MANIFOLDS THAT ADMIT PARALLEL VECTOR FIELDS¹

 \mathbf{BY}

DAVID J. WELSH, JR.

1. Introduction

In a survey paper on G-structures in differential geometry [2], S.S. Chern posed the question of when there is a non-zero vector field on a compact manifold, that is parallel with respect to a Riemmanian metric. He observes that the first two betti numbers must satisfy

$$b_1 \ge 1 \quad \text{and} \quad b_2 \ge b_1 - 1,$$

and then conjectures that these conditions are not sufficient.

Further conditions on the betti numbers were given by Leon Karp [4], where he also gave an example of a manifold that satisfied Chern's criterion above, plus Bott's condition that the Pontryagin number vanish, yet admitted no parallel vector fields under any metric.

Let M be a compact, connected manifold. The main aim of this paper is to describe topologically those M which carry a nontrivial vector field that is parallel with respect to a Riemannian metric. The simplest examples of such manifolds are tori. The next simplest are Cartesian products of tori with arbitrary manifolds. The principal result is that up to a finite cover, these are all the possibilities. Sections 2 and 3 are devoted to proving this theorem:

THEOREM 1. Let M be a compact, connected manifold. Then the following are equivalent:

- (a) M has a vector field that is parallel with respect to some Riemannian metric.
- (b) Under a suitable metric, M has a Killing vector field v and a harmonic 1-form α such that $\alpha(v) \neq 0$.
 - (c) M is a fibre bundle over a torus, with finite structural group.

We have $(a) \Rightarrow (b)$ of course, since parallel vector fields are precisely those that are both Killing and harmonic [9]. Section 2 shows that $(b) \Rightarrow (c)$, and

Received June 6, 1983.

¹This paper is an excerpt from the author's doctoral dissertation done at the University of Notre Dame, under the supervision of Professor Tadashi Nagano.

^{© 1986} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Section 3 proves that $(c) \Rightarrow (a)$. Section 4 discusses ramifications, especially in regards to the cohomology. Section 5 considers the Riemannian case.²

2. Construction of the fibre bundle

Let M be a connected, compact Riemannian manifold. It is a well known fact that $\alpha(v)$ is a constant function of M, whenever v is a Killing vector field and α is a harmonic 1-form. Indeed,

$$0 = \mathcal{L}_{n}\alpha = d \circ \iota_{n}(\alpha) + \iota_{n} \circ d\alpha = d(\alpha(v)),$$

where \mathcal{L}_{v} is the Lie derivative.

Notation. $H_R(X)$ (or just H_R when X = M) will denote the vector space of harmonic 1-forms on the manifold X. Similar notation, with Z replacing R, will be used for the subset whose elements yield integral values when integrated on closed curves.

Lemma 1. H_Z is a lattice group of rank = dim $H_R < \infty$.

Proof. If M is orientable, H_R can be identified with the deRham cohomology, and the lemma holds. If M is unorientable, there is a double cover

$$\overline{M} \stackrel{\zeta}{\to} M$$

which is orientable. ζ is a local isometry, once \overline{M} is given the pullback metric. Thus ζ^* can be thought of as a map from H_RM to $H_R\overline{M}$. Clearly, it is an injection. Hence H_RM is finite dimensional. Furthermore, $\zeta^*H_ZM \subset H_Z\overline{M}$.

Let τ be the nontrivial deck transformation of the cover. τ^2 is the identity map on M, and so decomposes $H_R\overline{M}$ into the direct sum of the +1 eigenspace $H_R^+\overline{M}$ and the -1 eigenspace $H_R^-\overline{M}$. Note that $H_R^+\overline{M} = \zeta^*H_RM$, i.e. the harmonic 1-forms on \overline{M} that are invariant under τ are precisely those that are pullbacks of 1-forms on M.

It does not follow that $H_Z\overline{M}$ admits such a decomposition. However, one can consider the sublattice H_2 , consisting of all elements of the form 2α , where α is in $H_Z\overline{M}$. Write

$$2\alpha = (\alpha + \tau^*\alpha) + (\alpha - \tau^*\alpha).$$

 $^{^2}$ I would like to thank the referee for pointing out that a weaker formulation of (a) \Rightarrow (c) follows from a result of D. Tischler (Topology, vol. 9, pp. 153–154).

The first term lies in $H_Z^+ := H_R^+ \overline{M} \cap H_Z \overline{M}$, and the second term lies in $H_Z^- := H_R^- \overline{M} \cap H_Z \overline{M}$.

 H_2 has the same rank as $H_Z\overline{M}$, hence H_Z^+ is a lattice of maximal rank in $H_R^+\overline{M}$. Furthermore, $H_Z^+ = \zeta^*H_ZM$. Thus

rank
$$H_ZM = \text{rank } H_Z^+ = \dim H_R^+ \overline{M} = \dim H_R M$$
.

For the rest of this section, assume the existence of a killing vector field v, so that $\alpha(v)$ is non-zero for some harmonic 1-form α . P will denote the 1-parameter group of isometries generated by v. The Riemannian metric on M will be denoted by $\langle \ , \ \rangle$. As usual, $I_0(M)$ is the identity component of the group of isometries of M.

Let A be the usual Albanese torus H_R/H_Z . The Albanese map may be defined as follows: choose a basis $\alpha_1, \ldots, \alpha_n$ for H_Z . Then any 1-form $\sum a^j \alpha_j$ in H_R can be identified with a n-tuple (a^1, \ldots, a^n) . For brevity, this may be denoted $(a^j)_{j=1,\ldots,n}$ or even $(a^j)_j$. The set of these n-tuples may be considered modulo Z^n . On the form level, this corresponds to taking sums modulo $\alpha_1, \ldots, \alpha_n$.

Now fix a point e in M. Then given an arbitrary point y in M, let η be a path from e to y. Consider the n-tuple $(a^j)_j$ where

$$a^j = \int_{\eta} \alpha_j, \quad j = 1, \dots, n.$$

The *n*-tuple only depends on the homotopy class of η with fixed endpoints. However, these classes differ by closed curves, on which the α_j give integral values when integrated. So the *n*-tuple is uniquely determined mod Z^n . Define $f_1(y) := (a^j)_j$. For the sake of convenience, the following notations are used:

$$f_1(y) = \left(\int_{\eta} \alpha_j\right)_{j=1,\ldots,n} \equiv \left(\int_e^y \alpha_j\right)_j \equiv \Sigma\left(\int_{\eta} \alpha_j\right) \alpha_j \pmod{\alpha_j}.$$

DEFINITION. C is the closure in $I_0(M)$ of the group P. C is a torus since the isometry group of a compact manifold is itself compact.

Notation. $h_1(c) := f_1(c(e))$, where c is in C.

LEMMA 2. $h_1(\exp v) = (\alpha_j(v))_j$, v in the Lie algebra of C.

Proof. Let η be the path in M whose value at time t is $\exp(tv)(e)$, so $d\eta/dt = v(\eta(t))$. Note that v is a killing vector field. Then

$$h_1(\exp v) = \left(\int_{\eta} \alpha_j\right)_{j=1,\dots,n}$$

$$= \left(\int_0^1 \eta^* \alpha_j\right)_j$$

$$= \left(\alpha_j (d\eta/dt)\right)_j$$

$$= \alpha_i(v).$$

From the lemma it follows easily that h_1 is a homomorphism. Moreover, its restriction to P is locally injective, i.e., with discrete kernel. In fact the kernel consists precisely of those elements v so that $\alpha_j(v)$ is an integer for all j. In particular, the image of C is non-trivial.

Lemma 3. h_1 defines an action of C on A so that f_1 is C-equivariant, where A is identified with its translation group.

Proof.

$$f_1(c(y)) = \left(\int_e^{c(y)} \alpha_j\right)_{j=1,\dots,n}$$

$$= \left(\int_e^{c(e)} \alpha_j\right)_j + \left(\int_{c(e)}^{c(y)} \alpha_j\right)_j$$

$$= h_1(c) + f_1(y).$$

Notation. Ω is the image of h_1 . From now on, h_1 will be considered as a map into Ω instead of the full Albanese torus.

This is our desired torus. Now the sought fibration can be defined. If Ω is of dimension t, then it defines a subspace E of H_R of dimension t. $E \cap H_Z$ is a sublattice of H_Z of rank t. Let β_1, \ldots, β_t be a basis for this sublattice.

Now define a map $f: M \to \Omega$ in the same way that the Albanese map was defined, using the basis β_1, \ldots, β_t and t-tuples instead:

$$f(y) = \left(\int_e^y \beta_i\right)_{i=1,\ldots,t} \equiv \sum \left(\int_e^y \beta_i\right) \beta_i.$$

This is our desired fibration, as will be shown.

Notation. h(c) = f(c(e)).

Similar to before, h defines an action of C on Ω , for which f is C-equivariant. The context will make clear which action of C on Ω is referred to: h is associated to f, and h_1 is associated to f_1 . As before, we can express h as follows: $h(\exp v) = (\beta_i(v))_{i=1,\dots,f}$.

PROPOSITION 1. f is a submersion.

Proof. Let w_1, \ldots, w_t be vector fields dual to the β_i . It is convenient to let ∂ denote $d/dt|_{t=0}$. Let y be an arbitrary point in M. For an arbitrary index j, consider a path $\eta:[0, 1] \to M$ whose initial tangent vector $\partial \eta = w_j$. Let $\eta_t := \eta[[0, t]$. Then

$$f_{*}(w_{j})_{y} = \left(\partial \int_{\eta_{t}} \beta_{i}\right)_{i=1,...,t} = \left(\partial \int_{0}^{t} \eta^{*} \beta_{i}\right)_{i} = \left(\beta_{i}(\partial \eta)_{y}\right)_{i}$$
$$= \left(\beta_{i}(w_{j})_{y}\right)_{i} = \left(\langle w_{i}, w_{j} \rangle_{y}\right)_{i}.$$

f is a submersion if the matrix $(\langle w_i, w_j \rangle_y)_{i,j}$ is non-singular for all y in M. This is true if the $(\beta_i)_y$ are linearly independent at each point y in M. A priori, they are only linearly independent as forms on M.

Suppose $\beta = \sum b^i \beta_i$ vanishes at some y in M. Then $\beta(v) = 0$ for all Killing vector fields v on M, since β is harmonic. On the other hand, one can also write $\beta = \sum a^j \alpha_j$, where there is a Killing vector field v in the Lie algebra of C so that $a^j = \alpha_j(v)$. This follows from observing that h_1 is a submersion from C onto Ω , which is generated by the β_i , and then by applying lemma 2. Hence we have

$$0 = \beta(v) = \Sigma(\alpha_i(v)) \cdot \alpha(v).$$

Thus $\alpha_j(v) = 0$ for all j; i.e., β vanishes identically so all the b^i are zero, Q.E.D.

Remark. The above proof also shows that the β_i are orthogonal to the fibre of f, since $f_*(v) = \sum \beta_i(v)\beta_i$, which is zero if and only if $\beta_i(v) = 0$ for all i. This fact is used in Proposition 2, §5.

Notation. H_1 is the identity component of ker h_1 ; H is the identity component of ker h.

LEMMA 4. $H = H_1$.

Proof. For v sufficiently small, one can write

$$h_1(\exp v) = \sum \alpha_j(v) \alpha_j = \sum b^i \beta_i$$
 for some b^i ,
 $h(\exp v) = \sum \beta_i(v) \beta_i$.

Large v need not be considered, since H and H_1 are the same if they share a neighborhood of the identity.

If $h_1(\exp v) = 0$, then $\alpha_j(v) = 0$ for all j. Hence $\beta_i(v)$ is zero for all i, since the β_i are linear combinations of the α_i . Thus $h(\exp v) = 0$.

On the other hand, if $h(\exp v) = 0$, then $\beta_i(v) = 0$ for all i. This implies that $0 = \sum b^i \beta_i(v) = \sum \alpha_i(v) \alpha_i(v)$ and so $\alpha_i(v) = 0$ for all j; i.e., $h_1(\exp v) = 0$.

COROLLARY 1. h is a surjection.

LEMMA 5. There is a Lie subalgebra $\mathcal{F} \subset LC$ so that

- (a) $LC = \mathcal{T} \oplus LH$ as Lie algebras, and
- (b) $T := \exp \mathcal{F}$ is a subtorus of C.

Proof. Let K be the kernel of the exponential map $LC \to C$. This is a lattice of maximal rank, say k, in LC. $K \cap LH$ is a sublattice of rank at most k-t. So there exists t linearly independent elements z_1, \ldots, z_t of K that do not lie in $K \cap LH$. Let T be the real span of these elements. $LC = \mathcal{F} \oplus LH$ as vector spaces, indeed as Lie algebras since C is abelian.

 $T := \exp \mathcal{F}$ is an abelian group, of dimension t. Consider the 1-parameter subgroups generated by the z_i . These are closed since the z_i lie in K, and they generate T. T is then a torus, and in fact can be expressed as a quotient group of $\{\exp sz_1\} \times \ldots \times \{\exp sz_t\}$.

Notation.
$$G := H \cap T \equiv \ker(h|T)$$
.

G is finite since both T and H are compact. The exact sequence of groups $0 \to G \to T \to \Omega \to 0$, where the first map is an inclusion and the second is h|T, also represents T as a principle bundle over Ω with fibre G. Equivalently, we can say that T is a regular finite covering of Ω with deck transformation group G.

Note that the action of T on M is almost free, i.e., with discrete isotropy groups, since it is almost free on Ω and f is C-equivariant. Now we are in a position to describe M. Let F be the fibre of f containing e. G fixes the fibres of f, and so acts on F, say on the right.

Notation.

$$T \times_G F \stackrel{\phi}{\to} \Omega$$

is the fibre bundle with fibre F and group G associated to the principle bundle $T \to \Omega$. Recall that $T \times_G F$ is the quotient space of $T \times F$ modulo the equivalence relation that identifies (s, y) with (gs, yg^{-1}) , where g is in G. ϕ is the quotient map.

Theorem 1a. There is a diffeomorphism Ψ such that the following diagram commutes:

$$T \times_G F \stackrel{\Psi}{\to} M$$

$$\phi \searrow \qquad \qquad \swarrow f$$

$$\Omega$$

Proof. Consider the evaluation map from $T \times F$ to M; i.e., the pair (s, y) is mapped to ys. Note that $ys = y_0s_0$ if and only if $y = y_0s_0s^{-1}$. But s_0s^{-1} lies in G if and only if y and y_0 lie in F. Thus (s, y) is equivalent to (s_0, y_0) if and only if they have the same image in M.

The evaluation map then descends to an injective map of $T \times_G F$ into M; call it Ψ . It is differentiable, since its lift, the evaluation map, is the restriction of the action of T on M. Ψ clearly carries the fibres of ϕ into the fibres of f, whereupon we have the commutative diagram. Finally, to see that it is a diffeomorphism, it suffices to note that Ψ is an immersion when restricted to each factor, and furthermore the image of each factor is transversal to the other, Q.E.D.

3. The converse

The proof of Theorem 1 will be complete once the following converse is proved:

THEOREM 1B. Suppose M (not necessarily compact) is a fibre bundle over a torus with finite structural group. Then under a suitable metric, M admits as many parallel vector fields as the dimension of the torus.

Proof. Let F denote an arbitrary fibre of the bundle, and G its structural group. The bundle $M \to \Omega$ over the t-torus Ω can be associated with a principle bundle $G \to T \to \Omega$. Since G is finite, T is also a torus, and Ω is the quotient space T/G. Indeed, T is a covering torus of Ω .

M can be expressed as $T \times_G F$, and so it suffices to work with the latter. Put a flat metric on Ω ; this induces a flat metric on T, which is invariant under G. Since G is finite, one can put a Riemannian metric on F that is invariant under G. Give $T \times F$ the product metric. The action of G on $T \times F$ defined by $g(s, y) := (gs, yg^{-1})$ is then an isometric action.

The quotient map $\Psi: T \times F \to T \times_G F$ is a covering map, and so pushes the metric on $T \times F$ down to $T \times_G F$, making Ψ a local isometry. Let $\{v_i\}$ be t linear independent vector fields on Ω . They lift to vector fields $\{v_i'\}$ on $T \times F$ and $\{v_k''\}$ on $T \times_G F$. These are parallel since both quotient maps are local isometries, Q.E.D.

4. The cohomology of M

Because of Theorem 1, the study of compact manifolds which carry a parallel vector field, under a suitable metric, is reduced to the study of fibre bundles over tori with finite structural group. This result can be restated in terms of a finite cover, which immediately yields a description of the cohomology.

THEOREM 1'. A compact manifold M admits a parallel vector field under same metric if and only if M is diffeomorphic to $(T \times F)/G$ where T is a torus, F compact, and G a finite subgroup of $T \times \text{Diff}(F)$ such that the first projection on G is injective.

THEOREM 2. Let M, T, G, F be as in Theorem 1a or 1'. Then

$$H^*M \simeq H^*(T \times F)^G \simeq (H^*T) \otimes (H^*F)^G$$
.

Here $(H*F)^G$ denotes that part of the cohomology that is fixed by G, where the action of G on $T \times F$ induces an action of G on F. The first isomorphism is true in greater generality [3, Chapter 5]. The second is just the Kunneth formula (for example, see [7]) along with the fact that translations do not affect cohomology.

The group G in the theorem is also the holonomy group of the bundle. In other words, the holonomy group is the structure group of the bundle. Another observation is that M must contain the real cohomology of a torus. Finally, Theorem 2 yields inequalities on the betti numbers of M.

COROLLARY 2 (LEON KARP). If a compact manifold admits a parallel vector field, then its betti numbers satisfy $b_1 \ge 1$; $b_k \ge b_{k-1} - b_{k-2}$, k > 1.

5. The Riemannian situation

Theorem 1 produces all compact differentiable manifolds which admit a metric that carries a parallel vector field, but the construction does not yield all such Riemannian manifolds. To see this, note that the resulting parallel vector fields form a toral group of isometries. As a counter example, one can construct a compact Riemannian manifold with precisely one parallel vector field, up to linear independence, and whose integral curves are not all closed.

In fact, let M' be the Riemannian product of \mathbb{R} and S^2 , and let L be the group of isometries generated by $\zeta \times \rho$, where ζ is translation of \mathbb{R} by some constant, and ρ is an irrational rotation of the sphere; i.e., ρ^n is not the identity for all $n \neq 0$. Then M := M'/L, the orbit space of L acting on M, is naturally a Riemannian manifold. This is the desired counterexample.

The theorem can be used to characterize compact Riemannian manifolds that carry a parallel vector field. However, the deRham decomposition (see [5; V, §5, 6]) gives a more direct approach that requires only completeness instead of compactness. The next theorem states the characterization and is followed by a sketch of the proof, since the details are fairly straightforward [8]. Note that Euclidean space is identified with its translation group.

THEOREM 3. A complete, connected Riemannian manifold M admits p linearly independent parallel vector fields if and only if there is a Riemannian manifold M_2 , and a group $L \subset \mathbb{R}^p \times I(M_2)$ such that

- (a) the first projection pr|L is injective and
- (b) the orbits of L in $\mathbb{R}^p \times M_2$ are discrete, so that M is isometric to $(\mathbb{R}^p \times M_2)/L$.

Sketch of proof. Assume M has p linearily independent vector fields. It suffices to assume p is maximal. The universal cover \tilde{M} factors into $M_0 \times M_1$, where M_0 is isometric to Euclidean space. $M_0 \simeq E_1 \times E_2$ where $E_1 \simeq \mathbf{R}^p$ corresponds to the lifts of parallel vector fields on M. It is hard not to see that $\pi_1 M$ is contained in $I(E_1) \times I(E_2) \times I(M_1)$, since the tangent spaces to E_1 , E_2 and M_1 are holonomy invariant.

Define K to be the kernel of the first projection restricted to $\pi_1 M$. Then \tilde{M}/K is a covering space of M, with deck transformation group

$$L = \pi_1 M / K \simeq \text{image of } \pi_1 M \text{ in } I(E_1).$$

Indeed, the image is in E_1 , where Euclidean space is identified with its translation group. Then \tilde{M}/K factors into a Riemannian product of E_1 with some other manifold M_2 . Furthermore, L satisfies conditions (a) and (b).

As for the converse, note that any group of isometries acting freely with discrete orbits, acts in fact properly discontinuously.

The following is a list of observations pertaining to the above theorem (details in [8]).

- (1) $y \times M_2$ is immersed injectively into M, orthogonal and transverse to parallel vectors on M, for each $y \in \mathbb{R}^p$.
- (2) If M is compact, rank $L \ge p$.
- (3) When M is compact, the following are equivalent:
 - (a) the image of the first projection pr|L is discrete;
 - (b) the immersion in (1) is an embedding;
 - (c) M_2 is compact.

(4) The immersion $M_2 \to M$ induces an exact sequence $1 \to \pi_1 M_2 \to \pi_1 M$ $\to L \to 1$ where L is a free **Z**-module. If in addition M is compact,

then rank $L = \text{codim } M_2 \text{ if and only if } M_2 \text{ is compact.}$

PROPOSITION 2. Let M be a compact, connected Riemannian manifold, all of whose harmonic 1-forms are parallel (e.g., M of positive semi-definite curvature, like a sphere). Then M admits p parallel vector fields if and only if there exists a manifold M_2 and a group L, so M is isometric to $(\mathbf{R}^p \times M_2)/L$, where L lies in $\mathbf{R}^p \times I(M_2)$, and its first projection carries L injectively into a discrete lattice of \mathbf{R}^p . The quotient space is always a Riemmanian manifold if the rank of L = p.

Proof. Let A be the appropriate Albanese Torus for M, constructed in the proof of Theorem 1. All the harmonic forms are parallel, so $p = \dim A$. From the remark after the proposition in Section 2, it follows that the parallel vector fields are orthogonal to the fibres of the Albanese map. Hence M_2 is the fiber of the Albanese map, and hence compact. Apply observation (3) above.

BIBLIOGRAPHY

- GLEN E. BREDON, Introduction to compact transformation groups, Academic Press, New York, 1972.
- 2. S. S. CHERN, Geometry of G-structures, Bull. Amer. Math. Soc., vol. 72 (1966), pp. 167-219.
- 3. A. GROTHENDIECK, Sur quelques points d'algèbre homolique, Tôhoku Math. J. (2), vol. 9 (1957), pp. 119–221.
- 4. LEON KARP, Parallel vector fields and the topology of manifolds, Bull. Amer. Math. Soc., vol. 83 (1977), pp. 1051-1053.
- 5. SHOSHICHI KOBAYASHI AND KATSUMI NOMIZU, Foundations of differentiable geometry, vol. 1, Interscience, New York, 1963.
- 6. H. BLAINE LAWSON, JR. AND SHING TUNG YAU, Compact manifolds of non-positive curvature, J. Differential Geom, vol. 7 (1972), pp. 211-228.
- 7. JAMES W. VICK, Homology theory, Academic Press, New York, 1973.
- 8. DAVID J. WELSH, JR., Manifolds that admit parallel vector fields, Thesis, University of Notre Dame, 1982.
- K. YANO AND S. BOCHNER, Curvature and Betti Numbers, Ann. of Math. Studies, No. 32, Princeton University Press, 1953.

University of Missouri-St. Louis St. Louis, Missouri