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1. Introduction

1.1 Let X be a ring with 1. Then a group G equipped with an action

g,-> g’ ( g G,a X, g’ G )

of X on G and satisfying the axioms

g g, g’+a g,ga, (g’)a g,/,

g-h’g (g-Xhg) (g, h . G, or, X)

is termed an X-group.
X-groups were introduced by R.C. Lyndon in [6]. Lyndon’s concern was

with the so-called free X-groups when

X Z[x,..., xql (1)

is the polynomial ring in the finitely many variables x1,..., Xq over Z. Indeed
Lyndon proved that the word problem for such free X-groups is solvable by
concocting normal forms for its elements.

Shortly after Lyndon’s paper appeared I noticed that the methods of my
thesis [1] applied also to X-groups. The upshot is that the class of free
X-groups studied by Lyndon can be constructed from ordinary free and free
abelian groups by using generalised free products. The solution of the word
problem is a byproduct of this constructive approach. This solution is neither
as efficient nor as elegant as Lyndon’s. However the method works not only
when X is polynomial ring but also for a very wide class of not necessarily
commutative tings.
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236 GILBERT BAUMSLAG

This, however, is not the object of this paper. Instead I shall carry over
techniques analogous to those in [1] to solve the word problem for free abelian
X-groups, where for simplicity X is given by (1). These free abelian X-groups
are the counterpart in this theory to the abelianisations of ordinary free
groups, i.e. free abelian groups. Unlike the situation for free abelian groups,
the free abelian X-groups turn out to be surprisingly complicated.

1.2 The rest of this paper will be concerned solely with abelian groups. All
groups will henceforth be abelian and we will, for the most part, simply refer
to abelian X-groups as X-groups.

X-groups can be viewed as groups with multiple operators, in the sense of
P.J. Higgins [3]. Much of the ordinary theory of groups can be translated into
a theory of groups with multiple operators. Indeed this is true also if one
restricts oneself to X-groups, where the theory takes on a particularly sharp
form (cf. [3]). In particular the theory of generalised soluble and generalised
nilpotent groups has a counterpart in the theory of X-groups. Thus one has
the notion of a nilpotent X-group, where the class 1 nilpotent X-groups are
those X-groups satisfying the axioms

g g, g’+# g’g#, g’# (g’)#, (gh) g’h (g, h G, a, fl X).
In other words a nilpotent X-group of class 1 is simply an X-module.
The class of X-groups can also be viewed as a variety of universal algebras,

in the sense of G. Birkhoff [2]. We shall freely avail ourselves of Birkhoff’s
theory.
Our main objective here is to prove the following theorem.

THEOREM A. Let F be a free X-group on a1,..., a (n < oo). Then there is
an algorithm which decides whether or not any X-word in al,..., a takes on the
value 1 in F.

The proof of Theorem A is carried out by constructing F from a free
abelian group on a1,..., a n and then repeatedly forming direct products and
direct limits.

1.3 The class of X-groups is a rich one. Thus, for example, we have the
following counterpart of the following well-known theorem for groups due to
B.H. Neumann [7].

THEOREM B.
groups.

There exist continuously many non-isomorphic 2-generator X-

Generation here is, of course, in the sense of X-group.
Theorem B suggests a host of problems about X-groups, which are ana-

logues of known results about ordinary groups. For example, is there an
analogue for X-groups of the Higman embedding theorem (G. Higman [4])?
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2. Preliminaries

2.1 We emphasise again that all groups considered here are abelian and that
X is given by (1). An X-group then is a group G equipped with an action of X
on G satisfying the axioms

gl g, ga+# gagB,(ga)# gaff (g G, ct, fl X).

It is easy to deduce the following:

LEMMA 2.1. Let G be an X-group. Then gO
aX).

=1 and 1=1 (gG,

A subgroup H of an X-group G is termed an X-subgroup if h’ H
whenever h H, a X. If, in addition, fg-1 H implies fg- H for
every a X, H is termed an X-ideal of G and we can turn the factor group
G/H into an X-group by setting (gH) gH. A homomorphism from an
X-group G into an X-group H is termed an X-homomorphism if

(g o, x).

LEMMA 2.2. Let F be a free X-group freely generated by S. Then G gp (S ),
the group generated by S, is a free abelian group on S.

Proof. Let H be the free abelian group on a set S in a one-to-one
correspondence s s ^with S. We turn H into an X-group by setting a x a
whenever aH, x {x,...,Xq}. Then the map ss ^extends to an
X-homomorphism of G onto H and the desired conclusion follows easily.
Lemma 2.2 suggests that the free X-group on S can be constructed from the

free abelian group on S, explaining in part the approach we will take in
Section 3.

3. The construction of free X-groups

3.1 Our objective here is to describe a procedure for constructing certain
X-groups. This depends on the notion of a partial X-group explained below.

DEFINITION 3.1. A group G is termed a partial X-group if to each g G
there is an associated subset def g of X satisfying the following conditions:

(i) def g is an additive subgroup of X containing 1;
(ii) a def g if and only if g G is defined;
(iii) gl=g, defl=X;
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(iv) if a, fl def g, then g"+# g’g#;
(v) if aft defg, a 0 fl, then a, fl defg and g# (g)#;
(vi) if fl def g then aft def g.
So a partial X-group is a group G on which the action of X is only partially

defined; and when such an action is defined, the axioms of an X-group are
satisfied.
We shall need certain additive subgroups X of X Z[xl,..., Xq]. X,, is

the additive subgroup of X generated by all monomials in x1,..., Xq of degree
at most n including the integer 1. We put X0 Z, Xoo X.

DEFINITION 3.2.
(i)
(ii)

(iii)

(a)
(b)

A partial X-group G is termed a -group if:
G is free abelian;
G is X-torsion-free, i.e., if g G, a def g, a 0, then g 1 only
if g= 1;
if g G, g : 1, there exists an element r G with the following
properties"
g=r, pdefr;
if r s then there exists / def r such that s r’ and

(s G, odefr, defs, 04=04=r);
(c) def r X, for some n >_ 0.
We term such an element r in Definition 3.2 a primitive root of g. Notice

that it is not hard to see that if rl is a second primitive root of g, then
r r 1. So g has exactly two primitive roots.
The proof of the following lemma is straightforward and will be omitted.

LEMMA 3.1. Let G , i.e., let G be a -group, u, v G, a def u,
fldefv, u 4 1 4 v, a q: O 4 fl If u v then"

(i) u and u have the same primitive roots;
(ii) u and v have the same primitive roots;
(iii) if r is a primitive root of u, u r, v r and
(iv) if r is a primitive root of u then the primitive roots of r are r and

r-1. in particular if r s’, s r + and z .+_ 1
Next we record some useful terminology.

DEFINITION 3.3. Let G and H be partial X-groups. Then a group homo-
morphism 0: G H is termed a partial X-homomorphism (X-monomor-
phism if 0 is 1-1)if

(i) a def g implies a def(g0);
(ii) (g)0 (g0).
We shall have occasion to consider the case when 0 is actually an inclusion

of G in H. Then 0 is a partial X-homomorphism if and only if defg
___

defng
where defg def g and we are thinking of g as an element of G and
similarly for H. Thus g has the same meaning irrespective of whether g is
viewed as an element of G or an element of H provided g is already defined
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in G. We then say G is a partial X-subgroup of the partial X-group H. The
main step in our embedding procedure is:

PROPOSITION 3.1. Let G , g G, a X. If a q def g then we can
construct a -group H and a partial X-monomorphism O: G H with the
following properties:

(i) def(g0) a;
(ii) if s is a primitive root in G, s is a primitive root in H;
(iii) if r is a primitive root of g in G and if def r X,, then def(r0) X

where rn > n can be chosen finite or infinite as desired;
(iv) if b G, b q (r/lfl X ), then def b def(b0).

Proof Since a def g, n < (see (iii)). Let

R= {ralfl Xn).
Now G #. It follows that R is a free abelian group. Indeed if M is the set
of all monomials

XfiXi Xi, (Xi2 (Xl,...,Xq}, l<__ n )
of degree at most n together with 1, then the elements r’ (/ M) form a
basis for R.

Observe next that R is an isolated subgroup of G, i.e., if l is a positive
integer and if b G, then b R only if b R. For if b r (fl X) then
b rtv by Lemma 3.1. Now an isolated subgroup of finite rank of a free
abelian group is a direct factor. Thus

G=RXS.

Now g r v, ), 0 and yet X,, for some rn > n, where we allow rn c.
Consider then the free X-group F of rank 1 on a. Notice that

F= (aVl,eX)

is simply a multiplicative copy of a free X-module on a. Let

T= (a*lz Xm}.

T can be viewed as a partial X-group in the obvious way. Moreover T
Next let

H=TS

and define O: G H by

O: rs as (o c X., s c S)
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Is is clear that 0 is monic. In order to complete the proof of Proposition 3.1
we turn H into a partial X-group as follows:

(i) defr(a) defr(a) ( Xm);
(ii) def,(as) Z if z Xm, . Xn, S 1;
(iii) defH(as) def(rs) if z Xn, s : 1; here, for a def(rs), we

define (as) ((rs))O.
Finally, we need to check that H ; this follows by inspection of (i), (ii),

(iii) above which define the way in which H is turned into a -group.
We denote this group H by the triple (G, g, ct) and identify G with its

image GO in (G, g, a. Then (G, g, a) satisfies the following universal map-
ping property.

LEMMA 3.2. Let p be a partial X-homomorphism of the -group G into the
X-group J. Then q can be continued to a partial X-homomorphism p+ of
G, g, ix) into J.

Proof By its very definition,

(G,g,a)= TS.

Define a map / of (G, g, a) into J by

q+" as (aq)sep (Xm, s S)

It is clear that q + is well-defined. Moreover it is certainly a homomorphism of
groups. We have only to check that it is a partial X-homomorphism. To this
end we need to inspect the three conditions set down in the proof of
Proposition 3.1, viz. (i), (ii), and (iii). The fact that q+ then is a partial
X-homomorphism follows immediately.

LEMMA 3.3. Let I be a well-ordered index set, {Gili I} a family of
-groups indexed by the elements of I. Suppose that if < j then G is a direct
factor of Gj. Suppose furthermore that the inclusion Gi Gj (i < j) is a partial
X-homomorphism. Finally suppose that if r G is primitive, then r .is a
primitive element in Gj whenever < j. Then the ascending union

G= OGi
iI

viewed as a partial X-group in the obvious way, is a -group.

Proof We check the conditions for G to be a -group in turn.
First of all to see that G is free abelian pick a basis for G1, supplement it so

as to provide a basis for G, supplement it to provide a basis for G and so on.
This yields ultimately a basis for G.
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Next observe that G is X-torsion-free because each G is X-torsion-free.
Finally in order to complete the verification that G we need only to

examine what happens to an element r Gi which is primitive and is such
that defc r alters an infinite number of times as j ranges over the elements of

.J
I exceeding i. But in this situation we can find a subsequence < Jl < J2 <
such that

def%,(r) =Xn and nl<n2<

So defer X as needed.
We come now to our main embedding theorem:

THEOREM 3.1. Let G be a -group. Then G can be embedded in a -group
such that

(i) is an X-group,
(ii) for every X-group and every partialX-homofnorphism 0 from G into

there is a unique X-homomorphism 0 from G into H.

Proof. Let GO G, 0 O. For each ordinal ,/we define a -group G
and a partial X-homomorphism On from G into H by transfinite induction.
Firstly if ,/has a predecessor, say /- 1, then G_ and

_
1: G_ --’ H

has already been defined. If Gn_ is an X-group, we define Gn G_ and

0n 0n-1. If Gn_ is not an X-group, there exists g G_ and a X such
that a def,_l(g).

Let

By Lemma 3.3, 07_ can be extended to a partial X-homomorphism
G --, H. Finally if ,/is a limit ordinal then we proceed as follows.

Suppose inductively that for

I= (/[/ <

the family of 9-groups { G,I/ I } satisfies the conditions of Lemma 3.3 and
that partial X-homomorphisms ,: G, H have been defined so that
agrees with Ox whenever/x < A < r/. We let

G,=U G,, <

Then, by Lemma 3.3, Gn and 0n: Gn ---, H is a partial X-homomorphism.
Now let p be an ordinal chosen sufficiently large so as to insure that
Go G+x-We put

This completes the proof of Theorem 3.1.
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COROLLARY 3.1. Let G be a free abelian group freely generated by the set Y.
Furthermore turn G into a partial X-group by defining

defg Z if g G, g 1, def I X

Then (G and) is a free X-group freely generated by Y.

4. Properties of free X-groups

4.1 There are a number of properties of free X-groups that can be deduced
from Corollary 3.1. Two of them involve notions from P.J. Higgins theory of
groups with multiple operators [3].

DEFINITION 4.1.
of g is defined by

Let G be an X-group, g G. Then the centraliser C(g)

C(g) ( h Gl(hg)#= hg# for all a, fl X).

DEFINITION 4.2.
defined by

Let G be an X-group. Then the center C(G) of G is

fq C(g).
gG

Notice that in general C(g) need not, on the face of it, be an X-subgroup.
However it is not hard to check that C(G) is an X-ideal.
The proof of Corollary 3.1 yields the following properties of a free X-group.

THEOREM 4.1. Let F be a free X-group. Then the following hold.
(a) Iff F, f 1, then

C(f ) ( g’la X)

for some g G, i.e., C(f ) is a cyclic X-group.
(b) If F is of rank at least two, C(F) 1.
(c) F is a free abelian group and iff F, f 4 1 thenf 1 (a X) only if

a O, i.e., F is X-torsion-free.

4.2 Now we come to our main result. Thus suppose F is a free X-group on
xt,..., X q. Then every element of F can be represented as an X-word
W(Xl,..., Xq) in xt,..., Xq, i.e., a meaningful expression involving x,..., Xq,
the group operations and the operations of X on F. The following theorem
holds.
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THEOREM 4.2. The wordproblem for F is solvable, i.e., there is an algorithm
whereby one can decide whether or not any X-word w(xl,..., Xq) 1 in F.

The proof of Theorem 4.2 depends heavily on Proposition 3.1, which is
crucial in the proof of the following:

LEMMA 4.1.
let

Let G be a free abelian group with basis yl,..., yp(p < ) and

be a sequence of successive applications of the construction in Proposition 3.1.
Then given any X-word w w(yx,..., yp) there is an algorithm which decides
whether or not w Gk. Moreover if w Gk there is an algorithm for expressing
w in terms of a free basis for Gk. If w Gk then there is an algorithm for
constructing finitely many further adjunctions

Gk+l (Gk, gk+l, Ok+l),’’’, Gk+, (Gk+l-1, gk+l, Otk+l) (2)

so that w Gk+ t, and an algorithm for expressing w in terms of a free basis for
ak+l.

Proof We may assume that each of Go,..., Gk is actually a finitely
generated abelian group. Notice that Proposition 3.1 provides a basis for each
of the groups Go,..., Gk.

The proof of Lemma 4.1 will be by induction on the number rn of
non-constant dements of X that occur in w. If rn 0, w G and the desired
conclusion follows on re-expressing the dements y,..., y, in terms of the
new basis for Gk given by the proof of Proposition 3.1.

Suppose then that m > 0. Now there are two cases to consider.

Case 1. w WXx ( X, , q Z). In this case w involves rn- 1 elements
of X and so inductively we can find a series (2) so that w Gk+t. We can
then constructively express wl in terms of a basis for G/ z. Proposition 3.1 can
then be applied to determine whether or not h defa+,(%)-the point here is
that the very construction of Gk+t carries with it the information as to what
elements of X act on the elements of Gk+t.

If , defk+,(w) we compute wxx in Gk+ and thence backtrack to decide
whether or not wX Gk. If h defk+,(w) we apply the construction of
Proposition 3.1 once again to yield

X),
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a free basis for Gk +l+ and an explicit representation of w wx in terms of
this basis.

Case 2. w ww2 where both w and w2 involve fewer than m elements of
Here we follow the procedure in Case 1 for w and w in turn.

Case 3. w WXlW2 where X X, X Z, w involves less than m elements of
X and w is a group word in yl,..., Ye" Here we apply the procedure in Case
1 again for w. In the final step here after obtaining the group Gk+ for w we
check whether wXw2 Gk and also re-express wXw2 in terms of a free basis
for Gk+t.

This completes the proof of Lemma 4.1 and, on allying it with Corollary 3.1,
the proof of Theorem 4.1.

5. Counting finitely generated X-groups

5.1 Our objective here is to prove the following:

THEOREM 5.1.
groups.

There are continuously many non-isomorphic 2-generator X-

We consider the free nilpotent X-group G of class two on a and b (see
P. Higgins [3]) where we assume to begin with that X { x }. It is easy to see
that G, qua ordinary group, is free abelian with basis

a, a x, b, bx, c,#, ca,13,...

where ca, 13 is defined by the equation

(aab13) aaXb13Xca, 13"

Thus the center of G is a free X-group of countably infinite rank. So it
contains continuously many ideals which implies G itself contains continu-
ously many ideals. Therefore G has continuously many non-isomorphic quo-
tients. Notice now that G can also be viewed as an X-group, where X-
(x,..., Xq), on setting gX, gX (i 1,..., q).

This completes the proof of Theorem 5.1.
In conclusion let me point out that it seems likely that the celebrated

theorem of Higman, Neumann and Neumann [5] that every countable group is
a subgroup of a 2-generator group has a counterpart for X-groups.
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