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1. Introduction

For groups in general many algorithmic problems are known to be recur-
sively unsolvable. But for some special classes of groups one can give al-
gorithms for solving certain decision problems--for example, there is a
well-known algorithm to solve the isomorphism problem for finitely presented
abelian groups. This paper is concerned with finitely generated metabelian
groups. The isomorphism problem for this class is as yet unresolved, but we
show there is an algorithm to determine whether or not a suitably given
finitely generated metabelian group is free metabelian. A useful algebraic
characterization of free metabelian groups is also obtained.

2. Some presentations, algorithms and observations

Let G be a finitely generated metabelian group and A --[G, G] G’ its
commutator subgroup. Because finitely generated metabelian groups satisfy
max-n, the maximum condition for normal subgroups, G can be defined by
finitely many generators subject to the relations which are consequences of the
metabelian law plus finitely many additional relations. So G can be presented
in the form

(1) G (Xl,..., Xn; r 1,..., rm 1, G"= 1)

where the r’s are certain words in the x and G" 1 represents the infinitely
many relations corresponding to the metabelian law. We call this a finite
metabelian presentation of G. Of course such a presentation is a finite descrip-
tion of G even though G may not be finitely presented in the usual sense.
Again because G satisfies max-n, its commutator subgroup A [G, G] is a

finitely generated ZG-module where G acts on A by conjugation. Putting
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Q G/A it follows that A is also a finitely generated ZQ-module. Since Q is
a finitely generated abelian group the ring ZQ is a finitely generated commuta-
tive ring and so, in the terminology of [1], ZQ is submodule computable. We
recall briefly that this means the ring operations in the Noetherian ring ZQ are
computable and given a finite presentation of a ZQ-module we can effectively
present submodules and determine membership in submodules. See [1] for a
discussion of algorithms for such rings.

Associated with the short exact sequence

(2) OA G-->QO

where o is the quotient map from G onto Q, there is a well-known exact
sequence of ZQ-modules (see [4])

p
(3) 0 --> A - ZQ (R)za IG- IQ -> 0

where IG and IQ are the augmentation ideals of ZG and ZQ respectively.
Here the maps are defined by 0(a)=l(R)(a-1) and z(q(R)(y- 1))=
q(o(y) 1). We also have the corresponding augmented exact sequence

(4) O A ZQ (R)za IG---> ZQ Z - O

where e is the augmentation map with kernel Q. Indeed the sequence (2)
determines a cohomology class in H2(Q, A) and the sequences (3) and (4) are
theextensions corresponding to (2) under the usual isomorphisms

H2(Q, A) -- Ext2z0(Z, A) ExtlzQ(IQ, A).

See [3, Chapter XIV] or [7, Chapter IV, Section 6] concerning these correspon-
dences.

Because of its importance for our considerations we write M ZQ (R)za IG.
In the augmentation ideal IG we have the identity YlY2- 1 YI(Y2- 1) +
(Yl 1) and so in M we have 1 (R) (YlY2 1) o(yl) (R) (Y2 1) + 1 (R)

(y- 1). Consequently, if xx,...,x, generate G as a group then 1 (R)

(xx 1),..., 1 (R) (x, 1) generate M ZQ (R)z IG as a ZQ-module.
Assume that G is presented as in (1) and let F be the (absolutely) free

group freely generated by xx,..., x,. Denote by 0 the surjective homomor-
phism from F to G defined by O(x) x, 1,..., n and let

q o O: F --, Q.

The extensions of these maps to ZF, ZG and ZQ are likewise denoted by , 0
and o.
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Now IF is a free ZF-module with basis (X --1),...,(x,- 1) and the
fundamental formula of Fox’s free differential calculus asserts that for any
f F we have

where the elements tgf/tgx ZF are easily computed (see [2, pp. 103-106]).
Moreover a theorem of Blanchfield ([2] p. 107) asserts that f [ker q, ker q] if
and only if

q =0 for/=l,...,n.

Observe that ZQ (R)ZF IF is the free ZQ-module with basis

1 (R) (xl- 1),...,1 (R) (x,- 1).

Consequently 1 (R) (f- 1) 0 in ZQ (R)ZF IF if and only if f [ker q, ker q,]
because of the fundamental formula and Blanchfield’s theorem. Now the
induced map IF IG has as kernel the abelian group generated by all
(f-1) such that f ker0. So a presentation for M= ZQ (R)z6IG--
ZQ (R) ZF IG can be obtained from the free presentation for ZQ (R) ZF IF by
adding the relations

1(R) (.-1) =0

for j- 1 m expressed in the given basis. Explicitly the added relations
are

i--1

for j 1,..., m. Note that the relations in (1) corresponding to the metabelian
law G"= 1 are unnecessary because of Blanchfield’s theorem. Also observe
that if G is a free metabelian group on n generators and the relations rj. 1
are absent from (1), then Q is a free abelian group of rank n and M
ZQ (R)z6 IG is a free ZQ-module of rank n. The converse is also true and will
be proved in the next section.

Turning to algorithmic aspects we observe that given a finite metabelian
presentation for G as in (1), we can effectively find a finite presentation of the
ZQ-module M ZQ (R)z6 IG. Now A is generated as ZQ-module by the
commutators

-1= IX Xj]XiXjX 1Xj
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and p embeds A in M. So A is isomorphic to the submodule of M generated
by the finite set of elements 1 (R) ([xi, xj] 1) say with 1 _< i, j _< n. Because
ZQ is submodule computable (see [1]) and we have a presentation for M we
can effectively find a presentation for A. This is summarized as follows"

THEOREM 1. There is a recursive procedure which when applied to a finite
metabelian presentation (1) of a metabelian group G yields finite presentations
for the ZQ-modules A [G, G] and M ZQ (R)zc IG where Q G/A is the
abelianization of G. Moreover if G is free metabelian of rank n then Q is free
abelian of rank n and M is a free ZQ-module of rank n.

We now make a few additional observations concerning the sequence (4)
and presentations of M and A. Since : M IQ c_ ZQ is ZQ-linear, it
follows that z extends uniquely to an anti-derivation d of degree -1 of the
exterior algebra A(M) defined by the formula

dk(m A Amk)
k

E (-1)i-l"r(mi)ml A Ami_ A mi+ A Amk
i--1

with d ’r. Now di_ d
a complex

0 and in particular image d2 c ker z so we have

(6)
d3 d2 ’r

A3M-o A2M--, M-o ZQ --, Z 0.

This sequence is not exact at each term although we know it is exact at ZQ
and Z. Moreover we claim image d2 ker so the sequence (6) is always
exact
at M.
To see this observe that for any yl, Y2 G,

(7) 1 (R) (ylY2ylyX 1)
(o(y)- 1)(R) (Y2- 1)- (o(y2)- 1) (R) (Yl- 1)

=d2(X(R)(y-X) AX(R)(y2-1)).

Now A is generated as a ZQ-module by the commutators xixjx lxs
[xi, xs], with say <j, so image p ker z is generated by elements of the
form of (7). From this it follows that ker z image d as claimed. Moreover it
follows that if h,..., h G are such that 1 (R) (hx 1),..., 1 (R) (hk 1)
generate M as ZQ-module, then the elements [hg, hs] generate A as ZQ-mod-
ule.
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In the special case that G is free metabelian and so Q is free abelian and M
is a free module of rank. the same as Q the sequence (6) is actually exact and is
the familiar Koszul resolution for Z as ZQ-module [3, p. 193]. In this case all of
the AkM are finitely generated free ZQ-modules and exactness implies

A =- A2M/d3(A3M).
If we write e 1 (R) (x 1) the the module AEM is free with basis e A ej,

1 _< < j _< n. From (7) we recall that the image of e A ej under dE corre-
sponds to the element [x, x] A. Now AaM has as free basis e A e A ek,
1 < < j < k _< n. So if we observe that r(ei) (o(xi) 1) the formula (5)
for d gives explicitly a presentation for the module A in the form
AEM/d3(A3M). Moreover, using the identity for y G, a A,

(o(y)-l)(R) (a-1)=1(R) ([y,a]-l)

one calculates that the image of d3(e A e
instance of the Jacobi identity

A ek) under d2 corresponds to the

in A. It is known (and easily shown by calculation) that metabelian groups
satisfy this version of the Jacobi identity. But we conclude that in case G is
free metabelian A [G, G] can be presented as ZQ-module as having genera-
tors the elements [x, x] (i < j) subject to defining relations the above finite
set of instances of this Jacobi identity.

3. A criterion for freeness

As in the previous section let G denote a finitely generated metabelian
group, A [G, G] G’ and Q G/A. Again for M ZQ (R)z IG we have
the exact sequence (3). We will show that if Q is free abelian of rank k and
M ZQ (R)z IG is a free ZQ-module of rank k then G is a free metabelian
group of rank k.

Henceforth we assume Q is free abelian of rank k with basis { Zx,..., zk }.
For any m-tuple (a,..., am) - (ZQ)m, if

{(al,...,am)} (a,..., an)

for p a ZQ-automorphism of (ZQ)" we will say that (at,..., a,) and
(a,... ,a’,,) are unimodularly equivalent (u.e.). Also (at,..., a,) will be called
unimodular if (at,..., a=) is u.e. to (1, 0, 0,..., 0).
From the work of Quillen, Suslin and Swan on the solution of Serre’s

problem (see [5, Corollary 4.12, p. 147] and [6, Theorem 4.51, p. 139]) we know
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that (al,..., a,,) is unimodular if and only if there exist (bl,..., b,,) (zo)
with E=xaibi 1. Hence (al,... am) is unimodular if and only if the ideal of
ZQ generated by (a,..., am ) is ZQ itself.

THEOREM 2. Let (al,..., a,, }
___
IQ generate IQ as a ZQ-module. Then

(01’ m)
is u. e. to

Proof.
prove.

Let

By induction on k, the rank of Q. For k 0 there is nothing to

Ol i(Zk- 1) / O;(ZI,... Zk_l).

Then it is clear that { a,..., a, } generate the augmentation ideal of the
subgroup generated by zl,..., zk_ 1. Thus by the induction hypothesis

is u.e. to

(z 1,..., Zk_ 1,0 ,0)

and so (a,..., a,,,) is u.e. to (1,"-, m)

z 1 1 < < k- 1 modZQ(zkfl,-- 1)
O, i>k

The fli still generate IQ as ZQ-module and so E=lcifl Zk 1 for some

c ZQ. Observe that there is considerable freedom in the choice of the c’s.
In fact, for any X ZQ and any 4= j (1,..., m) we can replace c, ca. by
c Xfla., ca. / Xfli respectively. Now using the fact that

fl=z-lmodZQ(zk-l) forl <i<k-1

we can assume, firstly, that for > k, c bmodZQ(zk -1) for suitable

b Z and, secondly, by successive reduction that for < k,

ci=c;(zl,...,z,) modZQ(zk-l)

where C(ZI,... Zi) lies in the group ring of the subgroup generated by
ZI Zi.
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But now, putting zj z 1 in the equation Y’.=lCii Z 1 we
obtain the congruences

j-1

E c.(zi 1) 0 mod ZQ(zk 1)
i----1

(j 2,..., k)

For j 2 this yields c{ 0. For j 3 it yields c(z 1) + c(zg.- 1) 0
’=0fori=l k- 1and so c 0. Thus clearly c

Now, if J is the ideal of ZQ generated by {cl,..., c,,} we clearly have
z, 1 J. But then as,

(z,-1)lc for/=l,...,k- 1

and

c b mod ZQ(Zk 1) for > k,

J is generated by (zk 1, bk,..., b,,}. Since the bk,..., b,, Z we may put

t= gcd(b/,,..., bm)

and observe that J is also generated by { zg 1, }. But, as

rn

z,- l cifli,
i--1

we have

Zk-- 1 JIQ < (IQ + tZQ)IQ < (IQ)9-+ tlQ.

Thus t + 1 and so J ZQ. Hence (cl,..., Cm) is a unimodular sequence
and so, as ,=xCifli--zk -1, the sequence (fl,..., tim) is equivalent to a
sequence (y,..., 3’m) with 3’ Zk 1. Clearly by further unimodular (in fact,
elementary) operations, we can assume that 3’ y(z,..., z,_) for 4: k.
Now by the inductive hypothesis on k,

(Yl,’’’,Yk-l, Yk+l,’’’,’’m)

is u.e. to

(Z 1,..., Zk_ 1,0 ,0)

and so

(71,"’, 7m)
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is u .e. to

Z 1,..., zk 1,0,...,0)

as required. This completes the proof of Theorem 2.

COROLLARY 1. IfM ZQ (R)za IG can be generated as a ZQ-module by m
generators, then G can be generated by m generators.

Proof Suppose (al,... am) generates M. Then {,i-(o1),... ’l’(am) ) gener-
ates IQ and so, by Theorem 2, the sequence

is u.e. to

( q’( 01)’ ’/’(m))

(21 1,..., Zk 1,0,...,0).

Hence we can find ill,.--, fl, generating M such that (fli)= zi- 1 for
< k and ’(fli) 0 for > k. Choose gi G with o(gi) zi.

If z(fli) zi- 1 then z(fli- 1 (R) (gi- 1)) 0. Hence

i-1 (R)(gi-1) =1 (R) (a-l) for someaA

and sofli= 1 (R)(g- 1)+l(R)(a- 1)=1 (R)(ag- 1). Thus for each we
can write fli I (R) (h 1) for hi G. We claim (hi,..., h } generates G.

Since o(hi)= z it is dear that (hi,..., hm)A G. But as A im
im dE from (6) and (7) it follows that ker -= A is generated as ZQ-module by
1 (R) ([h i, h.] 1). So if a A for some )’ij ZQ,

1 (R) (a 1) .Tij (R) ([hi, h] 1) 1 (R) (II [h h] v’- 1).
Since p is injective, a II[h i, hlV, <hi,... hm). Whence {hi,..., hm)
generates G. This completes the proof.

COROLLARY 2. If Q is free abelian offinite rank k and M ZQ (R)za IG is
a free ZQ-module of rank k then G is free metabelian of rank k.

Proof. By Corollary 1, G is k-generator and so there is an epimorphism tp
from a free metabelian group H of rank k onto G and we can identify Q with
H/[H, HI. But this induces an epimorphism tp*: ZQ (R)zn IH ZQ (R)z IG
of isomorphic Noetherian modules which must therefore be an isomorphism.
But if*lit, is then also an isomorphism, so tp was an isomorphism and G is
free as claimed. This proves Corollary 2.
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The solution to Serre’s problem [5, p. 147] gives that for a finitely generated
free abelian group Q, finitely generated projective ZQ-modules are free. From
[1] we know there is an algorithm to determine whether or not a finitely
presented ZQ-module is projective, hence free and if so determine its rank.
Combining this with Theorem 1 and Corollary 2 we obtain the following"

COROLLARY 3. There is a recursive procedure which when applied to a finite
metabelian presentation (1) of a metabelian group G determines whether or not G
is free metabelian. Indeed, G is free metabelian of rank k if and only if Q is free
abelian of rank k and ZQ (R)z IG is a free ZQ-module of rank k and the latter
property is recursively recognizable.

Note added July 1985. Since this paper was submitted Karl Gruenberg has
drawn our attention to the paper of Linnell, Mctsaac and Webb [8] where
more general versions of our Theorem 2 and Corollary 1 are obtained for the
case Q an arbitrary finitely generated abelian group. While a reference to their
work would suffice, our proofs given above seem more elementary and
constructive.
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