DEFINABLE SUBGROUPS OF THE PRODUCT OF TWO GROUPS

BY

Ali Nesin

In Memoriam W.W. Boone

In this article we investigate definable subgroups of the product of two groups. Our language contains only function symbols together with symbols of the theory of groups. Such a language can be realized in the product of two structures in an obvious way. For the sake of simplicity a structure for such a language will be called a group. In this article definable will always mean definable with parameters. If G and H are two groups $p r_{1}$ (resp. $p r_{2}$) will denote the obvious projection map $G \times H \rightarrow G$ (resp. $G \times H \rightarrow H$). We prove the following result:

Theorem. Let G and H be two groups. Let K be a definable subgroup of $G \times H$. Then there are $A \triangleleft \operatorname{pr}(K), B \triangleleft \operatorname{pr}(K)$ and g_{1}, \ldots, g_{n} in G, h_{1}, \ldots, h_{n} in H such that
(1) A and B are definable subgroups of G and H respectively,
(2) $A \times B \subseteq K$ and $[K: A \times B]$ is finite,
(3) $K=(A \times B) \cup\left(g_{1} A \times h_{1} B\right) \cup \cdots \cup\left(g_{n} A \times h_{n} B\right)$,
(4) $g_{i} A \cap g_{j} A=h_{i} B \cap h_{j} B=\varnothing$ if $i \neq j$.

Furthermore such A and B are unique.
If a group G has a minimal definable subgroup of finite index then it is unique. We call it the connected component of G and denote it G^{0}. If G is ω-stable or ω_{0}-categorical and stable then the connected component always exists (see [1]).

Corollary. Suppose G^{0}, H^{0} exist. Then $(G \times H)^{0}$ exists and $G^{0} \times H^{0} \subseteq$ $(G \times H)^{0}$.

Proof. Let C be a definable subgroup of $G \times H$ of finite index. By the theorem there are definable subgroups A and B of G and H respectively such that $A \times B \subseteq C$ and $[C: A \times B]$ is finite. Therefore $[G \times H: A \times B]$, and hence also $[G: A],[H: B]$ are finite. This shows that $G^{0} \subseteq A, H^{0} \subseteq B$, so

[^0]$G^{0} \times H^{0} \subseteq C$. We showed that $G^{0} \times H^{0}$ is included in every definable subgroup of finite index of $G \times H$. Hence $(G \times H)^{0}$ exists and $G^{0} \times H^{0} \subseteq$ $(G \times H)^{0}$.

In the above corollary the equality does not always hold. Take

$$
G=\left(\underset{I}{\oplus} Z_{p}\right) \oplus Z_{q}, \quad H=\left(\underset{J}{\oplus} Z_{q}\right) \oplus Z_{p}
$$

where p and q are two distinct prime numbers, Z_{p}, Z_{q} are cyclic groups of order p and q respectively, and I and J are infinite sets. Then

$$
G^{0}=\underset{I}{\oplus} Z_{p} \neq G, \quad H^{0}=\underset{J}{\oplus} Z_{q} \neq H
$$

but $(G \times H)^{0}=G \times H$.
The following is immediate from the theorem.
Corollary. If G is an infinite group then the diagonal subgroup of $G \times G$ is not definable.

Before proving the theorem we would like to thank Simon Thomas for several very helpful suggestions.

Proof of the theorem. By Feferman-Vaught (see [2]), K is a finite union of sets of the form $A \times B$ where $A \subseteq G, B \subseteq H$ are definable subsets. By taking a (definable) subdivision of these subsets if necessary we may suppose that A 's and B 's are disjoint if they are distinct. Write

$$
K=\left(A_{1} \times B_{1}\right) \cup \cdots \cup\left(A_{n} \times B_{n}\right)
$$

where $A_{i} \subseteq G, B_{j} \subseteq H$ are definable subsets and for all i, j either $A_{i}=A_{j}$ or $A_{i} \cap A_{j}=\varnothing$; similarly for B 's, and $\left(A_{i} \times B_{i}\right) \cap\left(A_{j} \times B_{j}\right)=\varnothing$ if $i \neq j$.

The identity element $(1,1)$ of K is in one of the $A_{i} \times B_{i}$'s. Without loss of generality we may suppose that $(1,1) \in A_{1} \times B_{1}$. Notice that $\left(A_{i} \times B_{i}\right) \cap K$ $\neq \varnothing$ iff $A_{i} \times B_{i} \subseteq K$.

Claim 1. If two of $A_{1} \times B_{j}, A_{i} \times B_{1}, A_{i} \times B_{j}$ are in K then the third one is also in K.

Proof. First, suppose $A_{1} \times B_{j}$ and $A_{i} \times B_{1}$ are in K. Let $a \in A_{i}$ and $b \in B_{j}$. Then $(a, 1),(1, b)$ are in K, so their product (a, b) is also in K. Hence $K \cap\left(A_{i} \times B_{j}\right)$ is not empty, i.e., $A_{i} \times B_{j} \subseteq K$. Suppose now $A_{i} \times B_{1}$ and $A_{i} \times B_{j}$ are in K. Let a, b be as above. If $(1, b)$ is not in K, then $(a, b)=$ $(a, 1)(1, b) \in K^{c} \cap\left(A_{i} \times B_{j}\right)$, i.e., $A_{i} \times B_{j}$ is in K^{c}, a contradiction. So $(1, b) \in K$, i.e., $A_{i} \times B_{j} \subseteq K$. The third case is similar.

Let $I=\left\{i / A_{i} \times B_{1} \subseteq K\right\}$ and $J=\left\{j / A_{1} \times B_{j} \subseteq K\right\}$. Set $A=\cup_{I} A_{i}$, $B=\bigcup_{J} B_{j}$. Then by Claim 1, $A_{i} \times B_{j} \subseteq K$ for all i in I, j in J. Furthermore
(again by Claim 1) if for some $i \in I, A_{i} \times B_{j}$ is in K then j is in J and vice versa. Since

$$
A=p r_{1}(K \cap(G \times\{1\})),
$$

A is a subgroup of G. Similarly B is a subgroup of H. From now on (changing notation if necessary) we suppose that $A \times B$ is part of our decomposition.

We will now show that if $(x, y) \in A_{i} \times B_{j} \subseteq K$ then $A_{i} B_{j} \subseteq(x, y) A \times B$. Let x, y be such elements. Suppose for some x_{1} in A_{i}, some y_{1} in B_{j} we have ($x^{-1} x_{1}, y^{-1} y_{1}$) not in $A \times B$. Then either $x^{-1} x_{1}$ is not in A or $y^{-1} y_{1}$ is not in B. Say $x^{-1} x_{1} \notin A$. Then $\left(x^{-1} x_{1}, 1\right) \notin K$. But

$$
\left(x^{-1} x_{1}, 1\right)=\left(x^{-1}, y^{-1}\right)\left(x_{1}, y\right) \in\left(A_{i} \times B_{j}\right)^{-1} \cdot\left(A_{i} \times B_{j}\right) \subseteq K
$$

a contradiction. Hence $A_{i} \times B_{j} \subseteq(x, y) A \times B$.
Since we have only finitely many $A_{i} \times B_{j}$'s in K, this shows that [$K: A \times B$] is finite. Also by changing notation if necessary we may replace A_{i} 's and B_{j} 's by cosets of A and B respectively. We will now prove that $A \triangleleft p r_{1}(K)$. Let $a \in A, x \in p r_{1}(K)$. If $y \in H$ is such that $(x, y) \in K$, then $(x, y)^{-1}(a, 1)(x, y)=\left(x^{-1} a x, 1\right) \in K$. Hence $x^{-1} a x \in A$. Similarly $B \triangleleft p r_{2}(K)$.

We now show the fourth point of the theorem.
Lemma. If $A_{i} \times B_{j}, A_{i} \times B_{k}$ are in K then $B_{j}=B_{k}$.
Proof. Let $a \in A_{i}, b \in B_{j}, b_{1} \in B_{k}$. Then $\left(1, b b_{1}^{-1}\right)=(a, b)\left(a, b_{1}^{-1}\right) \in K$. Hence $b b_{1}^{-1} \in B$. This shows that $B_{j} B_{k}^{-1} \subseteq B$. Since B_{j}, B_{k} are cosets of B, and $B \triangleleft p r_{2}(K)$ the equality must hold. So $B_{j} B_{k}^{-1}=B=B_{k} B_{k}^{-1}$, i.e. $B_{j}=$ $B_{k} B_{k}^{-1} B_{k}$, i.e. $b B=b_{1} B B^{-1} b_{1}^{-1} b_{1} B=b_{1} B$. Therefore $B_{j}=B_{k}$.

The dual statement of the lemma also holds. This proves the fourth point of the theorem. Let us now prove the uniqueness of A and B.

Let C and D be as in the theorem. If $d \in D$, then $(1, d) \in K$. Hence $d \in B$. This shows that $D \subseteq B$. Similarly $C \subseteq A$. Changing the roles of A and C, B and D we get the inverse inclusion. The proof of the theorem is now complete.

References

1. W. Baur, G. Cherlin and A. Macintyre, Totally categorical groups and rings, J. Algebra, vol. 57 (1979), pp. 407-440.
2. S. Feferman and R.L. Vaught, The first order properties of products of algebraic systems, Fund. Math., vol. 47 (1959), pp. 57-103.

Yale University

New Haven, Connecticutt
University of California
Berkeley, California

[^0]: Received April 30, 1985.

