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The origin of this note is the observation that somewhat stronger results can
be obtained from certain proofs of theorems yielding the applicability of
Dehn’s algorithm for the word problem to one or another class of groups. This
has undoubtedly been noticed by many, but never stated, because the stronger
results have less elegant formulations and no known additional applications.
However, some of their analogues for groups in larger classes do have
additional applications, allowing simplifications of proofs and algorithms. The
reader is assumed to be familiar with Chapter V of [4]. The smallest number of
pieces into which a word w can be decomposed will be denoted by II w ll. Pieces
will mean non-empty pieces. Diagrams of minimal R-sequences will be called
minimal R-diagrams. Words will mean cyclic words whenever possible.
We now define various classes of Dehn presentations. Let G (X; R),

where R is symmetrized.

DEFINITION 1. G is a weak, strict, metric Dehn presentation iff given any
freely reduced word w 1 in G, there exist a subword s of w and a word
such that s? R and sl > tl.

DEFINITION 2. G is a strong, strict, metric Dehn presentation iff given any
freely reduced word w 1 in G and any minimal R-diagram M for w, there
exist boundary region D and words s, such that s is a label of tgD, s is the
label of OD N OM, a consecutive part of M, and sl > It I.

Definitions 3 and 4 are obtained from Definitions 1 and 2, respectively, by
omitting "strict" and replacing > by > ".

Definitions 5, 6, 7 and 8 are obtained from Definitions 1, 2, 3 and 4,
respectively, by changing "metric" to "non-metric" and "1 to "II I1"-

Conjecture.
non-recursive.

The finitely presented subclass of each of the above classes is
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It is clear that every strong Dehn presentation is also a corresponding weak
Dehn presentation and that Dehn’s algorithm solves the word problem for all
weak, strict, metric Dehn presentations with finite R or finite X and recursive
R. We now define three strong Dehn algorithms which can be applied to the
classes of presentations given by Definitions 4, 6 and 8, but not to those given
by Definitions 3, 5 and 7.

DEFINITION 9. The strong, metric Dehn algorithm consists in starting with
a word w, repeatedly freely reducing and replacing in all possible ways
subwords s by words whenever s[ R and sl >- It I, concluding that w 1
if we get the empty word and concluding that w #: I if the set of freely reduced
words so obtained is finite and closed under all such replacements, followed by
free reductions, but does not contain the empty word.

DEFINITION 10. The strong, strict, non-metric Dehn algorithm consists in
decomposing a given freely reduced word w into products of pieces in all
possible ways. For each such decomposition a, we look for an integer n, a
subword s of w and a word such that s[ R, a decomposes s into n pieces,
s begins and ends between pieces of a and can be decomposed into fewer
than n pieces. If there are no such n, s, for any a, we conclude that w #: 1. If
there are, we replace s by and freely reduce. Let w xsy and let x1, 1, yl be
the uncancelled subwords of x, t, y, respectively. Starting with each decom-
position fl of Xlty which is compatible with a, i.e., which coincides with a on
x, yx and decomposes tl into fewer than n pieces, repeat the procedure
described for a, etc. If the empty word occurs, conclude that w 1. If
repetitions yield neither new words nor new decompositions of old words, but
the empty word has not occurred, conclude that w 1.

Definition 11 is obtained from Definition 10 by deleting "strict" and
changing "fewer than n pieces" to "fewer than n / 1 pieces".

It is not difficult to show that unlike Dehn’s algorithm, none of the strong
Dehn algorithms just defined works for all the corresponding finite weak Dehn
presentations. Consider, for example,

G ai, bi, ci, di; ibiai+l, bicidibi+l,

where subscripts are taken mod 4 and 0,1, 2, 3.

PROPOSITION. G is a weak, metric Dehn presentation to which the strong,
metric Dehn algorithm is not applicable.

Proof. It is easily seen that blb2b3bo 1 in G. However, if we start with
this word, the strong, metric Dehn algorithm yields the following set of freely
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reduced words:

S ( blb2b3bo, Cldlb3bO, blb2c3d blc2d2bO, CldlC3d codob2b codoc2d2 }.

S is closed under all replacements of at least half of a defining relator by the
inverse of the remainder.
To complete the proof, let M be a minimal R-diagram for a word w. If OM

is simple, consider cases based first on the number (either 0,1, or >_ 2) of M’s
regions with defining relators of length 4, and then on the total number (either
1, 2, 3, 4, or >_ 5) of M’s regions. A routine analysis suffices in each case. For
arbitrary tgM, we apply Lemma 4.2 in Chapter V of [4].

Problem. In each class of weak Dehn presentations, find one with the
smallest possible number of generators or defining relators, whose word
problem cannot be solved by the corresponding strong Dehn algorithm.

Question.
tions?

Is the word problem solvable for all finite weak Dehn presenta-

It turns out that with an appropriate assumption on X or R, each strong
Dehn algorithm solves the word problem for the corresponding class of strong
Dehn presentations. We confine ourselves to a precise statement and proof of
this fact for the largest class, that of strong, non-metric Dehn presentations.
The others can be handled similarly.

Remark. No Dehn algorithm can ever falsely conclude that w 1, since
every word it yields is conjugate to the one with which it starts.

LEMMA. When applied to a word w in a finitely related group G, the strong
non-metric Dehn algorithm terminates in a finite number of steps.

Proof The number of pieces in any decomposition of any word obtained
will be _< wl. The finiteness of R insures that the number of pieces in G is
finite, say equal to P. Therefore, the number of decompositions obtained will
be < (P + 1)lwl.

THEOREM. The strong, non-metric Dehn algorithm solves the word problem
for all finitely related strong, non-metric Dehn presentations.

Proof. In view of the remark and lemma, we need only prove tht the given
algorithm never falsely concludes that w : 1. Assume that it does. Let M be a
minimal R-diagram for w. Let a be a decomposition of w based on M, i.e.,
one obtained by decomposing the labels of M’s boundary edges into products
of minimal numbers of pieces. If we apply the algorithm to a, instead of to all
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possible decompositions of w, it will again fail to yield the empty word. Let
n(a) be the number of regions of M. Among all the decompositions based on
minimal R-diagrams, such that the algorithm does not yield the empty word
when applied to them, consider one, say a, with the smallest possible n(a). By
definition, there are words s, and a boundary region D of M such that si is a
label of OD, S is a label of OD OM, a consecutive part of M, and
Ilsll >- Iltll. Therefore, the word w’ obtained from w by substituting for s and
freely reducing has a minimal R-diagram M’ which can be gotten from M by
deleting D and possibly identifying parts of edges and then deleting pairs of
other regions. Thus M’ has at most n(a) 1 regions. Let fl be a decomposi-
tion of w’ based on M’ which is compatible with a. If we apply the algorithm
to fl, it will not yield the empty word, since it yields fl when applied to a. But
this contradicts our choice of a.

COROLLARY. The strong, non-metric Dehn algorithm solves the wordproblem
for all finitely related Dehn presentations satisfying C(6) or C(4)& T(4).

Proof. A careful reading of proofs in [3] or Chapter V of [4] shows that
every presentation satisfying C(6) or C(4)& T(4) is a strong, non-metric Dehn
presentation. This can also be extracted from [2] and Lemma 4.2 in Chapter V
of [4]. For the C(6) case, it can be found in [1], but in a combinatorial guise.

In conclusion, we note that the solvability of the word problem for all
finitely related presentations satisfying C(6) or C(4)& T(4) by means of a
more complicated algorithm was first proven in [3].

LITERATURE

1. A.V. GLADKIY, On groups with k-reducible bases, Sibirsk. Math. J., vol. 2 (1961), pp. 366-383.
2. L. GREENDLINGER and M. GREENDLINGER, On three of Lyndon’s results about maps, Contemp.

Math., vol. 33 (1984), pp. 212-213.
3. R.C. LYNDON, On Dehn’s algorithm, Math. Ann., vol. 166 (1966), pp. 208-228.
4. R.C. LYNDON and P.E. SCHUPP, Combinatorial group theory, Spdnger-Vedag, Berlin, 1977.

SHUYA STATE FURMANOV PEDAGOGICAL INSTITUTE
SHUYA, USSR


