Indeed, that result shows that if
8(x) < (log l/x) -t-* for small x and some e > 0, then a jointly continuous
local time exists. On the other hand, there are examples of L6vy processes for
which 8(x) (log(I/x)) -t as x 0 (this means limxoS(x)logl/x 1) and
no jointly continuous version of local time exists (Getoor and Kesten [11,
Section 4, e.g., (c)], Millar and Tran [16]). Hence condition (H) is slightly
stronger than that needed to ensure the joint continuity of local time. Nonethe-
less in [3] (where a preliminary version of Theorem 1.2 is stated without proof)
we conjectured that if X is a L6vy process with a jointly continuous local time,
then for some c > 0,

(1.19) f-m(s <_ tIX x} cU[ Vt > O, x R a.s.

It is not hard to show that (R,) is implied by the regular variation of 6 in
the following sense:

PROPOSITION 1.3. Assume (1.4). If

lim
Reff(cX)

lim
6(cX) =1

Ixl--,o cVRe (h) Ixl- cV(h)

for all c > 0 and some y > 0 then (Rt_ t/v) holds.

The proof is given in Section 3.
The proof of Theorem 1.2 uses some of the techniques employed in [18] to

prove (1.15) (many of which originated in [20]). The arguments in [18],
however, were simplified by the continuity of Brownian sample paths and the
use of the Ray-Knight theorems for Brownian local time, two results which do
not hold for a general L6vy process. We will have to rely more heavily on the
spatial continuity of local time. Moreover, the L’ estimates obtained in [18,
Lemma 1] by using Burkholder’s inequalities will no longer be strong enough
when fl 0 in Theorem 1.2. Instead, the following exponential inequalities,
taken from Freedman [8, Thm. 4.1] will be used extensively.
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Notation. If ((M,, .)ln 0,1,... } is a sub- or supermartingale, let

THEOREM 1.4 (Freedman). Suppose that ((M,, )ln 0,1,... } is a su-
permartingale with Mo 0 and M, M,_ < c, Vn > 1 a.s. Then for any
e, 0 2 > 0,

P supM,n >e’(M) <o <exp
2(o2+ec)

Our second result (a preliminary version was also stated without proof in [3])
extends a construction of Lt due to Kingman [15], to a global construction of

L for all x R.

Notation. a(t, x, e) (s Rl:lu < such that lu s[ < e/2 and X x ).
rn denotes Lebesgue measure.
Write p(x) << q(x) as x $0 if lim+op(x)/q(x) O.

THEOREM 1.5. Let X be a Lkvy process whose characteristic function is given
by (1.1) and satisfies (1.4). Assume g and (given by (1.10) and (1.16)) satisfy
(Ro) and

(1.20) 8(x) << (logl/x) -2 asx $0,

respectively. Then 0 < fl < 1/2, X has a jointly continuous local time L’ which
we normalize by (1.5), and

lim sup
e$O x.R

t<_T

I"(2 )m(a(t, x, e))
eg(1/e) =0 VT>0 a.s.

The proof is given in Sections 6 and 7. The result is known for x fixed when
X is a standard Markov process having a local time at x (see Kingman [15] or
Fristedt and Taylor [10, Corollary 7.2]). In the case where X is a Brownian
motion, the theorem is proved in Perkins [17, Thm. 4.11]. Again the continuity
of Brownian paths, simplifies the arguments.

Although many of the techniques used in the proofs of Theorems 1.2 and 1.5
are similar (e.g., Theorem 1.4), each has its own source of complications. The
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fundamental problem encountered in Theorem 1.2 (especially in the "upper
bound" argument in Section 5) is that the optimal coverings of the level sets,
which give the Hausdorff measure, involve random times that are not stopping
times. In the proof of Theorem 1.5 we deal only with stopping times. On the
other hand, a deterministic result that gives a lower bound for the Hausdorff
measure of a set (Taylor and Wendel [20, Lemma 4]) simplifies the "lower
bound" portion of the proof of Theorem 1.2. This part of the proof (Section 4)
is even simpler than that given in [18] for the Brownian case. It is the absence
of such a result that makes the "lower bound" portion of the proof of Theorem
1.5 (in Section 6) more difficult.
Hence our main results show that two particular constructions for L,

known to be valid for each x a.s., in fact hold uniformly in x a.s. It is
important to point out that this is not always true even in the case of Brownian
motion. In [3] (see also [2]), it is shown that for any L6vy process with a jointly
continuous local time, L, there are constructions of L that are valid for each
x a.s. but fail a.s. at some x(), in fact for an uncountable dense set of levels.

Here is an outline of the paper. In Section 2 we gather together some
preliminary results concerning subordinators in general. In particular if the
subordinator has a regularly varying exponent function, then exact constants
are found in the limsup behaviour at 0 of the first passage time process
(Theorem 2.9). In Section 3 we return to the setting described above and
present some preliminary lemmas. Theorems 1.2 and 1.5 are proved in Sections
4, 5 and 6, 7, respectively. Finally, in Section 8 we consider some examples of
Lvy processes to which Theorems 1.2 and 1.5 apply. These include L6vy
processes with a Brownian component (i.e., o 2 > 0 in (1.2)), stable processes of
index a > 1, and some "critical" processes which are close to Cauchy and
illustrate the gap between our hypotheses and those needed to ensure the
existence of a jointly continuous local time.
We use c to denote several positive constants whose exact values are

unimportant. Hence the value of c may change from line to line. The
complement of a set A is denoted by Ac.

2. Some preliminaries about subordinators

In this section our point of view is more general than that in the introduc-
tion, as z(t) is assumed only to be a driftless subordinator with an infinite
L6vy measure, ,, and not necessarily the inverse local time of a L6vy process.
g(u) is still given by (1.7) and (1.8) (with b 0), f is still defined by (1.11) and
(1.12) and the first passage time to a is denoted by

P(a) inf(tl’(t ) > a}.

The following simple, but fundamental, lemma is taken from Fristedt and
Pruitt [9, Lemma 1].
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LEMMA 2.1. For any w > 0,

(2.1)
e-tg(w)- e-Wa

1 e-wa
< P(’(t) < a) < e-tg(w)+wa,

(2.2) t(w)P(,r(t) > a) < 1 e

LEMMA 2.2. (a) }(g(1/a)) -1 < E(P(a)) < E(P(2a)) < e2g(1/a) -.
(b) Ify > (2g(1/a)) -, then

E(P(a/2) A y) > (1- e-/2)g(1/a) -1.

(c) E(P(2a)2) < 2e2g(1/a) -2.

Proof
(c)

(a) and (b) are slight modifications of [9, Lemma 6].

E(P(2a)2) fo2VP(z(v) < 2a)do

-vg(1/a)+ 2<_ 2ve dv (by (2.1))

2e2g(1/a) -2.

Although Lemma 2.1 will suffice for most purposes in order to find the exact
constant c (= c(fl)) in Theorem 1.2 we must refine the lower bound in (2.1).

LEMMA 2.3. For any e [0,1], x > u > w > 0,

P(’r(t) < a) > euaO-)[e-tS(u)(1 e-ua)

-g(u)(g(u) g(w))-lexp{-a(u- w) tg(w)}

-u(x- u)-exp(-tg(x) + a(1 e)(x u)}]

Proof Let

n o( (u)lu <_ s).
s>t



LOCAL TIME OF LVY PROCESSES 27

Use the strong Markov property at the (fgt }-stopping time P(a) to get

E(e-U*t)I(,(t) > a))
E(I(P(a) < t)e-ur(P(a))E(e-U(r(t)-r(P(a)))lfP(a) )

< e-uaE(I(e(a) < t)e-(t-P(a))g(u))

e-ua-tg(u)[foteSg(u)e(s<P(a))dsg(u)+ 1]
<_ e-"-("[foCexp{sg(u) sg(w) + wa} dsg(u) + 1]

for any w [0, u) by (2.1). Evaluating this integral, we find

E(e-U*(t)I(’r(l) > a)) < e-a(u-w)-tg(W)g(u)(g(u) g(w)) -1

+e-ua-tg(u) Vw (0, u).

On the other hand for each e [0,1], one has

(2.4) )E(e-U’(t)I(’r(t) < a)) E e-USl(’(t) < s A a)dsu

usp< *)e- (z(t) < s) dsu
"0

+ e ua(1-Op ( "r ( ) < a )

Use (2.1) again to show that for any x > u, the first term in (2.4) is bounded
by

-e)
e tg(X)eS(X-U)dsu < exp(-tg(x) + a(l e)(x- u)} u(x u) -t

"0

Substitute this into (2.4) and then add the resulting inequality to (2.3) to obtain
(forx>u>w>0)

e -tg(u) < exp{-a(u- w) tg(w))g(u)(g(u) g(w))
+ exp ( ua tg(u) )
+exp(-tg(x) + a(1 e)(x- u))u(x- u) -x

+exp(-ua(1 e)}P(z(t) < a).

The result follows.
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We now consider the hypothesis (Rt). An easy computation using (1.8)
(with b 0) and (1.9) shows that lim_ g(s)/s 0. As g(s) increases to
as s ’ , it follows that if (Rt) holds, then fl [0,1] (see Lemma 2.4(a)
below).
We recall some classical results on regular variation (due to Karamata) from

Feller [7].

LEMMA 2.4. (a) [7, p. 282] Suppose : [0, c) --, [0, o0) varies regularly at
o with exponent ,/. There are functions a(s), e(s) such that a(s) c > O,
e(s ) 0 as s --, c and

q,(s) a(s)sexp{f(y)/ydy).
(b) [7, p. 279] Suppose : [0, e) [0, ) is regularly oarying at 0 with

exponent > -1. Then

[sq(s) ds 8q,(8)(T + 1) -1 as 850.
.o

(c) [7, p. 446] If (s) > 0 is monotone and o() fe-XSq(s) ds varies
regularly at with exponent -/ < O, then q}(s) s-l(1/s)F(T) -1 as s $0.

In (c) we have used Theorem 4 in [7, p. 446] with + m and x 0 instead
of h 0 and x + m (see [7, Thm. 3, p. 445]).
We state some simple consequences of (Rt) for future reference. We assume

(Rt) throughout the rest of this section.

LEMMA 2.5. (a) If fl < 1, then lim0v(e, )g(1/e)-I’(1 -/3) 1.
(b) f varies regularly at 0 with exponent ft.
(c) limaoE(P(a))g(1/a)F(fl + 1)= 1.

(a) This is an easy consequence of Lemma 2.4(c) and an integra-

foe-USXdu g(h)- (h > 0).

Proof
tion by parts.

(b) This is a routine computation.
(c)

)E e-ha dP (a) E e-x’(") du

Integrate by parts on the left to see that

e -xa dP (a)= lim e-XlVp(N) + ) a)e
N

XP(a)e-x" da
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(as the latter integral must converge, lims_.inf e
that

-XSP(N) 0). It follows

foE(P(a))e-ha da (,g(k)) -1.

Lemma 2.4(c) now gives (c).

LEMMA 2.6. For any e > 0 there is a uo > 0 such that if u (0, Uo) then

P(P(u) > (1 + e)c(B)-Xf(u)) <_ Ilogf(u)1-1-/2.

Proof. Fix e > 0. Apply (2.1) with

w w(u) su-Xlogllogf(u)l

(s is a positive constant whose exact value will be chosen later) to get

P(P(u) > (1 + e)c(fl)-Xf(u))
< exp{-(1 + e)c(fl)-f(u)

g(su-llogllog f(u)l) + s logllogf(u)l).
The definition of f implies (see (16) of [9])

(2.6) g(u-Xlogllog f(u)[) logllog f(u)lf(u) -.
As f(u) $ 0, as u $ 0, w(u) must increase to o as u $ 0. The regular variation of
g at o and (2.5) imply that for some u0 > 0 and all u (0, u0),

P(P(u) > (1 + e)c(fl)-f(u))
< exp{-(1 + 3e/4)c(fl) -1sBf(u)g(u Xlogllog f(u) [)

+ s logllog f,( u)l}
log f(u)l -(1 +3e/4)c(fl)-lsB+s (by (2.6)).

The result follows by setting

e/4

s-- /3(1 -/3) -1

(1 + e/2)(3e/4) -1

iffl=O
if fle (0,1)
if fl 1.
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LEMMA 2.7. If 0 > C(fl) there are constants #, in (0,1) and a > 1 such
that if k e-", then for large enough k,

P(r(tk) < ph(Otk) ) > k-V.

Proof. Let r denote the above probability. If fl 0 or 1, the result is easily
obtained from (2.1) (see the derivation of (6) in Hawkes [13]). Now assume
1 >fl>0. Choose a>l, e, #(0,1), and >c(/3). Let tk=e-, and,
recalling that ,/is the inverse function to g, set

f logllog Otkl- a log k as k ---, o0,

a ph(Otk) pfkrl(fk/Otk) -1,
w, brl( fk/Ot,),
u cl(f/Ot),
x dn(A/Ot),

where d > c > b > 0. Lemma 2.3 and (Ra) show that for any e’ > 0 and for
large enough k,

r, > e(1-*)"A[exp{-c"(1 + d)fjO}(1 e-cOA)

--(1 + e’)c(c b’)-exp{-of(c- b) (1 e’)bf/O }
-c(d- c)-exp{- (1 e’)dafe/O + (1 e)of(d- c)}]

>_. k(1-2")coa[k -(l+2g)ca/O- (1 + e’)c’(c ba)-lk-a(1-g)(o(c-b)+b/O)

-c(d- c)-lk-(1-2e’)ada/O+(1-e)oa(d-c)].
Choose c > 0 such that

(2.7) tica-l= (1 e/2)O0

and then choose b < c < d such that

ca ba da ca
< pO, > (1 e)pO.c-b d-c

Now we may select e’ > 0 such that

(1 e’)(p(c- b) + ba/O) > (1 + 2e’)ca/O,
(1 2e’)da/O- (1 e)p(d- c) > (1 + 2e’)ca/O,
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and so for large enough k,

rk >_ k(1-3e)cpa-( +2e’)c#a/O.

First substitute for c (use (2.7)), and then note that the exponent on k may be
made greater than -1 by taking e, e’ small enough, and a and t close enough
to 1 (use O > c(fl) here).
We are now ready to state a key lemma for the derivation of the upper

bound for the Hausdorff measure of the level sets in Theorem 1.2.

LEMMA 2.8.
that

If 0 > c(fl), there are constants Yo, > 0 and e (0, 1) such

P P(u) -1)sup < 0v<_u<_f(’u) < exp( -Ilog f(y)l-x ),

whenever 0 < y < Yo andf(8 ) > f(y)exp{llogf(y)l).

Proof. As there are already three detailed proofs of various versions of this
result in the literature we are not going to clutter things up with a fourth. The
proof is similar to that of Lemma 3 in Hawkes [13]. The only significant
difference is that Lemma 2.7 is used to prove the appropriate version of (6) in
[13]. Although our condition on f(i) and f(y) appears weaker than that in
[13], it is obtained by making some trivial modifications to the argument given
there, m

The above result, originally due to Taylor and Wendel [20, Lemma 3] for
stable subordinators, was generalized by Fristedt and Pruitt [9, Lemma 7] for
general subordinators (although they did lOt attempt to find the smallest
possible value of ), and then refined by Hawkes [13, Lemma 3] (who did). The
novelty of our version of this result is that, under (Ra), it applies for all
> c(fl) and not just > 1. Theorem 2.9 shows this is the smallest possible

value of .
Fristedt and Pruitt [9, Theorem 2] showed that

lisup
u o+ f(u) c a.s.

for some constant c [1, 2]. If z is a stable subordinator of index fl then it is
known that (see the proof of Theorem 2 in Hawkes [13]) the above limit is
c(fl)-1. Using Lemmas 2.5 and 2.8, one can easily extend this latter result:

THEOREM 2.9. Assume (Ra). Then

e(u)
lim sup
.--,0+ f(u) c(fl) -1 a.s. m



32 M.T. BARLOW, E.A. PERKINS AND S.J. TAYLOR

Remark. Lemma 2.7 (and hence Lemma 2.8 and Theorem 2.9) could also
have been derived from a recent result of Jain and Pruitt [21, Theorem 5.3]
which gives precise estimates on P(zt < et) as $ 0.

3. Some preliminaries about Lvy processes

In the rest of this paper our setting is that described in the introduction.
That is, z(t) now denotes the inverse of the local time (at x), L, of the L6vy
process X. We state the following elementary result without proof. Recall that
/ is the L6vy measure of X.

LEMMA 3.1.

eixx- 1 -ixX(1 + x2)-X#(dx)] =0. m

LEMMA 3.2. If (R/) holds, then [0,1/2].

Proof. It suffices to show g(s)s -t/2 is bounded as s---, (use Lemma
2.4(a)). If p Pl + iP2 where pj. is real-valued then Pl >" 0 and IP(X)I-<
K(X4 + 1)/2 for all X and some K > 1, by Lemma 3.1. Therefore for s > K,

Re(l)= s + kt())
s + (X) ( + (X))’- + (X)

+ K(X4 +
s 1

+ x4)

Therefore (1.10) implies for s > K,

g(s) < 2r(4K) [f-_fs (s

(4K) V-
S 3/2 <_ S1/2

by a contour integration.
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To prove Proposition 1.3 we need the following:

LEMMA 3.3. Assume pl, P2: R ---> C are continuous and satisfy
(i) Re ki > 0, i= 1,2,

(ii) hi(s)=fLRe( 1 )s+i())
d,<c Vs>O,i=l,2.

lim px(X)/p2(x) lim Repl(X)/ReP2(X) 1,

then

lim hl(s)/h2(s ) 1.
s--.oo

Proof.

Re( 1 ts + kl(h) s + Re pt(,) Is + k2(X)l -
Now for s > O,

s + Re
s + Re

Re k2(X)
--Is/Rep:(x) + 11 -< Re p:()) (by (i))

and

Ipg.()k)fpl(X ) 1

Is/( ) ) + 1l
(by (i)).

The above results show that for e > 0 there is an M such that

for all s > 0 and hl > M.
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It is now clear that there is an so such that

for all X real and s > So,

and therefore I e < hl(s)h2(s) -1 < 1 + e for s > so.

Proof of Proposition 1.3. Fix c > 0 and apply the above lemma with
kl(X) k(cX) and 62(X) cVq(A) ((ii) holds by (1.4)) to get

+ (cX) dX

lim c-+Vg(s)-g(sc-V).
O

1 ) )-s+ c+(x) dX

A bit of algebra completes the proof.

Notation. For >_ 0 and each real interval I, let

T(t, I) inf(s _> t[X I} (inf

Write T(t, x) for T(t, ( x )) and T(x) for T(0, x). Let

p(u, y) sup P’(T(O) > u) sup P(T(x) > u),
Ixl<_y Ixl<_y

Lt* sup L’, u* inf{ tlL’ > u }.
X

LEMMA 3.4.
(a)

There is a constant c such that

p(u, y) <_ cS(y)g(u-)((logg(u_11)8(y) ) v 1)
for all y, u > 0,

(b)

inf EX(L /x y) > c(1 p(u/2, 8o))g(1/u) -Ixl_<8o

for all y > (2g(1/u))- and u, o > O.
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Proof (a) For each rl > 0,

< (1 e-1)-Xrlg(u-x) + exp(-n/168(Ixl)).

We have used (2.2), and Proposition 2.7 and Lemma 2.4 of Barlow [1]. To
minimize this last expression let

n 16(Ixl)log

The desired inequality now follows easily.
(b) If y > (2g(1/u)) -1 and Ixl-< o, then

EX(L, A y) _> px(T(O) _< u/2)E(Lu/: /x y)
> (1 p(u/2, io))(1 -e-i/:)g(1/u) -x

the last by Lemma 2.2 (b).

We now prove a result that will play an important role in the proof of both
Theorems 1.2 and 1.5.

Notation.
u > 0, let

For each interval 1 with finite end points x < x:, and each y,

N(y, u, I) , I(ju < zXx(y),:lt [ju,(j + 1)u] X I).
j--O

That is, N(y, u, I) is the number of time intervals of length u before z(y)
during which X visits I.

LEMMA 3.5. There & a positive constant co such that if I is an interval with
finite end points x < x_, and if

(3.1) px(T(xx) < u) > 1/2

(3.2) n > 36yg(u-),

Vx I,

then for all n N, and x R,

P(N(y, u, I) > n) < e-’.
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Proof. By spatial homogeneity we may assume x 0. Define stopping
times ( Si } by

So T(O,
S, inf(t >_ Si_ + 2ulX(t) I).

Let

so that

(3.3)
If

H(y, u, I) Z I(Si < y),
i-0

N(y, u, I) < 3H(y, u, I).

Uj L Lsj sj_l, m(x) EX(L,), dj m(Xsj_l ) Uj,

then ((d., -s.)lJ > 1 } is a martingale difference sequence satisfying

(3.4) EX(dls) < E(Lu-) < 2e2g(1/u) -2 (Lemma2.2(c))

(3.5) dj <_ E(L.) < e2g(1/u) -1 (Lemma2.2(a)).

Moreover, the strong Markov property shows that for x I,

m(x) > P(T(O) < u)E(L.) >_ -g(1/u) -x

(by Lemma 2.2(a) and (3.1)). Hence by (3.3), for n satisfying (3.2) we have

P(N(y, u, I) > n) < P(H(y, u, I) > n/3)

<P( Y’. Uj<y)
<j < n/3

<P( _, dj> Z m(Xs)-Y)
<_j < n/3 <j < n/3

<j < n/3

(3.4) and (3.5) allow us to apply Theorem 1.4 and bound the above by

_n:(36g(1/u))_:
exp

2((n/3)2eg(1/u)__ + ,(36g(1/u))-Xe2g(1/u)-l)
_n36_2 }exp e: + e:/36
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4. Lower Bound for the Hausdorff measure

TrlEOREM 4.1. Assume (1) and (H). Then

f-m(s <_ rig(s) x) >_ c(fl)L[ Vx R, >_ 0 a.s.

Proof An integration by parts shows that (H) implies that for some e’ > 0,

(4.1) p(u) << (log l/u) -1-’ =- (u) as u $0.

Fix M (5, 6,... } and let e M-1. Define a random set A(0) by

A ( t] lim sup ( L
h$0

LtX’)f(h)-l> (1 + 4e)c(fl)-l}.
The method of Taylor and Wendel [20] shows that the result will follow from

(4.2) IA(S ) d,L 0 Vx R a.s.

Indeed, Lemma 4 of [20] would then imply for a.a. o and all > 0, x R,

(1 + 4e)c(fl)-lf-m { s < tlX x}

> (1 + 4e)c(fl)-lf-m{s < tlXs x, s Ac}

> fotI( X x, s A) dLX

I_,o

Let e 0 to complete the proof.
Note we have used the fact that

fotI( X x)dL L VxR,t>_0 a.s.

This follows easily from the joint continuity of L’.
Fix u ((1 + 30(1 + 40 -1, 1), choose u, 0, , $0 such that c(#)-lf(un)
u n and 2(n) eU n. (4.1) shows that

(4.3) ,--1 exp { (e/2) -(1/1 +e.’) u- n/(1 +g) }.
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If

A. {t < *(1) A liLtS,.- Ltx, > (1 + 4)c(fl)-f(U.+l)},
the Borel-Cantelli Lemma shows that (4.2) would follow from

(4.4) Yl= IA,( s ) dsL < VxR a.s.

By (1.18) and (4.1) there is an N(to) < a.s. such that

(4.5) UN < 1, and suPt_<2lL7 LtY < b(Ix -Yl) for all Ix -Yl <

Fix x R, let z-1 0 and write k for "rX(keun),
dependence on n, inductively define

k > 0. Suppressing

k min{k > 01+M+ Zk < U,),
ki+ min(k > k + M + 21Zk+M+ Zk < U.},

i>1.

We claim that if M [Mu-n] + 1 then for n > N(to),

(4.6) A, NX-I([x,x+Snl) C [,.J ii.

ki <Mn

Assume v A and X =y [x, x + 8n]. Then v -[’rk_l, ’rk) for some k
(0,..., M, }, and for this value of k,

LXo+ Lx > LXo+ LXo- eu n

> LYo+,,.- LYo- eun- sup ]L’+u,,-
(4.7) o <_ l, lx’-y’l <_,,

> (1 + 4e)un+l- eun- 2(in) (by (4.5))
> (1 +

Therefore

X
q’k+M+l q’k 7"keun + (l + e) ’]’ieu "< O + U q’k "< U

and v > ’]’k+M+l Un" It follows that k [kg, kg + M + 1] for some kg _< M
and hence that v I for this value of i. This proves the claim (4.6), which in
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turn shows that for n > N(w),

sup
y[x,x+Sn]

(4.8)

foI.(s)dLY
sup E I(k, <_ M 1( L.ki+M+l A1

y[x,x+n] i=1

--L’k,+M+--U,,) v ,k,-D A1)
<- E (, <- M)

i---1
’k M+ ’ki-

+ sup
v< l, ly’-x’l<

-< E r(, _< in)[( + 2)u" + 2(a.)].
i----1

Therefore

(4.9)
M

sup IA.(s)d,LY < (1 + 4e)u" X(n, x, j),
y x, x + Bn] j-’O

where

X(n, x, j) E
O<k<M.(M+ I)- "t’k(M+ 1)+j

X(n, x, j) has a binomial distribution with parameters

N. Mn (M + 1) -1] + 1 u " (for largen)

and

p. P(’r((1 + e)u") < u.)

P( LOu. > (1 q- I?,)c()-lf(un))
< log f(u,) 1-1-e/2 (for n > n o by Lemma 2.6).

Therefore

Pn < cn



40 M.T. BARLOW, E.A. PERKINS AND S.J. TAYLOR

Let 0 < 15’ < e/2. Then

(P (1 + 4e)u" E X(n, x, j) > (M + 1)n -1-*’
j=0

_< (M + 1)P((1 + 4e)u’X(n,x,O) > n--’)
<_ (M + 1)P(X(n, x,O) N,,p,, > (1 + 4e)-n--S’u
< (M + 1)P(X(n, x,O) N,p, > (1/2)n-l-*’u-)

cu-nn

for large enough n, independent of x. Apply Theorem 1.4 to bound the above
by

(M + 1)exp 2(N,p, + 1/2n-i:-") < (M + 1)exp --n
for large n, independent of x. Therefore,. if S (k,5lk E Z), then for large
enough n,

( )P max (1 + 4e)u" _, X(n, x, j) > (M + 1)n -1-’
xS., Ixl<_n j=0

<_ 3nS(M + 1)exp(-(I/8)n-i-’u )

which is summable over n by (4.3). The Borel-Cantelli Lemma and (4.9) imply
that for a.a. w and large enough n,

sup Ia.(s)d,LY <_ (M + 1)n
y

This implies (4.4) and completes the proof.

Remark. 4.2. An examination of the above proof (see especially (4.7) and
(4.8)) shows that the above theorem remains true if (H) is weakened to:

(H") For all u E (0,1), e > 0, there exists $0 such that if c()-f(uo)
u" then
(a) supt <1, ix-yl<_S.K Lxt+u. LtX) (LtY+u. L,Y)I-< eu" for n > N(w),

where N(w) < o a.s. and
(b) E,=16-exp(-u-u-t-* } < c for some > 0.

Note that if (H) holds then (4.5) shows that (H") holds with

(,, exp( (2/e)I/(I+*’) -’/O+*’)u )
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for some e’ > 0. We will give an example in Section 8 where it is easy to verify
(H") but (H) fails.

5. Upper bound for the Hausdorff measure

The proof of the opposite inequality to that in Theorem 4.1 is more involved,
although we are able to weaken (H) slightly.

THEOREM 5.1. Assume (Ro) and for some e > O,

(H’) 8(x) < log- for small x.

Then

f-m(s < tlX(s ) x) < c(fl)L Vx R, > O a.s.

Proof. Fix O0 > 19 > c(fl) and p > 0. Choose un $ 0, n $ 0, 8n $ 0 such that

f(un) e-n, f(n) e-n 8(Sn) n-Pe-n,

and let Yn P log n g(1/n) -1. It follows from (2.6) that

(5.1) g((log n)u; 1) enlogn, g(log(n/2)fi; 1) en/21og(n/2).

Moreover, an easy application of Lemma 2.4(a) (recall also that fl < 1/2 by
Lemma 3.2) shows that

e n/2 _< g(fi-l) < en/21og(n/2) for large enough n

(the upper bound is of course immediate from (5.1)). (H’) implies that

8-x < exp{ np/(2+e)en/(2+e) } for large n.

Let Sn ( kSnlk Z), and for each x let x,(x) denote the unique element in
So such that x [x,, x, + 8,).
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For each x R and n N inductively define stopping times by

(5.4)

Call [T"(x), U/"(x)] a good interval if it is defined by (5.4) and a bad interval if
it is defined by (5.5).
The following facts are immediate:

(5.6) ( <_ tlx, x } U ([,.(x.), v,.(x)] [o, t]),
i=1

u, < Ui"(x ) Ti"(x ) < ft, + u,/logn,

(uin(x)[i 0, 1,... } C { ku,(log n)-llk 0,1,... }.
As f is regularly varying at 0 by Lemma 2.5(b), (5.7) shows that for large
enough n (independent of (i, x)) and any good interval [T/n(x), U/n(x)],

f(uin(x)- Tin(x))<_ O00-f(vin(x)- Tin(x))

<_ Oo(X ).
Therefore, if E/g and E denote summations over good and bad intervals,
respectively, then

limsup ,gf(u,."(x) Ti"(x))I(Ti"(x ) < t) < lim OoLt_fi.+u.(logn)-I
n--- o i-----1 no

OoL Vx R, > O a.s.

As 00 > c(fl) is arbitrary, (5.6) and (5.7) show that to complete the proof it
suffices to establish

(5.9) lim max Ebf(u.)I(Tn(x) _< t) 0 a.s. Vt > 0.
n--* xS i=1

Ixl<_.n
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Note that we have used the regular variation of f at 0 and the fact that Tn(.)
is constant on k8n, (k + 1)).

Let

A.(x) (col sup L
Un<t<finA,X(yn) f(t) < 0

Use (5.8) to see that (5.9) would follow from

(5.10) lim max e-" E I(T(iu,, (log n )-:,
n o x S. i=1

Ixl<_n

[x, x + 8n)) < (i + 1)un(logn) - A

OT(iu.(log.)-,[ x,x+n.))(O) An(x))
0 a.s.

To show this we will need the following upper bound on PY(An(x)).

LEMMA 5.2. There is a positive c such that

sup PY(An(O)) < cn -p/2 Vn N.
lyl<a.

Proof Fix lYl-< 8. and choose 0 (c(fl), 0). Then

PY(An(O)) < PY(’r(yn) <_ ln) -[- PY(T(O) > un(lOgn) -)

+PY(T(O) < un(logn) -1, sup Lt/f(t) < 0 -1)
Un <_ <_

<e exp(-y,,g(:l) )
V+c(n)g(u:llogn)((log(g(ullogn)(n)) 1)1)

(5.11)

/
+ p0 [ sup

u <_ <_ fin un (log
Lt(f(t + Un(|Ogn)-l))

-I
< 0 -I

(Lemmas 2.1 and 3.4)

< en-P + cn-P/X + pO sup
u < < fin un (log n)-

Lt/f(t) < 0),
where the last line holds for large enough n by the regular variation of f and
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by (5.1). Checking the hypotheses of Lemma 2.8, we have

/(t.- un(logn) -1) > f(n(1- (logn)-l))> (1/2)e-"/2

(large n, by Lemma 2.5(b))
> f(u,,)3/4 (large n).

Hence we may apply Lemma 2.8 to bound the last term in (5.11) for large
enough n, by e-C’ for some , > 0. This completes the proof, m

Returning to the derivation of (5.10), let m,(y) PY(An(O)) and

T(n, i, x) T(iu,(logn) -1, [x, x + ,,)).
Then

(5.12)

e-" E l(T(n, i, x) < ((i + 1)u,(log n) -1
A rx* )

il

Xm,,(X(T(n,i,x))-x)

< cn-l/:Ze-" sup N(1, u(log n ) -, x, x + 8))
xS,,,Ixl<_n

(see Section 3 for the definition of N). As g((log n)u-1) e’log n (by (5.1)),
an application of Lemma 3.5 ((3.1) holds by Lemma 3.4) shows that for
large n,

P( sup
x-S,,,Ixl<_n

N(1, u(log n)-1, Ix, x + 3)) > 36elog n )
< 3n3le-c36e"lg n

< 3n exp(nP/(2+*)e’/(2+*) c036e’log n } (by (5.3)).

As this is summable, the Borel-Cantelli Lemma implies that (5.12) approaches
0 a.s. as n . Hence to prove (5.10) it suffices to show

(5.13) lim sup e- I(T(n, x, i) < ((i + 1)u(logn) -1) /X z*)
n-, x.S,,,Ixl<_n il

X [I(8r(,,,x,O(o) A,,(x)) m,,(X(T(n, x, i)))]
< 0 a.s.
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For each (n, x), we divide the random collection of times

into a finite number of random blocks and then bound each of the summations
contributing to (5.13) formed by selecting one time from each block. This
effectively spaces out the times so that each of the summations obtained in this
way will be a martingale and we will be able to apply the exponential bounds
in Theorem 1.4. The blocks are given by

B(n, x, i) R(n, x) [W/n_._l(X), W/n(x)),
where

=0,

Wn (x) inf{t > T(Win(x) Ix x + 8n))lL >i+. -Lw:’(x)-Yn or

t- w:’(x) >_

We first bound the number of blocks,

N.(x) inf(ilW:’(x) > ’rl* }.

Noting that either Lv,. Lv,"_, -> Yn or Wn W_x >_ fin, and that

w,"]) n Ix, x +

one sees that

Nn(x ) _< yn-1 + 1 + N(1, fin, [x, x + 8n) ).
Let H (log n)5/2en/2. As Hn/2 > 36g(fi-), for large n by (5.2), Lemma
3.5 implies ((3.1) holds by Lemma 3.4) that for large n

P(N(1, fin, [x, x + n)) > Hn/2) < exp{-(Co/2)Hn )"

Therefore, because y-1 _[_ 1 < Hn/2 for large n (use (5.2)), one gets that

(5.14) 3nS-xe(Nn(x) > Hn) < 3n exp{ n’(2+Oe n/(2+) (Co/2)H },
for large enough n.
Next use Lemma 3.5 once more to bound the cardinality of each block,

IB(n, x, i)1. (5.1) and (5.2) show that for large n

36Yng((log n)/Un) < Hn.
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Therefore Lemma 3.5 (and (5.3)) now gives us, for large n,

3nSP(IB(n, x, i)1 > H)
< 3nSlHnP(N(Yn, un/logn, [x, x + 6n)) > Hn)
< 3nHnexp( np/(2+)e n/(2+) Colin).

It follows from (5.14) and the above that

P( sup [B(n,x,i)l>Hn)
xS,, Ixl_<n, <_i<_N,(x)

is summable and so by a Borel-Cantelli argument

(5.15) sup IB(n, x, i)l < Hn forlarge enough n a.s.
x.S,,, [x[<_n, <i<_N,,(x)

Let S(n, x, i, j) denote the j-th time in the block B(n, x, i), where

S(n, x, i, j)

if there is no such time. For 0 or 1, define

k

M(n, x, j, l)(k) E e-nl(S( n, x,2i + l, j) < win(x)
i=1

[l(Os(n,x,2i+,,)(o) An(x))
-mn(X(S(n, x,2i + l, j)) x)].

That is, M(n, x, j, I)() is obtained by summing only those terms in (5.13)
that are the j-th times in each of the even (! 0) or odd (! 1) blocks. Note
that each S(n, x, i, j) is a stopping time, as B(n, x, i) is an optional set. It is
now an easy exercise to check that

{(M(n, x, j, l)(k), :’S(n,x,2(/,+l)+,,j))lk O, 1,... }

is a martingale. Moreover, Lemma 5.2 implies

(M(n, x, j, 1))o < cn-P/2e-2nNn(x).
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Use Theorem 1.4 to show

P( sup M(n, x, j, l)(k) > e-"/(logn) -)
k<o

< P(N,,(x) > H,) + P( sup M(n, x, j, l)(k) > e-"/2(logn) -,
k <oe

)5/2 (3/2)n)(M(n x j, l))o <_ cn-p/2(logn e

<P(N,,(x)>H,,)

+exp
2( cn_P/2(log n)g-7i-e-_-i-)-, + e-O/2)O(log n)_)

< P(N,(x) > H,,) + exp{-e"/2(logn)-/4}
for large enough n. Therefore for large n we have

P( sup M(n, x, j, l)(oe) > e-"/2(log n) -3)
xS., [x[<n, j < H.,l=O,1

_< 2H.(.,.-1) sup ’(N.(x) >_ H.)
x-Sn,lxl<_n

This is summable over n by (5.14) and (5.3) and hence

sup M(n, x, j, l)(m) < e-O/2(log n) -xeS., j<H.,l=0,1
Ixl<_n

for large enough n a.s.

Combine this with (5.15) to get for a.a. 0 and large enough n,

maxe-n I(T(n, x, i) < ((i + 1)u,(logn) -1) A ’1")
xSn i---1

x [I(Or(.,x,,(,o) e .(x)) m.(X(T(n, x, i)) x)]
m.x X m.x 0xeS,,,lxl<_n j=l i<Nn(x)

x(M(n,x, j,0)(o) + M(n,x, j, 1)(o))
< 2H,,e-"/2(log n) -3

2(log n) /2 --,0 as n oe.

This completes the proof of (5.13) and hence the theorem.
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Theorem 1.2 is an immediate corollary to Theorems 4.1 and 5.1, and Lemma
3.2.

6. Lower bound for the Kingman construction

As mentioned in 1, the lower bound for m(a(t, x, 8)) in Theorem 1.5 is
harder to derive than the analogous bound for f-m{ s < tlS(s) x) because
of the lack of a result like Lemma 4 in Taylor and Wendel [20]. We require
several preliminary lemmas.

Notation. For each interval I and u, y, 8 > 0, define

A(I, u, y) (o1I c X([0, u A z(y)])},

q(u, 8, y) sup px(A([O, i], u, y)C).
x[0,]

LEMMA 6.1.

(6.1)

ff u., ., y. 0 satisfy

lim O(8.)g(u;1)y./2= lim O(8,,)y.-1/2= 0,

then lim,,_.oq(u,,, i,,, y,,) O.

Proof (3.7) and (3.4) of Barlow [1] (see also Lemma 2.4 of [1]) show there
are e, c > 0 and random variables { Fxl, Q > 0} such that

(6.2)
suplX m L X A Ltbl < chl/2(p(lb al) + (8(Ib al)log(I’x v 1))1/2)
t>_o

VXQ>,a,b [-e,e],

(6.3) e(r ) < 3 VX Q>0.

Choose y’ Q > 0 such that (6.1) holds with y’ in place of Yn, and y’ < yn. If

tin 2cp(Sn)g(1/un)(y)1/2,

then (6.1) implies r/,---, 0 and y, > rl,g(1/u,)- for large n. Therefore for
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large n we have

q(Un, Sn, Yn)
< P([-$n, 8n] : X([O, Un A ’r(yn’)]))

lyl<,S,,

’< P(t ’ ’On(g(t/u.)) -1)

_< P(u. _<

+P(cyt.,/:Z(p(,,,) + (,(<,,)log(l"y., A 1)) +./2) > 2cp( +,,)( y],) /:2)
(by (6.2))

< (1 e-l) -1 > cPC+n)Cn)’n-I- P((|O(1yn V 1)) 1/2 -1/2)
--+0 asn oo

(the last by (2.2) and (6.3), since O(Sn)8(in)-t/2

For the next lemma, recall that

p(u, sup
Ixl_<

We assume (Rt) throughout the rest of this section.

LEMMA 6.2.
which

There is a c > 0 such that for any y > 0 there is an eo > 0 for

providing e, u/e, 1 (0, eo), and p(u/2, ) < 1/2.
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Proof Recall that (A(t) t, Q(x, dy) ,(d(y x)) is a L6vy system for
(see Benveniste and Jacod [4]). Therefore for v > u,

px(r(u,O) > v,,(y) > u)

=x( E /(,(,-)_<u<_<,()))
O<s<y

+px(T(u,O) >_ v, "r(y) > u, T(O) >_ u)

E"(I(T(O,o) < u)E( _,, I((s-) < u- T(O,)i
O<s<y

<v- T(O,o) <_ y),(d(y (s-))) ds)) + pX(T(O) >_ v)

Ex(I(T(O, o) < u)

+ px(T(O) >_ v).

As ffI((s) < u T(O, o)) ds L r(o,,) /x y, the strong Markov property
implies

(6.4) EX(L A y),[v, ) < pX(T(u,O) > v, (y) > u)
< E(L A y),[v- u, o) + P(T(O) > v).

Next we establish a relationship between the law of T(u, [0, i)] and that of
T(u, 0). We have

px(T(u,O) > v + u, (y) > u)
< pX(T(u,[O, 8]) > v, z(y) > u)

+PX(T(T(u,[O, 8]),O) > u,z(y) > u,T(u,[O, 8]) < v)
< PX(T(u,[O, 8]) > v, (y) > u) + p(u, 8)px((y) > u).

Rearranging we get

px(r(u,[O, 1) >_ , r(y) > u)
> [px(T(u,O) > v + u, z(y) > u) -p(u, 8)]



LOCAL TIME OF LVY PROCESSES 51

We are ready to consider the lower bound in the statement of the lemma. We
have

(6.6) >_ e- -r) x( 0v[v, ee)avE LuAY)- (1 . ue
u

(by (6.5))

-1)p(u, )

(by (6.4)).

Fix > 0. Use Lemmas 2.5(a) and 2.4(b) and the fact that tg(1/t) varies
regularly at 0 with exponent 1 -/3 > 0, to see that there is an e0 > 0 such that
if e, ue-1, (0, e0), then (6.6) is bounded below by

(-,)r(2 t)- x og(1/)E (L Ay) p(u,3).

Finally use Lemma 3.4(b) in the above to see that for y > g(1/u) -1

x [0,1,
and

EX((T(u A (y), [0, i])e-)/ (1- ))
>_ [1 -/- p(u,  )r(2 fl)c-l(1 p(u/2, 8))-lg(1/u)g(1/e)-l]
F(2 B)-lg(1/e)EX(L. A y).

The lower bound is now immediate from p(u/2, ) < 1/2.
The proof of the upper bound is similar. Use the upper bound in (6.4) (with

y oe) and, instead of (6.5), use the obvious fact

px(T(u,[O,l) > v) < px(T(u,O) >_ v).

LEMMA 6.3. There are constants c, eo > 0 such that

EX( ( ( T( u, [O, i])E -1) A 2) 2) cg(E-1)g(u-1) -1 [o,

whenever 0 < u < e < eo.
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Proof. Fix 8 > 0 and let x [0, 8]. Use the upper bound in (6.4) with
y= and x=0, toseethat

(((T(u, to, 1)-) ^ ))
"< gx(((r(u, X)E -1) A 2) 2

g(((r(u,O)E-lt 2t 2

- u + 2{o + u).[o, }

Use Lemmas 2.4(b) and 2.5(a), (c) to conclude there are c, e0 > 0 such that for
0 < u < e < eo, the above is bounded by

ue- + cg(e-)g(u-1) -.
By Lemmas 2.4(a) and 3.2, we may choose eo so that for u, e as above

g(e-1)g(u-)- (u/e)#+ (u/e).
The result is now immediate.

THEOREM 6.4.
each positive T,

Assume (Ro) and 8(x) << (log l/x) -2 as x $ O. Then for

lim sup sup L r(2 fl)
m (a (t, x, e))

,o R, eg(1/e)
O<t<_T

<0 a.s.

Proof Fix u (0,1). An integration by parts shows that

p(x) << (logl/x) -/2 as x $0

(p is given by (1.17)). Let e(x)= p(x)(logl/x)/2 and choose 8, 0 such
that

e( 8, ) 1/2(log 1/8. ) /9_ un/2

Then

and so

0(8,) e(i,)(logl/,) -x/2 << u"/2 << (log l/3,) -x/2

(6.7) P(Cn) << un/2, n >> e-U-" V > O.



LOCAL TIME OF LVY PROCESSES 53

Choose e. 0 such that gO/e.) u-". It is clear from (6.7) that there are
0 such thatUn

(6.8) g(1/U’n)P(6n)Un/2 --> 0 and u, << en+ .
Lemma 6.1 implies that

n unlim q(Un, ) =0.
n oo

<u << and0 such that un en+Now choose u.

lim g(1/u.)g(1/en)-q(u.,8.,u") =0.

As q(u, 8, y) is decreasing in u, we have

(6.9) lim g(1/u.)g(1/e.)-q(u., ., u") O, u. <<

Let x x.(x) denote the unique element in S. (k6nlk Z] such that

and let I"(x) [x., x.
times as follows"

+ i.]. For n N, x R, inductively define stopping

Write An(x ) for A(I.(x), u., u"). Note that

(6.10) a(t, x, e) z U ’[T,."(x) e/2 + u., T/"(x) + e/Z],
i>0

where t3 >_ o indicates the union is over those indices > 0 for which Tn(x) <
u and Or,.,(x)O An(x ). The significant fact about (6.10) is that the right

side is constant on In(x )
The required result follows easily from

(6.11)
lim sup supL^ ..(y)

e$0 x
I"(2- fl)m(a(t A **(y), x, e))e-lg(1/e) - < 0

a.s. for each t, y > 0.

Indeed, letting y o in (6.11) gives the result for each fixed t, and then use
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the continuity of L. (uniformly in x) and the monotonicity of - m(a(t, x, e))
to obtain the uniform convergence in t. Therefore we fix t, y > 0 and consider
(6.11).

(6.10) shows that

(6.12)
m(a(t /x r*(y), x,

> _, I(T,."(x) < A ’*(y) u., Or.(x)O - A.(x),Or,..+(x)O - A.(x))
i=0

X (T/_l(X) Tin(x))A (13- Un)

The continuity of local time and the fact that m n(., e) is constant on
[k3n, (k + 1)) shows that (6.11) would follow from

(6.13)
lim sup sup
no xS.,[.+,.],

Ixl<n

L^,,y)- I"(2- fl)m,(x, e)e-g(1/e) -x < 0 a.s.

Use (6.12) to see that for x S, and e

(6.14)
2U L

^ r*(y)-u. F(2 fl)m.(x, e)e-lg(1/e) -
< Y’ I(Ti"(x ) <t A ’*(y)

i=0

i+1Lr,"(x)

A (1- en+
un ))F(2- fl)g(l/en+l) -1

+ 2

_
I(Ti"(x ) <t A *(y) Un)

i=0

xI(OL.()o An(x)C)g(1/en) -1 +

< , I(Ti"(x ) <t A z*(y) u.)di(x, n)
i=0

-I- E I(Tin(x) <_ A *(y) u,)2q(u,, ,, u")u" +
i=0
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where

and

L./. <))

(( T"(x) T"(x) ) A (l u,,/e,,+))i+

n
r(2- fl)g(1/en+l) -1

+ [2I(OT(x) An(x)C) 2mn(X(Tin(x)))]g(1/en) -1,

m,,(x)=px(A,,(x)).

Note that d(x, n) ,’T.+x(X and

-r(2--fl)un+lEX(Tin(x’)(( (T(UnAq’X(Un)’e, 1"(1)’ )A (1-Un/gn+l) )
Now note that we may apply Lemma 6.2 to bound the second term. Indeed,
(6.8), 2/u < 2/u’, and Lemma 6.1 show that

p(u,,/2, ,,) < q(u,,/2, ,,, u") 0 as n o.

Therefore by Lemma 6.2 there are ’n 0 such that

E(di(Y, n) o’:r,.,(x))
Ur

-u(a Yn- cp(Un, n)g(ui)g(effX)-l)EX(Ti"(x))( Lxu. / un)
<0

for n > No, say. We have used the fact that p(u,,, 8,,)< q(u,, 8,, u"), and
(6.9) in the last line. Therefore for n > No, if

k-1

Mk(x n) Y’ di(x, n)I(Ti"(x ) < A "r*(y)
i=0

then

((Mk(x, n), o’r,(x))[k 0,1,..., oo)
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is a supermartingale. Moreover (6.14) implies

(6.15) g Lt ^ *(y)-u. nsup 2 x r(2 fl)m (x, e)e-lg(1/e)
xS.,[.+x,.],

Ixl<_n

< sup Moo(x, n)
xS.,Ixl<_n

+ IN(Y, u., I.(x)) + yu-" + 1]2q(u,,, 8,,, u"lu" + u".

Clearly one has

(6.16) di(x, n) < 3u n.

In order to use Theorem 1.4 we now bound (M(x, n)). For large enough n,
say n > No, we have

E(d(x,

+ E X(r;())((T(u., I.(x))/e.) A 1))uz" + uZ"q(u., .,
0 U2 )g(un )-1 -1)c(EO(tu.)+ ng(8:l -1 + ung(u:l)

(Lemma 6.3 and (6.9))
c(g(1/u.)-+ u"g(1/u.)-),

where we have used Lemma 2.2(c) in the last. Therefore we have,

(6.17) (M(x, n)) < c ., I(Ti"(x ) < A ’*(y))ung(1/u,) -1

iO

< c(N(y, un, In(X)) + yu-n + 1)ung(1/Un) -.
We now may use Theorem 1.4 to see that for n > N0, x Sn, and K > 0,

P(Moo(x, n) > e) < P(Moo(x, n) >_ e, <M(x, n)) < Kun)
+P(N(y, u., 1.(x)) + yu-" + 1 > (K/c)g(1/u.))

<exp 2(Ku’3eun )
+e(N(y, u., Zn(X)) > (K/c y un)g(1/Un))

_< exp 2(K + g) + exp{ co36yg(1/u,) },
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where we may choose K large enough so that K/c y 1 > 36y and hence
apply Lemma 3.5. Therefore

P sup M(x, n) > e < 3n#f exp 2(K+ ) + exp{-co36yu-")
x-S
Ixl<n

which is summable by (6.7). The Borel-Cantelli Lemma shows

(6.18) lim sup M(x, n ) / 0 a.s.
n---, xS,,Ixl<_n

Another application of Lemma 3.5 and the Borel-Cantelli Lemma Oust as
above) shows

(6.19) lim sup N(y, u., I.(x))q(u., ., u")u" 0 a.s.
n--, xs,lxl<_n

Applying (6.18) and (6.19) to (6.15) one obtains

2 xlim sup sup u L
^ ,r*(y)

n-- x.Sn,e.[e+l,e],
Ixl<n

r(2- B)m.(x, e)e-lg(1/e)-I < 0.

Let u ’ 1 to obtain (6.13) and hence complete the proof.

7. Upper bound for the Kingman construction

Fortunately, the easiest proof has been left to the last. Moreover the
continuity condition we will need on 8(x) is so weak that it does not even
guarantee the existence of a jointly continuous local time. Hence we must add
this as a hypothesis in the following result.

THEOREM 7.1. Assume (R/), X has a jointly continuous local time, L, and

8(x) << (logl/x) -1
as x,O.

Then for each positive T,

F(2 fl)m(a(t, x, e))
lim sup sup
o xa, eg(1/e)

O<_t<_T

-L;<_O aoS.

Proof Fix u (0,1). Choose 8n $ 0 such that r/n 8(Sn)U -n 0 as n --, oo
but 8n >> e-u as n --, oo ’e > 0. Now choose u --, 0 such that g(1/Un)
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’On 1/2u n, and e. - 0 such that g(1/en) u ". Then we have

(7.1)
(7.2)
(7.3)

U ln+l

>>e-u-" re>O,

8(8)g(u-1) =r/l/20 asn o.

Lemma 3.4(a) therefore implies

(7.4) p(u/2, ) 0 asn o.

By making u, larger if necessary we can maintain (7.1) and (7.4) and also have

(7.5) p(u., ,,)g(1/u,,)g(1/e,,) - --> 0 as n --> o.

Fix t, y > 0. As in the proof of Theorem 6.4 it suffices to show

(7.6)
F(2- fl)m(a(t A z*(y), x, e)

lim sup sup L:^ "r*(y) < 0
,- o xR, eg(1/e)

a,So

As before, let S,= {kS,IkZ}, and let x,=x,(x)S be such that
x [x,, x + i) and I(x) [x, x, + i,]. Define stopping times by

r(x) r(o, 1,(x)),
Ti"+(x) T(T,."(x) + u,, "()).

Then

a(t A z*(y), x, e)

i--0

Iron(X)-/,r(xl],
where u’ indicates the union is over those indices such that

T/"(x) <t A z*(y) + u,.
Therefore

m(a(tAz*(y),x,e))

< , I(Ti"(x ) <t A *(y) + u.)
i--0

x ((,(x) ,.()) ^ ( + ,,.)) + /
,h.(x,. ).
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As rh.(., e) is constant on [ka., (k + 1)a.) and L; ^ "r*(y) is continuous, (7.6)
would be an immediate consequence of

(7.7) limsup sup F(2 fl)rh,(x, e)e-lg(1/e) -1
L^,,(y)< 0 a.s.

tl O x i. Sn x < ?’l

e([.+l, .]

If x S. and e [e.+ 1, e.], then

(7.8)
u2F(2 fl)r.(x e)e lg(1/l) -1 gt ^ r*(y)+ 2u

<

_
I(Ti"(x ) <t A r*(y) + u.)di(x, n),

i=0

where

di(x,n) ( T""+l(X) T’(x) ) A (l + u./e.+l))
Xg(1/e,)-lF(2- )u2- (L.?+(x)- L},?(x) ).

Clearly d(x, n) ,"T;+I(X). Moreover (7.1) and (7.4) show that we may apply
Lemma 6.2 to find ,, 0 such that

EX(T"(x))(T(un’en+lln(x)A (1 + Un/en+l))Un+2(2 fl)

n

(1 + + cp(.., -1)
gn

gn

0

for large enough n, say n No, by (7.5). Therefore, if

k-1

M(x, n) E d(x, n)I("(x) r*(y) + u,),
i=0

then forxS, and nNo,

{(Me(x, ,), o-r(x))[k O, 1,..., 0e)
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is a supermartingale. Note that for large n, x Sn and all i,

(7.9) d(x, n) < cu,
n)2

c .-ex r(.,/(xl)
^ + eo o

n+l_
[.g(/lg(/..l- + g(1/. -]

(Lemmas 2.2(c) and 6.3)
< cu’g(1/u,) -.

Therefore for n > NO (increase NO if necessary)

(7.10) (M(x, n)) <_ cu"g(l/u,) -1

_
I(T/"(x) _<t A *(y) + u,)

i-O

< cu’g(lfu,)-l(N(y, u,, I(x)) + 1).
Now proceed exactly as in the proof of Theorem 6.4. Use (7.9) and (7.10) in
Theorem 1.4, as well as Lemma 3.5 and (7.2), to see that

P( sup M(x, n)> e)< o
xg,,lxl<n

Ve>O.

The Borel-Cantelli Lemma allows us to deduce from (7.8) that

lim sup sup
n--} o xS., Ixl<n,

u-F(2 /3)rh (x e)g(1/e) -1 x,, L
^ .r,(y)+2u <_ 0 a.s.

Let u ’ 1 to establish (7.7) and complete the proof.

Theorem 1.5 follows immediately from Theorems 6.4 and 7.1.

8. Some examples

(a) Lbvy processes with a Brownian component.

Assume X is a L6vy process such that o 2 > 0 in (1.2). Lemma 3.1 shows
that

lim
q(h)

1
Ixl-.= (o/2)X
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and therefore by (1.10) and Lemma 3.3 we have

1 lim g(s) s 2 dX
00

lim
g(s) ,r

s--,oo 2rr o2s/2
Therefore

(8.1) lim
g(s)

1 o7
In particular (R/2) holds. An easy computation shows that /(x) O(x) as
x $ 0. Therefore the hypotheses of both Theorems 1.2 and 1.5 are satisfied.
Theorem 1.5 together with (8.1) implies for each T > 0,

(8.2) lim sup
e$O xR,t<_T

m(a(t,x, e))
27r V/-{ L’{ =0 a.s.

(8.1) implies that

1f(t) Vto (t logllogt[) 1/2 ast$O

and so Theorem 1.2 gives us

(8.3) ep-m(s <_ tlXs-- x) L Vx R, >_ O a.s.,

where

q(t) o-1(2t logllog tl) /2.

(b) Stable Processes.

Let X be a stable process of index a. It is well known that X has a jointly
continuous local time if and only if a > 1. In this case the exponent function
of X is given by

k(,) cllJkl(1 ih sgn(,)tan-)
wherecIR, -1 <h<landl <a<2. Then

(8.4) g(s) c2so,
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where fl 1 1/a and

(8.5) 17; 1= + a/ )r(a 1/a)c;1/Re[(1 -ih tan(ra/2))-l/].
(See Hawkes [12, Section 2]). In particular (Ra) holds. A routine calculation
shows

8(x) cx asx$0, forsomec>0.

Therefore the hypotheses of Theorems 1.2 and 1.5 are satisfied. Theorem 1.5
and (8.4) imply

(8.6) lim sup
$0 xR,

t<T

c;r(1 + l/a) m(a(t, x, e))
ell

where c- is given by (8.5).
As f(t) c-talogllog tl-a, Theorem 1.2 implies

(8.7) k-m(s < tlX= x) L Vx e R, > O a.s.,

0 a.s.,

where

b(t) c-1(1 l/a) -(-l/a)a/atl-1/a(1OgllOg tl) 1/.

(c) Critical symmetric processes.

Let X be a L6vy process whose exponent function is of the form

(8.8) (k)
-o

eihy 1-
1 + y------5 I(dy),

where

1 I(lyl < 1).(dy) lY1-2 log-
Then X has a jointly continuous local time if and only if a > 2 (see Barlow [1,
Section 4, e.g., 3]), and

(8.9) q (A) rl,l(loglXI) as IAI c

(see (4.21) in Getoor and Kesten [11]). Proposition 1.3 gives us (R0). In fact a
calculation (use Lemma 3.3 and (8.9)) shows that

(8.10) g(S) ’n’2(o 1)(log S) a-1 ass c.
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Moreover from Barlow [1, Section 4, e.g., 3] one obtains

8(x) c(logl/x)- asx$0

for some c > 0. Therefore the hypotheses of Theorem 1.5 are satisfied if a > 3
and in this case we have

(8.11) lim sup
e$OxR,

t<T

m(a(t, x, e))r-2(a 1) -t

e(log l/e)- =0 VT>0 a.s.

(8.10) implies

f(t) r-E(a 1)-(logl/t)t-log(logllogl/tl) =- O(t)

and so for a > 4 we may apply Theorem 1.2 to get

(8.12) -m(s < tlXs= x) L Vx R, >_ O a.s.

In fact one can do slightly better by using Remark 4.2. Fix e > 0 and
u (0,1). If e0 > 0 and S, (ie-"n-tli 0,1,...,[en]), then Lemma 7
and Theorem 8 of Perkins [19] together show there is an N() < a.s. such
that

sup s+t tt) (tYs+
t.Sn, O<s<e

< cn(2-’)/2+(loglx Yl-t) and n> N(o).

An elementary interpolation argument now shows there is an ,/(o) > a.s. such
that for 0 <

(8.13)
sup
t<l,

Ix--yl < ,
I(L+t- L;) (ZsY+t- tty) I<_ c(logl/s)(-)/+(logl/6)-(/2).

n/(a- 1)
If f(u) u, then u << e Let 8 e-- where , >_ ( 1)-Therefore (8.13) implies that for a.a. o and large enough n,

sup
t<_l, lx-yl<_,

LtL.- Z- (tY/u.- tt)l u nk

where

a 2 e0k 2(a- 1) a- 1 y(1 -a/2).
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The above expression will be less than eu n for some e0 > 0 and for large n, if

2 1
3,> 3,> (a- 1) -1a-2 a-l’

Therefore (H") will hold (see Remark 4.2) if 1 > 2/(a 2) 1/(a 1) and
(ct 1)-1 < 1, or equivalently to a > 2 + x/-, and hence the conclusion of
Theorem 4.1 will hold for a > 2 + -. Since Theorem 5.1 applies for a > 3,
we see that (8.12) is true whenever a > 2 + -.

(d) Critical asymmetric processes.

Finally we consider L6vy processes X whose exponent function is of the
form (8.8) where

p(dy) y- log (pI(O < y < 1) + qI(-1 < y < 0)),

p,q>O, p+ q= l, p l/2.
X has a jointly continuous local time if and only if > 0 (Barlow [1, Section
4, e.g., 3]). Some uninteresting calculations lead to

Re (X) lXl(loglXI)
as IXl

a+l

)2
+1 ass

(a + 1))2 (logl/t)_-log(log(logl/t)) as 0f(t)
2(p_ q

cOog / ) as

Theorem 1.5 implies that for a > 1,

(8.14) lim sup
e$0 xR,

t<T

(a + 1) m(a(t, x, e))
2(p q)2 e(log l/e) +1

Theorem 1.2 implies that for a > 2,

for allT>0 a.s.

(8.15)
where

-m (s < tlS- x } L’ /x R, >_ 0 a.s.,

(a + 1)) 2 (log 1/t)-x-"log(log(log l/t)).
2(p- q

The energetic reader may use the techniques of [19] to show that (8.15) holds
for a slightly larger class of a, as in (c), but unfortunately not for all a > 0.
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