GENERATING VARIETIES OF LATTICE-ORDERED GROUPS: APPROXIMATING WREATH PRODUCTS

BY
A.M.W. Glass ${ }^{1}$
In fond memory of Bill Boone

0. Introduction

In this note we will be concerned with varieties of lattice-ordered groups, finitely presented lattice-ordered groups and wreath products of lattice-ordered groups.

The totally ordered group of integers \mathbf{Z} is finitely presented as a latticeordered group: $\mathbf{Z}=\langle x ; x \wedge 1=1\rangle$, where 1 denotes the group identity. Moreover, the variety \mathfrak{A} of Abelian lattice-ordered groups is the smallest variety of lattice-ordered groups containing \mathbf{Z} [14]. So certain "natural" non-trivial varieties of lattice-ordered groups are generated by a single finitely presented lattice-ordered group. Note that "finitely presented" means in the variety of all lattice-ordered groups, not in the subvariety being considered. Now if G and H are finitely presented lattice-ordered groups and generate varieties \mathfrak{U} and \mathfrak{B} respectively, then clearly $G \boxplus H$ generates $\mathfrak{U} \vee \mathfrak{B}$, where $G \boxplus H$ is the ordered direct product of G and H where $(g, h) \geq 1$ if and only if $g \geq 1$ (in G) and $h \geq 1$ (in H). Further, $G \boxplus H$ is finitely presented: take as generators the disjoint union of the generating sets $\left\{g_{i}: i \in I\right\}$ of G and $\left\{h_{j}: j \in J\right\}$ of H, and as defining relations the union of those of G and H together with $\left|g_{i}\right| \wedge\left|h_{j}\right|=1(i \in I, j \in J)$, where $|x|=x \vee x^{-1}$. Hence the set of varieties of lattice-ordered groups generated by single finitely presented lattice-ordered groups is a join semilattice of the lattice of varieties of lattice-ordered groups.

If \mathfrak{U} and \mathfrak{B} are each generated by a single finitely presented lattice-ordered group, what about $\mathfrak{U} \cap \mathfrak{B}$ and $\mathfrak{U} \mathfrak{B}$? In the case that $\mathfrak{B}=\mathfrak{A}$ which is generated by \mathbf{Z}, the answer is yes. By [14], $\mathfrak{U} \cap \mathfrak{U}=\mathfrak{A}$ except when \mathfrak{U} is the variety defined by $\forall x \forall y(x=y)$. The main result in this paper is therefore:

[^0]Theorem. If \mathfrak{U} is a variety of lattice-ordered groups generated by a single finitely presented lattice-ordered group, then so is $\mathfrak{U} \mathfrak{A}$.

Since $\mathfrak{U} \mathfrak{A}$ is generated by $G \operatorname{wr} \mathbf{Z}$ if \mathfrak{U} is generated by G [6, Theorem 4.2], the proof of the theorem requires us in some sense to approximate G wr \mathbf{Z} by a finitely presented lattice-ordered group. ${ }^{2}$ The construction is far more general than that given in [4], where the finitely presented lattice-ordered group constructed from G was a sublattice subgroup of $G \mathrm{wr} \mathbf{Z}$ having word and conjugacy problems of the same degrees as those of $G .{ }^{3} \mathrm{We}$ will show that the finitely presented lattice-ordered group H obtained in the proof of the theorem from G has word and conjugacy problems of the same degrees as those of G.

Let \mathbb{S}_{n} denote the Scrimger n variety, $1<n \in \omega=\{0,1,2, \ldots\}$ [13]. As noted in [4], \mathbb{S}_{n} is generated by the finitely presented lattice-ordered group G_{n} for all $1<n$. Hence, as an immediate corollary to the theorem and the above we have:

Corollary. Let $m \in \omega$ and $1<n \in \omega$.
(i) \mathfrak{A}^{m} is generated by a finitely presented lattice-ordered group with soluble conjugacy problem.
(ii) $\mathfrak{S}_{n} \mathfrak{Z}^{m}$ is generated by a finitely presented lattice-ordered group with soluble conjugacy problem.

Thus we obtain a countably infinite set of distinct "natural" varieties of lattice-ordered groups each of which is generated by a single finitely presented lattice-ordered group. As there is only a countably infinite set of non-isomorphic finitely presented lattice-ordered groups, this is the maximum number possible. Since there are continuum many varieties of lattice-ordered groups [11], most varieties are not so generated.

1. Background definitions and results

A convex normal sublattice subgroup of a lattice-ordered group is called an ideal. Ideals are precisely the kernels of homomorphisms between latticeordered groups. (Of course, homomorphism is with respect to both the group and lattice operations.)

[^1]For any lattice-ordered group G, let $\mathbf{v}\{G\}$ denote the intersection of all varieties of lattice-ordered groups that contain G. So $\mathbf{v}\{G\}$ is itself a variety of lattice-ordered groups.

If \mathfrak{U} and \mathfrak{B} are varieties of lattice-ordered groups, then $\mathfrak{U} \mathfrak{B}$ is defined by: $G \in \mathfrak{U} \mathfrak{B}$ if and only if there is an ideal N of G such that $N \in \mathfrak{U}$ and $G / N \in \mathfrak{B}$ (see [6] but contrast with [12] where this definition would give $\mathfrak{B u}$). It is indeed a variety of lattice-ordered groups [12]. Now $\mathbf{v}\{G\} \mathfrak{A}=\mathbf{v}\{G \mathrm{wr} \mathbf{Z}\}$ [6, Theorem 4.2] so the theorem states that if G is any finitely presented lattice-ordered group, there is a finitely presented lattice-ordered group H such that $\mathbf{v}\{H\}=\mathbf{v}\{G \mathrm{wr} \mathbf{Z}\}$; i.e., H and $G \mathrm{wr} \mathbf{Z}$ generate the same variety of lattice-ordered groups.

If G is a lattice-ordered group and $g \in G$, then $|g|=g \vee g^{-1} \geq 1$ and $|g|=1$ if and only if $g=1$. Moreover, $g=(g \vee 1)\left(g^{-1} \vee 1\right)^{-1}[1,1.3 .3$, 1.3.10 \& 1.3.11]. Hence if $\left\{g_{1}, \ldots, g_{m}\right\}$ generates G, so does

$$
\left\{g_{1} \vee 1, g_{1}^{-1} \vee 1, \ldots, g_{m} \vee 1, g_{m}^{-1} \vee 1\right\} ;
$$

i.e., the generators of any finitely generated lattice-ordered group can be assumed to be greater than or equal to 1 . Further, if $r_{1}(\mathbf{g}), \ldots, r_{n}(\mathbf{g})$ are any elements of the free lattice-ordered group on these generators, then

$$
r_{1}(\mathbf{g})=1 \& \cdots \& r_{n}(\mathbf{g})=1
$$

if and only if

$$
\left|r_{1}(\mathbf{g})\right| \vee \cdots \vee\left|r_{n}(\mathbf{g})\right|=1
$$

Therefore any finitely presented lattice-ordered group can be written in the form

$$
\left\langle g_{1}, \ldots, g_{m} ; r(\mathbf{g})=1\right\rangle, \quad \text { where } g_{i} \geq 1 \quad(1 \leq i \leq m)
$$

Throughout, the following standard notation will be used: a^{b} for $b^{-1} a b$; a^{-b} for $\left(a^{-1}\right)^{b} ;[a, b]$ for $a^{-1} b^{-1} a b ; a \ll b$ for $a^{m} \leq b$ for all $m \in \omega$.

The only way I can prove the theorem is to use some results on orderpreserving permutations of totally ordered sets. The following can be found in [2].

Let $A(\mathbf{R})=\operatorname{Aut}(\langle\mathbf{R}, \leq\rangle)$, the lattice-ordered group of all order-preserving permutations of the real line, the group operation being composition and the order being pointwise ($f \leq g$ if and only if $\alpha f \leq \alpha g$ for all $\alpha \in \mathbf{R}$). The support of $g \in A(\mathbf{R})$ is denoted by

$$
\operatorname{supp}(g)=\{\alpha \in \mathbf{R}: \alpha g \neq \alpha\}
$$

If for all (any) $\alpha_{0} \in \operatorname{supp}(g)$ the convexification of $\left\{\alpha_{0} g^{n}: n \in \mathbf{Z}\right\}$ in \mathbf{R} is the
entire support of g, then g is said to have one bump. Such a g is called a bump of f if $\alpha f=\alpha g$ for all $\alpha \in \operatorname{supp}(g)$. More generally, h is said to be a set of bumps of f if every bump of h is a bump of f; so $\alpha f=\alpha h$ for all $\alpha \in \operatorname{supp}(h)$ and $[f, h]=1$ in this case. The following are easy to prove:

Lemma 1 [2, Lemma 1.9.1]. If $1 \leq f, g \in A(\mathbf{R})$ and

$$
\operatorname{supp}(f) \cap \operatorname{supp}(g)=\varnothing
$$

then $[f, g]=1$.
Lemma 2 [2, Lemma 1.9.3]. If $1 \leq f, h \in A(\mathbf{R})$, then $h \wedge f h^{-1}=1$ if and only if h is a set of bumps of f. Hence $[f, h]=1$ if $h \wedge f h^{-1}=1$.

Lemma 3 [2, Lemma 1.9.4]. If $1 \leq f, g \in A(\mathbf{R})$ and $f \wedge f^{g}=1$, then $f \ll g$.

In order to use these results we need a consequence of an analogue of Cayley's theorem for groups:

Lemma 4 [2, Corollary 2L]. Any countable lattice-ordered group is isomorphic to a sublattice subgroup of $A(\mathbf{R})$.

Actually, by [2, Corollary 2L], any countable lattice-ordered group is isomorphic to a sublattice subgroup of the lattice-ordered group of all orderpreserving permutations of the rationals. Since this latter lattice-ordered group can clearly be embedded in $A(\mathbf{R})$, the lemma follows.

We will always identify a countable lattice-ordered group with its associated sublattice subgroup of $A(\mathbf{R})$; so Lemmas 1-3 can then be applied to countable lattice-ordered groups.

For the notation, definitions and properties of wreath products, see [2, Section 5.1].

2. Proof of the theorem

Rephrasing the theorem in the notation of $\S 1$, we have:
Theorem. If G is a finitely presented lattice-ordered group, then $\mathbf{v}\{G\} \mathfrak{A}=$ $\mathbf{v}\{H\}$ for some finitely presented lattice-ordered group H.

Proof. Let $G=\left\langle g_{0}, \ldots, g_{m_{0}} ; r(\mathbf{g})=1\right\rangle$ generate \mathfrak{U}. As noted above, we may assume that each $g_{i} \geq 1$. Furthermore, by adding an extra generator and relation we may assume that $g_{1} \vee \cdots \vee g_{m_{0}}=g_{0}$, and incorporate this into $r(\mathbf{g})$.

Let $H=\left\langle a, g_{0}, \ldots, g_{m_{0}}, h_{0} ; r(\mathbf{g})=1, \quad a \wedge h_{0}=h_{0}, \quad g_{0} \wedge h_{0}=1\right.$, $\left.h_{0} g_{0}^{-a} \wedge g_{0}^{a}=1, h_{0} h_{0}^{-a} \wedge h_{0}^{a}=1\right\rangle$.

By Lemma 4, we may assume that H is a sublattice subgroup of $A(\mathbf{R})$.
Since $h_{0} h_{0}^{-a} \geq 1$, an easy induction shows that $h_{0} \geq h_{0}^{a^{m}}$ for all $m \in \omega$. Since $h_{0} g_{0}^{-a} \geq 1, h_{0}^{a^{m}} \geq g_{0}^{a^{m+1}}$ for all $m \in \omega$. Hence $h_{0} \geq g_{0}^{a^{m+1}} \geq 1$ for all $m \in \omega$. But $g_{0} \wedge h_{0}=1$; so $g_{0} \wedge g_{0}^{a^{m+1}}=1$ for all $m \in \omega$. Thus $g_{0}^{a^{m}} \wedge g_{0}^{a^{n}}=1$ if m and n are distinct integers. By Lemma $1,\left[g_{0}^{a^{m}}, g_{0}^{a^{n}}\right]=1$ for all $m, n \in \mathbf{Z}$.

Suppose that $h_{0}^{a^{m}}$ is a set of bumps of $h_{0}^{a^{n}}$ for some $m \geq n$. Then as $h_{0} h_{0}^{-a} \wedge h_{0}^{a}=1, h_{0}^{a^{m}} h_{0}^{-a^{m+1}} \wedge h_{0}^{a^{m+1}}=1$. So if $\alpha \in \operatorname{supp}\left(h_{0}^{a^{m+1}}\right)$, then $\alpha h_{0}^{a^{m+1}}$ $=\alpha h_{0}^{a^{m}}=\alpha h_{0}^{a^{n}}$ by hypothesis. Thus $h_{0}^{a^{n}} h_{0}^{-a^{m+1}} \wedge h_{0}^{a^{m+1}}=1$. It follows by Lemma 2 and induction that $h_{0}^{a^{m}}$ is a set of bumps of $h_{0}^{a^{n}}$ whenever $m \geq n$. Hence $\left[h_{0}^{a^{m}}, h_{0}^{a^{n}}\right.$] $=1$ for all $m, n \in \mathbf{Z}$ by Lemma 2. Also, by the same argument, $g_{0}^{a^{m}}$ is a set of bumps of $h_{0}^{a^{n}}$ whenever $m>n$. Hence $\left[g_{0}^{a^{m}}, h_{0}^{a^{n}}\right]=1$ for all $m, n \in \mathbf{Z}$ by Lemma 2 .

Let N be the ideal of G generated by $g_{0}, \ldots, g_{m_{0}}, h_{0}$. Since $g_{0} \wedge g_{0}^{a}=1 \&$ $1 \leq h_{0} \leq a, g_{0} \ll a$ by Lemma 3. Thus $g_{i} \ll a\left(0 \leq i \leq m_{0}\right)$. Moreover

$$
\left(a^{2}\right)^{g_{i}^{e}}=g_{i}^{-\varepsilon} a^{2} g_{i}^{\varepsilon}=a^{2}\left(g_{i}^{-\varepsilon}\right)^{a^{2}} g_{i}^{\varepsilon} \geq a \quad(\varepsilon= \pm 1) \quad \text { and } \quad g_{i}^{h_{0}}=g_{i}
$$

so the ideal generated by $g_{0}, \ldots, g_{m_{0}}$ is very much less than a. As g_{0}^{a} is a set of bumps of $h_{0}, a \notin N$. Thus H / N is generated by a and so $H / N \in \mathfrak{A}$. Therefore to prove that $H \in \mathfrak{U} \mathfrak{A}$ it is enough to show that $N \in \mathfrak{U}$.

Let $\alpha \in \operatorname{supp}\left(h_{0}^{a^{n}}\right) \backslash \operatorname{supp}\left(h_{0}^{a^{n+1}}\right)$. Then α belongs to the support of a bump of $h_{0}^{a^{n}}$ that is not a bump of $h_{0}^{a^{n+1}}$. Hence the same is true of $\alpha h_{0}^{r a^{n}}$ for all $r \in \mathbf{Z}$. Thus $\alpha h_{0}^{r a^{n}}<\alpha a$ for all $r \in \mathbf{Z}$.

Next let h_{1} be the join (in $A(\mathbf{R})$) of the set of bumps of h_{0} that are disjoint from their conjugate by a, and h_{2} the join (in $\mathscr{H}(\mathbf{R})$) of the remaining set of bumps of h_{0}. Note that no claim is made that $h_{1}, h_{2} \in H$. Moreover, if Δ is the support of a bump of h_{2}, then as $h_{0}^{a^{m}}$ is a set of bumps of h_{0} for all $m \in \omega, h_{0}^{a^{m}}\left|\Delta=h_{0}\right| \Delta$ for all $m \in \omega$. Hence if $m \in \omega$ and $\beta \in \operatorname{supp}\left(h_{2}\right)$, $\beta h_{0}^{a^{m}} a=\beta a h_{0}^{a^{m+1}}=\beta a h_{0}=\beta a h_{0}^{a^{m}}$ since $\Delta a=\Delta$. Also observe that $g_{0}^{a^{n}} \wedge h_{2}$ $=1=h_{1}^{a^{n}} \wedge h_{2}$ for all $n \in \mathbf{Z}$.

Let f_{0} be the join (in $\mathfrak{A}(\mathbf{R})$) of the bumps of $\left\{g_{0}^{a^{n}}: n \in \mathbf{Z}\right\}$ and f_{1} the join (in $\mathfrak{H}(\mathbf{R})$) of the remaining set of bumps of h_{1}. Observe that

$$
\operatorname{supp}\left(f_{j}\right) H=\operatorname{supp}\left(f_{j}\right) \quad(j=0,1)
$$

Furthermore, any element of N when restricted to $\operatorname{supp}\left(f_{0}\right)$ is an element of $\Pi\{G: n \in \mathbf{Z}\} \in \mathfrak{U}$ since $N \mid \operatorname{supp}\left(f_{1}\right) \ll a$ and

$$
h_{0} \left\lvert\, \Delta_{n}= \begin{cases}g_{0}^{a^{n}} \mid \Delta_{n} & \text { if } 0<n \in \mathbf{Z} \\ 1 \mid \Delta_{n} & \text { if } 0 \geq n \in \mathbf{Z}\end{cases}\right.
$$

where $\Delta_{n}=\operatorname{supp}\left(g_{0}^{a^{n}}\right)$. Also, on $\operatorname{supp}\left(f_{1}\right) \backslash \operatorname{supp}\left(f_{0}\right)$, any element of N is just a power of f_{1}. Therefore $N \mid \operatorname{supp}\left(f_{1}\right) \backslash \operatorname{supp}\left(f_{0}\right) \in \mathfrak{A} \subseteq \mathfrak{U}$. Finally, on $\mathbf{R} \backslash$ $\operatorname{supp}\left(f_{1}\right)$ any element of N agrees with a finite join of a finite meet of $h_{2}^{s} a^{t}$
(s, t integers). Since $\left[h_{2}, a\right]=1$ as noted in the previous paragraph,

$$
N \mid \mathbf{R} \backslash \operatorname{supp}\left(f_{1}\right) \in \mathfrak{A} \subseteq \mathfrak{U}
$$

Consequently, $N \in \mathfrak{U}\left(\operatorname{supp}\left(f_{j}\right) H=\operatorname{supp}\left(f_{j}\right)(j=0,1)\right) .{ }^{4}$ Thus $\mathbf{v}\{H\} \subseteq \mathfrak{H} \mathfrak{A}$.
Let $\bar{g}_{i}, \bar{h}_{0}, \bar{a} \in G \mathrm{Wr} \mathbf{Z}$ be $\left(\left\{g_{i, n}\right\}, 0\right),\left(\left\{h_{0, n}\right\}, 0\right)$ and $(\{0\}, 1)$ respectively, where

$$
g_{i, n}=\left\{\begin{array}{ll}
g_{i} & \text { if } n=0 \\
1 & \text { if } n \neq 0
\end{array} \quad \text { and } \quad h_{0, n}= \begin{cases}g_{0} & \text { if } n>0 \\
1 & \text { if } n \leq 0\end{cases}\right.
$$

Then $\bar{g}_{i}, \bar{h}_{0}, \bar{a}\left(0 \leq i \leq m_{0}\right)$ satisfy the defining relations of H and hence generate a sublattice subgroup A of $G \mathrm{WrZ}$ that is a homomorphic image of H. But the sublattice subgroup B of A generated by $\bar{g}_{i}, \bar{a}\left(0 \leq i \leq m_{0}\right)$ is isomorphic to G wr \mathbf{Z}, so as G wr \mathbf{Z} generates $\mathfrak{U} \mathfrak{H}$ [6, Theorem 4.2], $\mathfrak{u} \mathfrak{A} \subseteq$ $\mathrm{v}\{\boldsymbol{H}\}$.

3. The word and conjugacy problems for \boldsymbol{H}

We now sketch that the word and conjugacy problems for the H constructed in the proof of the theorem are of the same degrees of those of G.

First observe that since $g_{0}, \ldots, g_{m_{0}} \ll a$ and g_{0}^{a} is a set of bumps of h_{0}, $w=\vee_{j} \wedge_{j} w_{i j}=1$ in H with $w_{i j}$ group words in $g_{0}, \ldots, g_{m}, h_{0}, a$ only if for some $i_{0} \in I, \min _{j} e\left(w_{i_{0}}, a\right)=0 \geq \min _{j} e\left(w_{i j}, a\right)$ for all $i \in I$, where $a^{e\left(w_{i j}, a\right)}$ is the result of replacing each occurrence of $g_{0}, \ldots, g_{m_{0}}, h$ by 1 in $w_{i j}$. If this condition is satisfied then consider what occurs on $\operatorname{supp}\left(f_{0}\right)$ using the algorithm for G. If this is the identity on $\operatorname{supp}\left(f_{0}\right)$, then consider what occurs on $\operatorname{supp}\left(f_{1}\right)$ using (i) h_{0}^{a} is a set of bumps of h_{0}, (ii) the disjointness of any bump of f_{1} from its conjugate by a and (iii) $g_{i}^{a^{k}}$ is the identity on $\operatorname{supp}\left(f_{1}\right)$ ($0 \leq i \leq m_{0}, k \in \mathbf{Z}$). Clearly we can determine whether or not this is the identity on $\operatorname{supp}\left(f_{1}\right)$ using the technique (but with many cases deleted) in [7]. $\operatorname{On} \operatorname{supp}\left(h_{2}\right), g_{i}^{a^{k}}$ is the identity $\left(0 \leq i \leq m_{0} ; k \in \mathbf{Z}\right)$ and $\left[h_{0}, a\right]=1$. Since the universal theory of abelian lattice-ordered groups is decidable [9], we can determine if w is the identity on $\operatorname{supp}\left(h_{2}\right)$. If any of these tests come up with a non-identity permutation of the requisite subset of $\mathbf{R}, w \neq 1$ in H; if they all yield the identity permutation on $\mathbf{R}, w=1$ in H.

Since $\left[g_{0}^{a^{m}}, h_{0}^{a^{n}}\right]=1$ for all $m, n \in \mathbf{Z}$ and g_{0}^{a} is a set of bumps of h_{0}, we can clearly adapt the above argument to determine conjugacy in H given an oracle for G. Hence we have:

Corollary. The finitely presented lattice-ordered group H obtained in the proof of the theorem has word and conjugacy problems of the same degrees as those of G.

[^2]
4. Concluding remarks

The last paragraph of the proof of the theorem shows that $G \mathrm{wr} \mathbf{Z}$ is a homomorphic image of a sublattice subgroup of H with H and $G \mathrm{wr} \mathbf{Z}$ generating the same variety of lattice-ordered group. So, in some sense, H is a finitely presented approximation to $G \mathrm{wr} \mathbf{Z}$. Furthermore, the map $g_{i} \mapsto \bar{g}_{i}$ embeds G in G wr \mathbf{Z}; thus the map $g_{i} \mapsto g_{i}$ embeds G in H. If I could prove that H had trivial centre (which I conjecture), there would be an alternative proof of [5, Corollary A4]: Every finitely presented lattice-ordered group can be embedded in one with trivial center. See [3] for other results on embedding finitely presented lattice-ordered groups in nice such.

As we saw, many well known varieties-e.g., $\mathfrak{A}^{m}(m \in \omega)$-are generated by a single finitely presented lattice-ordered group. None of these varieties is generated by a set of totally ordered groups. Actually, if a lattice-ordered group G is a subdirect product of totally ordered groups, then $f \wedge f^{g}=1$ implies $f=1$ [1, Theorem 4.2.5], cf. Lemma 3. Moreover, if ξ is any irrational real number, then $(m, n) \geq(0,0)$ if and only if $m+n \xi \geq 0$ gives a total order on $\mathbf{Z} \oplus \mathbf{Z}$; it is hard to imagine any single defining relation between generators that would determine ξ uniquely. For this reason I conjecture:
(1) The only totally ordered groups that are finitely presented as lattice-ordered groups are \mathbf{Z} and $\{1\}$.

More generally:
(2) Is every subdirect product of totally ordered groups that is finitely presented as a lattice-ordered group abelian?

Since every nilpotent lattice-ordered group is a subdirect product of totally ordered groups (see [8] or [10]), a positive answer to (2) would imply that no non-abelian nilpotent lattice-ordered group can be finitely presented as a lattice-ordered group. If this at first seems strange, it should be pointed out that, for example,

$$
[x \vee y, z]=\left([x, z] \vee x^{-1} y[y, z]\right) \wedge\left(y^{-1} x[x, z] \vee[y, z]\right)
$$

in any lattice-ordered group. Hence there is no guarantee that $[a, b$] is central implies that $\left[a^{m} \vee b^{n}, b\right]$ is for all $m, n \in \omega$.

References

1. A. Bigard, K. Keimel and S. Wolfenstein Groupes et Anneaux Réticulés, Lecture Notes in Math., vol. 608, Springer, Heidelberg, 1977.
2. A.M.W. Glass, Ordered permutation groups, London Math. Soc. Lecture Notes Series, vol. 55, University Press, Cambridge 1981.
3. , Countable lattice-ordered groups, Math. Proc. Cambridge Phil. Soc., vol. 94(1983), pp.
\qquad 29-33.
4. \qquad , "Effective extensions of lattice-ordered groups that preserve the degrees of the conjugacy and word problems" in Ordered algebraic structures (edited by W.B. Powell and C. Tsinakis), Lecture Notes in Pure \& Applied Math., vol. 99, Marcel Dekker, Basel, 1985, pp. 89-98.
5. \qquad , Effective embeddings of countable lattice-ordered groups, Proc. 1-st International Symposium on Ordered Algebraic Structures, Luminy, France 1984, to appear.
6. A.M.W. Glass, W.C. Holland and S.H. McCleary, The structure of l-group varieties, Algebra Universalis, vol. 10(1980), pp. 1-20.
7. W.C. Holland and S.H. McCleary, Solvability of the word problem in free lattice-ordered groups, Houston J. Math., vol. 5(1979), pp. 99-105.
8. H.A. Hollister, Nilpotent l-groups are representable, Algebra Universalis, vol. 8(1978), pp. 65-71.
9. N.G. Khisamiev, Universal theory of lattice-ordered abelian groups, Algebra i Logika, vol. 5(1967), pp. 71-76 (in Russian).
10. V.M. Kopytov, Lattice-ordered locally nilpotent groups, Algebra and Logic, vol. 14(1975), pp. 249-251.
11. V.M. Kopytov and N.Ya. Medvedev, Varieties of lattice-ordered groups, Algebra and Logic, vol. 16(1977), pp. 281-285.
12. J. Martinez, Varieties of lattice-ordered groups, Math. Zertschr., vol. 137 (1974), pp. 265-284.
13. E.B. Scrimger, A large class of small varieties of lattice-ordered groups, Proc. Amer. Math. Soc., vol. 51(1975), pp. 301-306.
14. E.C. Weinberg, Free lattice-ordered abelian groups, Math. Ann., vol. 151(1963), pp. 187-199.

Bowling Green State University
Bowling Green, Ohio

[^0]: Received March 18, 1985.
 ${ }^{1}$ Research supported in part by a grant from the National Science Foundation.

[^1]: ${ }^{2}$ The H constructed is a sublattice subgroup of $\left[(G\right.$ 园) $\mathrm{Wr} \mathbf{Z}]$ 田 \boldsymbol{A}_{2}, where

 $$
 A_{2}=\langle x, y ; x \wedge 1=1, x \wedge y=x, x y=y x\rangle
 $$

 ${ }^{3}$ The finitely presented lattice-ordered group in [4] does not generate $\mathfrak{H} \mathfrak{H}$.

[^2]: ${ }^{4}$ The proof shows that H is a sublattice subgroup of

 $$
 [(G \boxplus \mathbf{Z}) \mathrm{Wr} \mathbf{Z}] \boxplus A_{2} \quad \text { where } \quad A_{2}=\langle x, y ; x \wedge 1=1, x \wedge y=x, x y=y x\rangle .
 $$

