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0. Introduction

In this note we will be concerned with varieties of lattice-ordered groups,
finitely presented lattice-ordered groups and wreath products of lattice-ordered
groups.
The totally ordered group of integers Z is finitely presented as a lattice-

ordered group: Z (x; x A 1 1), where 1 denotes the group identity.
Moreover, the variety 92 of Abelian lattice-ordered groups is the smallest
variety of lattice-ordered groups containing Z [14]. So certain "natural"
non-trivial varieties of lattice-ordered groups are generated by a single finitely
presented lattice-ordered group. Note that "finitely presented" means in the
variety of a// lattice-ordered groups, not in the subvariety being considered.
Now if G and H are finitely presented lattice-ordered groups and generate
varieties 1I and 3 respectively, then clearly G m H generates 1I v 3, where
G t H is the ordered direct product of G and H where (g, h) > 1 if and only
if g > 1 (in G) and h > 1 (in H). Further, G m H is finitely presented: take as
generators the disjoint union of the generating sets { g: I} of G and
{ hj: j J } of H, and as defining relations the union of those of G and H
together with Ig;I ^ Ihyl- 1 (i I, j J), where Ixl-- x /x-x. Hence the
set of varieties of lattice-ordered groups generated by single finitely presented
lattice-ordered groups is a join semilattice of the lattice of varieties of
lattice-ordered groups.

If 1I and are each generated by a single finitely presented lattice-ordered
group, what about 1I N 3 and 1I3? In the case that 3 9 which is
generated by Z, the answer is yes. By [14], 1I N 9A 92 except when 1I is the
variety defined by x’qy (x y). The main result in this paper is therefore:
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THEOREM. If 1I is a variety of lattice-ordered groups generated by a single
finitely presented lattice-ordered group, then so is 1I.

Since 1I 9 is generated by G wr Z if 1I is generated by G [6, Theorem 4.2],
the proof of the theorem requires us in some sense to approximate G wr Z by a
finitely presented lattice-ordered group. 2 The construction is far more general
than that given in [4], where the finitely presented lattice-ordered group
constructed from G was a sublattice subgroup of G wr Z having word and
conjugacy problems of the same degrees.as those of G. We will show that the
finitely presented lattice-ordered group H obtained in the proof of the theorem
from G has word and conjugacy problems of the same degrees as those of G.

Let (R)n denote the Scrimger n variety, 1 < n to (0,1,2,... } [1.3]. As
noted in [4], (R)n is generated by the finitely presented lattice-ordered group G
for all 1 < n. Hence, as an immediate corollary to the theorem and the above
we have"

COROLLARY. Let m to and 1 < n to.

(i) ,n is generated by a finitely presented lattice-ordered group with soluble
conjugacy problem.

(ii) , m is generated by a finitely presented lattice-ordered group with
soluble conjugacy problem.

Thus we obtain a countably infinite set of distinct "natural" varieties of
lattice-ordered groups each of which is generated by a single finitely presented
lattice-ordered group. As there is only a countably infinite set of non-isomor-
phic finitely presented lattice-ordered groups, this is the maximum number
possible. Since there are continuum many varieties of lattice-ordered groups
[11], most varieties are not so generated.

I. Background definitions and results

A convex normal sublattice subgroup of a lattice-ordered group is called an
ideal. Ideals are precisely the kernels of homomorphisms between lattice-
ordered groups. (Of course, homomorphism is with respect to both the group
and lattice operations.)

2The H constructed is a sublattice subgroup of [(G Z)WrZ] m A2, where

A2 (x, y" x A l l, x A y x, xy yx).

3The finitely presented lattice-ordered group in [4] does not generate 1I 9.
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For any lattice-ordered group G, let v( G} denote the intersection of all
varieties of lattice-ordered groups that contain G. So v{ G ) is itself a variety of
lattice-ordered groups.

If 1I and 8 are varieties of lattice-ordered groups, then 1I is defined by:
G 1I if and only if there is an ideal N of G such that N 1I and
G/N 8 (see [6] but contrast with [12] where this definition would give 31I).
It is indeed a variety of lattice-ordered groups [12]. Now v{ G } 9 v( G wr Z}
[6, Theorem 4.2] so the theorem states that if G is any finitely presented
lattice-ordered group, there is a finitely presented lattice-ordered group H such
that v{ H} v{ G wrZ}; i.e., H and G wrZ generate the same variety of
lattice-ordered groups.

If G is a lattice-ordered group and g G, then Igl--g v g-X> 1 and
gI= 1 if and only if g=l. Moreover, g=(gV 1)(g-Iv1)-1 [1, 1.3.3,
1.3.10 & 1.3.11]. Hence if (gl,..., g,} generates G, so does

(g v 1, gi- v 1,..., gm V 1, g v 1};
i.e., the generators of any finitely generated lattice-ordered group can be
assumed to be greater than or equal to 1. Further, if rx(g),..., rn(g) are any
elements of the free lattice-ordered group on these generators, then

r(g) 1 &... & rn(g) 1

if and only if

Irx(g)l v Vlr(g)l 1.

Therefore any finitely presented lattice-ordered group can be written in the
form

(g,’’’,gm;r(g) =1), wheregi > 1 (1 <i<m).

Throughout, the following standard notation will be used: a b for b-ab;
a -b for (a-1)b; [a, b] for a-lb-ab; a << b for am < b for all rn
The only way I can prove the theorem is to use some results on order-

preserving permutations of totally ordered sets. The following can be found in
[2].

Let A(R) Aut((R, < )), the lattice-ordered group of all order-preserving
permutations of the real line, the group operation being composition and the
order being pointwise (f < g if and only if af < ag for all a R). The
support of g A(R) is denoted by

supp(g) (et R" ag * a}.

If for all (any) a0 supp(g) the convexification of (aog": n Z) in R is the
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entire support of g, then g is said to have one bump. Such a g is called a bump
off if cff= ag for all a supp(g). More generally, h is said to be a set of
bumps off if every bump of h is a bump of f; so af ah for all a supp(h)
and [f, h] I in this case. The following are easy to prove:

LEMMA 1 [2, Lemma 1.9.1]. If 1 <_ f, g A(R) and

then [f, g] 1.

supp(f) c3 supp(g) ,

LEMMA 2 [2, Lemma 1.9.3]. If 1 <_ f, h A(R), then h A fh-1
only if h is a set of bumps off. Hence If, hi 1 if h A fh-1 1.

1 if and

LEMMA 3 [2, Lemma 1.9.4].
f<< g.

ff 1 < f, g A(R) and f A fg 1, then

In order to use these results we need a consequence of an analogue of
Cayley’s theorem for groups"

LEMMA 4 [2, Corollary 2L]. Any countable lattice-ordered group is isomor-
phic to a sublattice subgroup of A(R).

Actually, by [2, Corollary 2L], any countable lattice-ordered group is
isomorphic to a sublattice subgroup of the lattice-ordered group of all order-
preserving permutations of the rationals. Since this latter lattice-ordered group
can clearly be embedded in A(R), the lemma follows.
We will always identify a countable lattice-ordered group with its associated

sublattice subgroup of A(R); so Lemmas 1-3 can then be applied to countable
lattice-ordered groups.

For the notation, definitions and properties of wreath products, see
[2, Section 5.1].

2. Proof of the theorem

Rephrasing the theorem in the notation of 1, we have:

THEOREM. If G is a finitely presented lattice-ordered group, then v( G ) 9.1
v( H ) for some finitely presented lattice-ordered group H.

Proof Let G (g0,..., gin0; r(g)= 1) generate 1I. As noted above, we
may assume that each gi > 1. Furthermore, by adding an extra generator and
relation we may assume that gx v v gmo--" go, and incorporate this into
r(g).
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Let H (a, go,-.-, gmo’ ho; r(g) 1, a A ho ho, go A ho 1,
hogff A g3 1, hoh- a A hg 1).
By Lemma 4, we may assume that H is a sublattice subgroup of A(R).

aSince h oh
a >_. 1, an easy induction shows that h o > h o for all m to.

am+ am+Since hogff a > 1, hg > go for all m to. Hence h o > go > 1 for all
am+ amto. ButgoAho=l;sogoAgo =lforallmto. Thusg Ago =1

aif m and n are distinct integers. By Lemma 1, [go g 1 for all m, n Z.
Suppose that hg is a set of bumps of h g for some m > n. Then as

am., am+l am+l ,.vam+lhoh- A hg 1, /o/* A /o 1. So if a supt.n o ), then ahg
m+l

,,m= A hg 1. It follows byaho ahg by hypothesis. Thus h
Lemma 2 and induction that h g is a set of bumps of h g" whenever m > n.

aHence [ho,ho]=l for all m,nZ by Lemma 2. Also, by the same
a aargument, go is a set of bumps of h an

o whenever m > n Hence [go hn] 1
for all m, n e Z by Lemma 2.

Let N be the ideal of G generated by go,.--, g,,o, h o" Since go A g 1 &
1 < h o < a, go << a by Lemma 3. Thus gi << a (0 _< _< too). Moreover

(a2) g g-i-*.a2g, a2(g-,.) a2g>a (e= +1) and g/ho=gi;

SO the ideal generated by go,..., g,o is very much less than a. As g is a set of
bumps of h o, aN. Thus H/N is generated by a and so H/N9.
Therefore to prove that H 1I 9 it is enough to show that N

a an+lLet a supp(h o ) \ supp(h o ). Then a belongs to the support of a bump
a --an+lof h 0 that is not a oump ot 0 Hence the same is true of ahroan for all

r Z. Thus ahroan < aa for all r Z.
Next let h be the join (in A(R)) of the set of bumps of h 0 that are disjoint

from their conjugate by a, and h 2 the join (in (R)) of the remaining set of
bumps of h o. Note that no claim is made that hi, h2 H. Moreover, if A is
the support of a bump of h2, then as hg is a set of bumps of h 0 for all
m to, h 0 A h olA for all m to. Hence if m to and fl supp(h2),
flhg"a flah a’/l flah flah am an

0 0 0 since Aa A. Also observe that go A h 2
1 =h’nAh2forallnz.

aLet fo be the join (in 9(R)) of the bumps of (go n Z) and f the join
(in 9 (R)) of the remaining set of bumps of h. Observe that

supp(f)H supp(f) (j O, 1).

Furthermore, any element of N when restricted to supp(fo) is an element of
II ( G: n Z} 1I since N]supp(f) << a and

an
holA,,

go
llA,,

if0<nZ

if0>nZ

where A, supp(g"). Also, on supp(fl) \ supp(f0), any element of N is just
a power of fx. Therefore Nlsupp(fl)\ supp(f0) 9

__
1I. Finally, on R\

supp(f) any element of N agrees with a finite join of a finite meet of h2at
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(s, t integers). Since [h2, a] 1 as noted in the previous paragraph,

NIR \ supp(f) 9 _c 1I.

Consequen_tly, N 1I (supp(f)H supp(f.) (j 0, 1)).4 Thus v( H )
__

1I 92.
Let g;, h o, G Wr Z be (( g, }, 0), (( h o, }, 0) and ((0), 1) respectively,

where

=(go if n>0g if n=0
and ho,g’=

1 if n4:0 1 if n_<0

Then gi, h o, ff (0 _<i< m0) satisfy the defining relations of H and hence
generate a sublattice subgroup A of G Wr Z that is a homomorphic image of
H. But the sublattice subgroup B of A generated by gi, ff (0 < < m0) is
isomorphic to G wr Z, so as G wr 7’, generates 1I [6, Theorem 4.2], 119

__
3. The word and conjugacy problems for H

We now sketch that the word and conjugacy problems for the H constructed
in the proof of the theorem are of the same degrees of those of G.

First observe that since go,..., gmo << a and gO is a set of bumps of h 0,

w V.iA.iw./= 1 in H with w. group words in go,..., gin, h0, a only if for
some o I, min.ie(Wo, a) 0 > minje(wj, a) for all I, where ae(wJ’a)

is the result of replacing each occurrence of go,..., gmo’ h by 1 in wj. If this
condition is satisfied then consider what occurs on supp(f0) using the al-
gorithm for G. If this is the identity on supp(f0), then consider what occurs on
supp(fl) using (i) hg is a set of bumps of h 0, (i.i) the disjointness of any bump
of fl from its conjugate by a and (iii) gi

a is the identity on supp(f)
(0 < < m o, k Z). Clearly we can determine whether or not this is the
identity on supp(f) using the technique (but with many cases deleted) in [7].

aOn supp(h2), gg is the identity (0 < < m0; k Z) and [h 0, a] 1. Since
the universal theory of abelian lattice-ordered groups is decidable [9], we can
determine if w is the identity on supp(h2). If any of these tests come up with a
non-identity permutation of the requisite subset of R, w #: 1 in H; if they all
yield the identity permutation on R, w 1 in H.

aSince [go hg 1 for all m, n Z and g is a set of bumps of h 0, we can
clearly adapt the above argument to determine conjugacy in H given an oracle
for G. Hence we have:

COROLLARY. The finitely presented lattice-ordered group H obtained in the
proof of the theorem has word and conjugacy problems of the same degrees as
those of G.

4The proof shows that H is a sublattice subgroup of

[(G[]Z)WrZ][]A where A2= (x, y; x /x l l, x /x y x, xy yx).
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4. Concluding remarks

The last paragraph of the proof of the theorem shows that G wr Z is a
homomorphic image of a sublattice subgroup of H with H and G wrZ
generating the same variety of lattice-ordered group. So, in some sense, H is a
finitely presented approximation to G wrZ. Furthermore, the map gg g
embeds G in G wr Z; thus the map g. g embeds G in H. If I could prove
that H had trivial centre (which I conjecture), there would be an alternative
proof of [5, Corollary A4]" Every finitely presented lattice-ordered group can
be embedded in one with trivial center. See [3] for other results on embedding
finitely presented lattice-ordered groups in nice such.
As we saw, many well known varieties--e.g., 9 m (m 0)--are generated

by a single finitely presented lattice-ordered group. None of these varieties is
generated by a set of totally ordered groups. Actually, if a lattice-ordered
group G is a subdirect product of totally ordered groups, then f/x fg 1
implies f 1 [1, Theorem 4.2.5], cf. Lemma 3. Moreover, if is any irrational
real number, then (m, n) > (0, 0) if and only if m + n > 0 gives a total order
on Z Z; it is hard to imagine any single defining relation between generators
that would determine uniquely. For this reason I conjecture:

(1) The only totally ordered groups that are finitely presented as
lattice-ordered groups are Z and {1 }.
More generally:
(2) Is every subdirect product of totally ordered groups that is finitely

presented as a lattice-ordered group abelian?
Since every nilpotent lattice-ordered group is a subdirect product of totally

ordered groups (see [8] or [10]), a positive answer to (2) would imply that no
non-abelian nilpotent lattice-ordered group can be finitely presented as a
lattice-ordered group. If this at first seems strange, it should be pointed out
that, for example,

[x V y, z] (Ix, z V x-ly[y, z]) A (y-ix[x, z] V [y, zl)
in any lattice-ordered group. Hence there is no guarantee that [a, b] is central
implies that [a’ v bn, b] is for all m, n 0.
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