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VECTOR FIELDS
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DAVID J. WELSH, JR.

1. Introduction

In a survey paper on G-structures in differential geometry [2], S.S. Chern
posed the question of when there is a non-zero vector field on a compact
manifold, that is parallel with respect to a Riemmanian metric. He observes
that the first two betti numbers must satisfy

b >_ 1 and b2 >_ b- 1,

and then conjectures that these conditions are not sufficient.
Further conditions on the betti numbers were given by Leon Karp [4], where

he also gave an example of a manifold that satisfied Chern’s criterion above,
plus Bott’s condition that the Pontryagin number vanish, yet admitted no
parallel vector fields under any metric.

Let M be a compact, connected manifold. The main aim of this paper is to
describe topologically those M which carry a nontrivial vector field that is
parallel with respect to a Riemannian metric. The simplest examples of such
manifolds are toil. The next simplest are Cartesian products of tori with
arbitrary manifolds. The principal result is that up to a finite cover, these are
all the possibilities. Sections 2 and 3 are devoted to proving this theorem:

THnOREM 1. Let M be a compact, connected manifold. Then the following
are equivalent:

(a) M has a vector field that is parallel with respect to some Riemannian
metric.

(b) Under a suitable metric, M has a Killing vector field v and a harmonic
1-form a such that a(v) q O.

(c) M is a fibre bundle over a torus, with finite structural group.

We have (a) (b) of course, since parallel vector fields are precisely those
that are both Killing and harmonic [9]. Section 2 shows that (b) = (c), and
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Section 3 proves that (c) (a). Section 4 discusses ramifications, especially in
regards to the cohomology. Section 5 considers the Riemannian case. 2

2. Construction of the fibre bundle

Let M be a connected, compact Riemannian manifold. It is a well known
fact that a(v) is a constant function of M, whenever v is a Killing vector field
and a is a harmonic 1-form. Indeed,

where -fro is the Lie derivative.

Notation. HR(X) (or just HR when X M) will denote the vector space of
harmonic 1-forms on the manifold X. Similar notation, with Z replacing R,
will be used for the subset whose elements yield integral values when integrated
on closed curves.

LEMMA 1. Hz is a lattice group of rank dim H < .
Proof. If M is orientable, Hs can be identified with the deRham cohomol-

ogy, and the lemma holds. If M is unorientable, there is a double cover

which is orientable. " is a local isometry, once M is given the pullback
metric. Thus ’* can be thought of as a map from HRM to HRM. Clearly, it is
an injection. Hence HM is finite dimensional. Furthermore, *HzM c HzM.

Let r be the nontrivial deck transformation of the cover, r2 is the identity
map on M, and so decomposes HRM i__nto the direct sum of the + 1 eigenspace
H. and the -1 eigenspace H;M. Note that H= *HM, i.e. the
harmonic 1-forms on M that are invariant under z are precisely those that are
pullbacks of 1-forms on M.

It does not follow that HzM admits such a decomposition. However, one
can consider the sublattice H2, consisting of all elements of the form 2a, where
a is in HzM. Write

2a (a + r’a) +(a r’a).

2I would like to thank the referee for pointing out that a weaker formulation of (a) (c)
follows from a result of D. Tischler (Topology, vol. 9, pp. 153-154).
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The first term lies in H}:= HM nHzM, and the second term lies in

H HM nHzM.
Ha__has the same rank as HzM, hence H is a lattice of maximal rank in

HM. Furthermore, H= *HzM. Thus

rank HzM rank H= dim HM dim HRM.

For the rest of this section, assume the existence of a killing vector field v, so
that a(v) is non-zero for some harmonic 1-form a. P will denote the
1-parameter group of isometries generated by v. The Riemannian metric on M
will be denoted by ( ). As usual, Io(M) is the identity component of the
group of isometries of M.

Let A be the usual Albanese torus HR/Hz. The Albanese map may be
defined as follows: choose a basis al,..., a, for Hz. Then any 1-form ,aJaj in

HR can be identified with a n-tuple (aX,..., an). For brevity, this may be
denoted (aJ)j_ or even (aJ)j. The set of these n-tuples may be considered
modulo Z’. On the form level, this corresponds to taking sums modulo
ffl’’’’’ fin"
Now fix a point e in M. Then given an arbitrary point y in M, let r/be a

path from e to y. Consider the n-tuple (aJ)j where

aJ= fnaj j= 1 n

The n-tuple only depends on the homotopy class of r/with fixed endpoints.
However, these classes differ by closed curves, on which the aj give integral
values when integrated. So the n-tuple is uniquely determined mod Z". Define
f(y) .’= (aJ)j. For the sake of convenience, the following notations are used:

j-1 n J

DEFINITION. C is the closure in I0(M) of the group P.
the isometry group of a compact manifold is itself compact.

C is a torus since

Notation. hl(C) fl(c(e)), where c is in C.

LEMMA 2. hl(exp o) (otj(v))j, o in the Lie algebra of C.
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Proof Let rl be the path in M whose value at time is exp(tv)(e), so
d/dt v((t)). Note that v is a killing vector field. Then

=%(0).

From the lemma it follows easily that h is a homomorphism. Moreover, its
restriction to P is locally injective, i.e., with discrete kernel. In fact the kernel
consists precisely of those elements v so that aj(v) is an integer for all j. In
particular, the image of C is non-trivial.

LEMMA 3. h defines an action of C on.A so that f is C-equivariant, where A
is identified with its translation group.

Proof

fl(c(y))= (fec(y) )Olj
j,l

j de(e) J

+

Notation. f is the image of h. From now on, h will be considered as a
map into f instead of the full Albanese torus.

This is our desired torus. Now the sought fibration can be defined. If f is of
dimension t, then it defines a subspace E of HR of dimension t. E N Hz is a
sublattice of Hz of rank t. Let fl,..., t be a basis for this sublattice.
Now define a map f: M f] in the same way that the Albanese map was

defined, using the basis fl,..., fit and t-tuples instead:

f(Y)= ( feY[i)iml
This is our desired fibration, as will be shown.
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Notation. h(c) f(c(e)).

Similar to before, h defines an action of C on f, for which f is C-equi-
variant. The context will make clear which action of C on fl is referred to" h is
associated to f, and h is associated to fl. As before, we can express h as
follows: h(exp v) (i(u))i=x t"

PROPOSITION 1. f is a submersion.

Proof. Let Wl,... w be vector fields dual to the fli. It is convenient to let t9
denote d/dtlt_ o. Let y be an arbitrary point in M. For an arbitrary index j,
consider a path r: [0, 1]--) M whose initial tangent vector Or/= wj. Let
’0t 71[0, t]. Then

i=l,...,t

([i(Wj)y)i-" (Wi,Wj>y)i.

f is a submersion if the matrix ((wi, Wjy)i,j is non-singular for all y in M.
This is true if the (fli)y are linearly independent at each point y in M.
A priori, they are only linearily independent as forms on M.

Suppose fl Ebb; vanishes at some y in M. Then fl(v) 0 for all Killing
vector fields v on M, since fl is harmonic. On the other hand, one can also
write fl EaJaj, where there is a Killing vector field v in the Lie algebra of C
so that a J etj(v). This follows from observing that h is a submersion from
C onto 2, which is generated by the fl, and then by applying lemma 2. Hence
we have

o

Thus aj(v)= 0 for all j; i.e., fl vanishes identically so all the b are zero,
Q.E.D.

Remark. The above proof also shows that the fig are orthogonal to the fibre
of f, since f.(v)= Z.fli(v)fli, which is zero if and only if fli(v)= 0 for all i.
This fact is used in Proposition 2, 5.

Notation.
nent of ker h.

H is the identity component of ker h; H is the identity compo-

LEMMA 4. H=H.
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Proof. For o sufficiently small, one can write

h (exp o) Eaj. (o) % Y’,b for some bi,

h(exp v)= fli(u)fli.

Large need not be considered, since H and H are the same if they share a
neighborhood of the identity.

If h(exp ) O, then %(o) 0 for all j. Hence fl(o) is zero for all i, since
the fl are linear combinations of the %. Thus h(exp ) O.
On the other hand, if h(expo)= O, then fl(o)= 0 for all i. This implies

that 0 Ebifli(v) E%(v)%(v) and so %(v) 0 for all j; i.e., hl(exp v) O.

COROLLARY 1. h is a surjection.

LEMMA 5. There is a Lie subalgebra -c LC so that
(a) LC ’ LH as Lie algebras, and
(b) T := exp," is a subtorus of C.

Proofi Let K be the kernel of the exponential map LC C. This is a
lattice of maximal rank, say k, in LC. K N LH is a sublattice of rank at
most k- t. So there exists linearily independent elements z,..., z of K
that do not lie in K C3 LH. Let T be the real span of these elements.
LC ’ LH as vector spaces, indeed as Lie algebras since C is abelian.
T :- exp oq" is an abelian group, of dimension t. Consider the 1-parameter

subgroups generated by the z. These are closed since the z lie in K, and they
generate T. T is then a toms, and in fact can be expressed as a quotient
group of (expsz} {expszt}.

Notation. G := H ( T =- ker(hlT ).

G is finite since both T and H are compact. The exact sequence of groups
0 G T f 0, where the first map is an inclusion and the second is
hiT, also represents T as a principle bundle over f with fibre G. Equivalently,
we can say that T is a regular finite coveting of f with deck transformation
group G.
Note that the action of T on M is almost free, i.e., with discrete isotropy

groups, since it is almost free on f and f is C-equivariant. Now we are in a
position to describe M. Let F be the fibre of f containing e. G fixes the fibres
of f, and so acts on F, say on the right.

Notation.

TF
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is the fibre bundle with fibre F and group G associated to the principle bundle
T [2. Recall that T aF is the quotient space of T F modulo the
equivalence relation that identifies (s, y) with (gs, yg-1), where g is in G. q,
is the quotient map.

THEOREM 1A.
commutes:

There is a diffeomorphism e such that the following diagram

TaF M

Proof Consider the evaluation map from T F to M; i.e., the pair (s, y)
is mapped to ys. Note that ys yoSo if and only if y yoSos- 1. But SoS-1 lies
in G if and only if y and Y0 lie in F. Thus (s, y) is equivalent to (s0, Y0) if and
only if they have the same image in M.
The evaluation map then descends to an injective map of T F into M;

call it ,I,. It is differentiable, since its lift, the evaluation map, is the restriction
of the action of T on M. xI, dearly carries the fibres of q, into the fibres of f,
whereupon we have the commutative diagram. Finally, to see that it is a
diffeomorphism, it suffices to note that xI, is an immersion when restricted to
each factor, and furthermore the image of each factor is transversal to the
other, Q.E.D.

3. The converse

The proof of Theorem 1 will be complete once the following converse is
proved:

THEOREM lB. Suppose M (not necessarily compact) is a fibre bundle over a
toms with finite structural group. Then under a suitable metric, M admits as
many parallel vector fields as the dimension of the toms.

Proof Let F denote an arbitrary fibre of the bundle, and G its structural
group. The bundle M---, f over the t-torus f can be associated with a
principle bundle G ---, T ---, [2. Since G is finite, T is also a torus, and f is the
quotient space T/G. Indeed, T is a covering torus of f.
M can be expressed as T F, and so it suffices to work with the latter. Put

a fiat metric on ; this induces a fiat metric on T, which is invariant under G.
Since G is finite, one can put a Riemannian metric on F that is invariant
under G. Give T F the product metric. The action of G on T F defined by
g(s, y).’= (gs, yg-1) is then an isometric action.
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The quotient map xI,. T F T F is a covering map, and so pushes the
metric on T F down to T F, making xI, a local isometry. Let (v ) be
linear independent vector fields on f. They lift to vector fields { v ) on T F
and (V’k’) on T F. These are parallel since both quotient maps are local
isometries, Q.E.D.

4. The cohomology of M

Because of Theorem 1, the study of compact manifolds which carry a
parallel vector field, under a suitable metric, is reduced to the study of fibre
bundles over toil with finite structural group. This result can be restated in
terms of a finite cover, which immediately yields a description of the cohomol-
ogy.

THEOREM 1’. A compact manifold M admits a parallel vector fieM under
same metric if and only ifM is diffeomorphic to (T F)/G where T is a torus,
F compact, and G a finite subgroup of T Diff(F) such that the first projection
on G is injective.

THEOREM 2. Let M, T, G, F be as in Theorem la or 1’. Then

H*M H*(T F)-- (H’T) (R)(H’F) .
Here (H’F) denotes that part of the cohomology that is fixed by G, where

the action of G on T F induces an action of G on F. The first isomorphism
is true in greater generality [3, Chapter 5]. The second is just the Kunneth
formula (for example, see [7]) along with the fact that translations do not affect
cohomology.
The group G in the theorem is also the holonomy group of the bundle. In

other words, the holonomy group is the structure group of the bundle. Another
observation is that M must contain the real cohomology of a torus. Finally,
Theorem 2 yields inequalities on the betti numbers of M.

COROLLARY 2 (LEON KARP). If a compact manifold admits a parallel vector
field, then its betti numbers satisfy b >_ 1; bk >_ bk_ bk_2, k > 1.

5. The Riemannian situation

Theorem 1 produces all compact differentiable manifolds which admit a
metric that carries a parallel vector field, but the construction does not yield all
such Riemannian manifolds. To see this, note that the resulting parallel vector
fields form a toral group of isometrics. As a counter example, one can
construct a compact Riemannian manifold with precisely one parallel vector
field, up to linear independence, and whose integral curves are not all closed.
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In fact, let M’ be the Riemannian product of R and S 2, and let L be the
group of isometrics generated by O, where " is translation of R by some
constant, and O is an irrational rotation of the sphere; i.e., 0 is not the
identity for all n : 0. Then M M’/L, the orbit space of L acting on M, is
naturally a Riemannian manifold. This is the desired counterexample.
The theorem can be used to characterize compact Riemannian manifolds

that carry a parallel vector field. However, the deRham decomposition (see [5;
V, 5, 6]) gives a more direct approach that requires only completeness instead
of compactness. The next theorem states the characterization and is followed
by a sketch of the proof, since the details are fairly straightforward [8]. Note
that Euclidean space is identified with its translation group.

THEOREM 3. A complete, connected Riemannian manifold M admits p lin-
early independent parallel vector fields if and only if there is a Riemannian
manifold M2, and a group L c R’ I(M2) such that

(a) the first projection pr[L is injective and
(b) the orbits of L in R’ M2 are discrete, so that M is isometric to
( x )/.

Sketch of proof Assume M has p lineadly indep.endent vector fields. It
suffices to assume p is maximal. The universal cover M factors into M0 Mx,
where M0 is isometric to Euclidean space. M0 -- Ex E2 where E Rp

corresponds to the lifts of parallel vector fields on M. It is hard not to see that
rtM is contained in I(Et) I(E2) I(M1) since the tangent spaces to E,
E2 and Mx are holonomy invariant.

Define K to be the kernel of the first projection restricted to rtM. Then
M/K is a coveting space of M, with deck transformation group

L qM/K image of rtM in I(E1).

Indeed, the image is in E1, where Euclidean space is identified with its
translation group. Then M/K factors into a Riemannian product of E with
some other manifold ME. Furthermore, L satisfies conditions (a) and (b).
As for the converse, note that any group of isometrics acting freely with

discrete orbits, acts in fact properly discontinuously.
The following is a list of observations pertaining to the above theorem

(details in [8]).
(1) y M2 is immersed injectively into M, orthogonal and transverse to

parallel vectors on M, for each y R’.
(2) If M is compact, rank L > p.
(3) When M is compact, the following are equivalent"

(a) the image of the first projection pr]L is discrete;
(b) the immersion in (1) is an embedding;
(c) M is compact.
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(4) The immersion M2 M induces an exact sequence 1 rlM2 rxM
L 1 where L is a free Z-module. If in addition M is compact,

then rank L codim M2 if and only if M2 is compact.

PROPOSITION 2. Let M be a compact, connected Riemannian manifold, all of
whose harmonic 1-forms are parallel ( e. g., M ofpositive semi-definite curvature,
like a sphere). Then M admits p parallel vector fields if and only if there exists a

manifold M2 and a group L, so M is isometric to (Rp M2)/L, where L lies in
Rp I(M2), and its first projection carries L injectively into a discrete lattice of
Rp. The quotient space is always a Riemmanian manifold if the rank of L p.

Proof Let A be the appropriate Albanese Torus for M, constructed in the
proof of Theorem 1. All the harmonic forms are parallel, so p dim A. From
the remark after the proposition in Section 2, it follows that the parallel vector
fields are orthogonal to the fibres of the Albanese map. Hence M2 is the fiber
of the Albanese map, and hence compact. Apply observation (3) above, m
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