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1. If G is a finitely generated free group, then G has only countably many
non-isomorphic subgroups. Our objective here is to point out that even the
simplest one-relator groups can contain continuously many non-isomorphic
subgroups. This will follow readily from two simple observations.

LEMMA 1. Suppose that the group G is the free product of its subgroups G
(i I). Furthermore suppose that each G is freely indecomposable and that no
G is cyclic. Then every non-cyclic freely indecomposable free factor of G is
isomorphic to one of the G.

Proof Let H be such a free factor of G. By the Kurosh subgroup theorem
H is a free product of conjugates of subgroups of the G and a free group.
Thus, replacing H by a conjugate if necessary, it follows that H is a subgroup
of some G;. But, again by the subgroup theorem, H is then a free factor of this

G. So H Gi, as required.

LEMMA 2. Let E be any group. Suppose that E contains a countably infinite
number of non-isomorphic, freely indecomposable subgroups. Then the free
product

of E with the infinite cycfic group (u) on u contains continuously many non-
isomorphic subgroups.

Proof Let E1, Ez,... be an infinite sequence of freely indecomposable,
non-cyclic, non-isomorphic subgroups of E. Let

E(i) u-iEiui (i= 1,2,...).
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Then

F gp(E(i))li 1,2,...)

is the free product of its subgroups E(i). Now for each properly ascending
sequence o (1), (2),... of positive integers we define

Fo gp(e(o(i))[i 1,2,... ).

Then it follows from Lemma 1 that Fo-= F only if o . This proves
Lemma 2.

2. Now consider the group

Let

E a, t; t-lat a2).

E gp(a, t2’).

Each E is solvable and hence freely indecomposable. Moreover the Ei have
different factor derived groups; hence E = Ej only if j.
Now consider the free product P of E and the infinite cyclic group on u. By

Lemma 2 P is a one-relator group with continuously many subgroups, as
desired.

In particular, it follows that P contains (countable) subgroups which are not
recursively presentable! Since every one-relator group can be embeded in a
2-generator one-relator group (for example, see [1, p. 259]), it follows that
there are 2-generator one-relator groups which contain continuously many
non-isomorphic subgroups. This helps, in part, to explain why the isomor-
phism problem for one-relator groups is so difficult.

3. Next, consider the one-relator group

G (a, b, u, v; [a, b] [u, v]2),

where as usual, Ix, y] x-ly-Ixy. Let

E gp(a, b, c-lac, c-bc),

where c [u, o]. Then E is the fundamental group of a two-dimensional
orientable surface of genus two and therefore contains the fundamental groups
of all higher genus as subgroups of finite index (for example, see William S.
Massey [2]). Now let P gp(E, u). Then it is not hard to see that P E (u).



GROUPS WITH ONE DEFINING RELATION 257

Now E satisfies the hypothesis of Lemma 2 and so it follows that G contains
continuously many non-isomorphic subgroups!
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