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THE BRAUER RING OF A FIELD

BY

E.T. JACOBSON

The topic of this work is the Brauer group of a commutative ring. Recent
investigations have yielded generalizations of this invariant in several direc-
tions; herein we wish to propose another" that the Brauer group be viewed as a
subgroup of the unit group of the "Brauer ring". In justification, we should
expect this ring to store and yield information about separable algebras which
the Brauer group does not, and we should hope to be able to recover the
Brauer group from purely ring theoretic properties. One purpose of the present
paper is to describe the extent to which these goals are achieved. Another is to
show that, in a categorical sense, the ring we shall describe is best possible.
To obtain structural results for the Brauer ring, we will make use of the

theory of Green-functors, especially of the Burnside ring. Our structure theory
will be independent of the construction of the Brauer ring, thus giving promise
for applications in other areas. So as to not get too lost in our categorical
approach, we have omitted some straight-forward axiom checking proofs; they
may be regarded as exercises.

In this paper we will restrict our attention to the field case, leaving the
Brauer ring of more general algebraic objects to another time.
The author wishes to express his deep respect and thanks to Professor R. S.

Pierce, for his endless insights in to the problems at hand, and for asking the
fundamental questions on which this work is based.

1. The Brauer ring

The purpose of this section is to construct the Brauer ring, and to outline a
few elementary consequences of this construction.

Let ElF be a (not necessarily finite) Galois extension of fields with Galois
group G. Let SEP(E,F) be the category of separable F-algebras A, with the
center of A (denoted Z(A)) isomorphic as F-algebras with a finite product of
subfields of E, each subfield being finite dimensional over F. If the extension

ElF is understood, we may abbreviate SEP(E, F) as SEP. Plainly, SEP is
closed under the formation of algebra products. It is also closed under tensor
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products. The proof of this requires a well known result, which we just state
(see [15, Lemma 18.1a]).

1.1 LEMMA. Let K/F, K2/F be finite separable field extensions contained in
the finite Galois extension ElF. Let G Gal(E/F) and H Gal(E/Ki).
Choose el,..., % G to obtain a double coset decomposition"

G J HlOin2.
i--1

Then K (R)F K2
subfield of ElF.

L -i-...-i-Ln, where Z KIOi(K2) is a finite separable

A generalization of this result will appear in another paper by the author [9].
Now to show closure under tensor products, let A, B SEP, with

Z(A) K 4 4Kin, Z(B) L - Ln,

with each Ki, Zj a finite separable extension of F. Since any pair Ki, Lj can be
embedded in a finite Galois extension of F contained in E, it follows that

Z(A F B)" Z(A) (R)F Z(B) 1-IKi (R)F Lj,
i,j

which is in turn isomorphic with a finite product of subfields of E, by 1.1.
It follows that we may form the Grothendieck ring of the category SEP (see

[1, pp. 344-47]), which we denote by S(E, F). We denote the image of an
object A SEP(E, F) in S(E, F) by [A]. The following proposition collects
some basic facts about Grothendieck tings, as applied to S(E, F).

1.2 PROPOSITION. (a) Every element of S(E, F) can be expressed in the
form A] B], some A, B SEP.

(b) For elements [A],[B] in S(E, F), [A] + [B] [A -i- B], and [A][B]
[A (R)F B]. Also 1S(E,F) [F].
(c) If A, B SEP, then [A] [B] if and only ifA B as F-algebras.

Proof (a), (b) and the if part of (c) are direct consequences of the
definitions. For the only if part of (c), suppose [A] [B]. Then there is an
algebra C SEP with A -i- C B -i- C as F-algebras. Now apply the unique-
ness statement in Wedderburn’s theorem, m

Note that if A is a finite dimensional, simple F-algebra, with Z(A) F-iso-
morphic to a subfield of E, then A is a central simple Z(A)-algebra, and
Z(A) is a finite separable F-algebra. Since central simple algebras are sep-
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arable, transitivity of separability implies that A is a separable F-algebra,
hence A SEP. Thus any product A Jr -i-Ar, with each A simple and
Z(Ai) isomorphic to a finite dimensional subfield of E, is in SEP. Conversely,
by Wedderburn’s theorem, any algebra in SEP has this form uniquely up to
F-isomorphism. This discussion, together with 1.2, establishes the next result.

1.3 PROPOSITION. As an abelian group, S(E, F) is free on the set

( A ]" A SEP, A is simple ).

S(E, F) is too large to be manageable. We need to factor by an ideal
roughly generated by differences of Morita equivalent algebras. Obtaining this
ideal is our next goal.

1.4 PROPOSITION. There is a group endomorphism of S(E, F) such that if
A M (D) as F-algebras, where D SEP is a division algebra, then/3([A])
[D ]. The image of is the subgroup of S(E, F) that is freely generated by the set

{[D]: D SEP is a division algebra}. Moreover, for all u, v S(E, F), we
have the identities fl(fl(u)) fl(u) and fl(/3(u)fl(v)) fl(uv).

Proof If A SEP is simple, then A Mn(D), where D is a division
algebra with Z(A) Z(D). Thus D SEP. Moreover, if B Mm(D’) SEP
with A B, then by Wedderburn’s theorem, D D’. It follows from 1.3 that
the correspondence [A] [D] gives a well defined group endomorphism fl of
S(E, F) such that fl([Mn(D)]) [D]. The statement regarding the image of/3
is clear. Since fl(fl([M,(D)])) [D] fl([M,(D)]), it follows that fl(fl(u))
fl(u), all u S(E, F). For the final identity, let A M,(D), B Mm(D’)
be in SEP, where D, D’ are division algebras. Since D (R)F D’ is semisimple, we
can write D (R)F D’ Mnx(D1) - -Mnr(Dr). Then,

A @F B (M,(F) @F D) (R)F(Mm(F) (R)F D’)
Mmn(r) (R)F(D (R)F D’ )

Mmn(F ) (R)F(Mn,(D1) Jr" +Mn(Dr)
Mmnnl(D1) + +Mmnnr(Dr).

Therefore,

fl(fl([A])fl([B])) fl([D (R)F D’])
[D1] + +[Dr]

B])
fl([AI[B]).
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Hence, fl(fl(u)fl(v)) fl(uv) for all u, v e S(E, F).

1.5 COROLLARY. ker fl is an ideal of S( E, F). As an ideal it is generated by
{[M.(F)]- [F]" n >_ 1}.

Proof Suppose u kerfl and v S(E, F). Then

 (uo) 0,

thus ker fl is an ideal. Let 1 be the ideal of S(E, F) generated by

{ [M.(F)]- [F]" n>l).

Plainly, I ker ft. Conversely if A M.(D) SEP, then

[A] -/3([AI) [DI([M.(F)] [FI) I.

Extending linearly, it follows that [B] fl([B]) I for all B SEP. This if
[A] [B] kerfl, then fl([A]) fl([B]) so that

[AI [B] ([a]-/3([A])) ([B] -/3([B])) I.

Hence ker fl
__

I. B

The factor ring S(E, F)/kerfl is called the Brauer ring of the extension
ElF. We denote this ring by B(E, F). If E Fs is the separable algebraic
closure of F, then we denote S(Fs, F) S(F) and B(Fs, F) B(F). B(F)
is the Brauer ring of the field F. Note that whenever E

_
E’ is an inclusion of

Galois extensions of F, there is an induced inclusion of categories SEP(E, F)_
SEP(E’, F), hence also of tings S(E, F)

_
S(E’, F), B(E, F)

_
B(E’, F). Since every finite Galois extension of F is contained in Fs, and Fs
is the union (direct limit) of such extensions, we obtain

1.6 PROPOSITION. Let F be any field. Then as rings,

and

S(F) US(E, F) li.mS(E, F),
E E

B(F) [,.JB(E, F) lioB(E, F)
E E

where the union and the limit are over the directed set of all finite Galois
extensions of F contained in Fs.
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The point of this proposition is that it effectively reduces the structure
theory of B(F) down to the computation of B(E, F) for a finite Galois
extension ElF.

For notation, we let (A)= [A] + kerfl denote the image of an algebra
A SEP in B(E, F).

1.7 PROPOSITION. For any Galois extension E/F, B(E/F) is free (as an
abelian group) on the generating set ((D): D SEP is a division algebra }.
Moreooer, if D, D’ are division algebras in SEP, then D) D’) if and only
if D D’ as F-algebras.

Proof Since /2 j, it follows that S(E, F) ker/3 im/3. Therefore,
the canonical isomorphism of abelian groups B(E, F) im/3, together with
1.4, imply the first statement. If (D)= (D’), then [D]- [D’] kerfl, so
0 =/3([DI [D’]) [D] [D’]. Thus D D’ as F-algebras, by 1.2(c). I

For any field F, we let Br(F) denote its Brauer group, and for a central
simple F-algebra A, we let (A) denote its class in Br(F). It follows from 1.7
that for any Galois extension E of F, the mapping (A) A) from Br(F) to

B(E, F) is a well defined monomorphism into the group of units of B(E, F).
From this point we could proceed directly to the structure of B(E, F);

however, we prefer to follow a less direct route. We hope in the end that our
methods will justify themselves, in simplifying arguments which would
otherwise be a morass of technicalities, and in building the framework for
generalizations to other areas of research.

2. The F-Burnside ring

In this section we construct a generalization of the Burnside ring of a finite
group (see [4], [16], [17]). We then prove a few elementary results which will be
essential to our later work.
Throughout our present discussion, G will denote a fixed finite group. A

G-set is a finite set on which G acts from the left. The category of all finite
G-sets will be denoted ; its morphisms are set maps which commute with the
action of G. Note that if S and T are G-sets, then the disjoint union S T
and the cartesian product S T (with the diagonal action) are also G-sets.
Thus the set of isomorphism classes of finite G-sets becomes a commutative
semi-ring. The Grothendieck ring constructed from this semi-ring is called the
Burnside ring of G; it will be denoted A(G). Elements of A(G) are formal
differences S] [T] where S, T f. Moreover, [S] + IT] [S (C) T] and
[S][T] [S T].

Let P P(G) denote the set of all conjugacy classes of subgroups of G. For
each b P, pick a representative Hb of b, and let S denote the transitive
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G-set of cosets modulo Hb. Then A(G) is free (as an abelian group) on the set

([S]: a P }, that is, (S: a P is a complete set of representatives of
isomorphism classes of transitive G-sets.

Let F: ’ AM be a contravariant functor, where AM denotes the category
of abelian monoids (we use AM for convenience; our construction would go
through with AM replaced by the category of semi-groups). For a map of
G-sets a: S T, we shall denote

a= F(a)" F(T) - F(S).

Such a functor will be called additioe if given any two G-sets $1, $2, with
inclusions Ki" S SI (C) S2, the induced map

KxK" F(SxO S) F(S) F(S2)

is an isomorphism. For an additive functor F and elements x F(Sx),
y F(.S2) we introduce the notation x -i- y to denote the unique element of
F(S t_j $2) satisfying Kl K(x -i- y) (x, y). For the remainder of this
section, F will denote a fixed additive contravariant functor.
For any G-set S, we form the category (G, S, F) as follows:
Objects: Triples (T, , x) where T , : T S is a G-map, and x

F(T).
Morphisms: A morphism (T, , x) (V, q, y) is a G-map a: T V such

that ,/, b a and a(y) x.
Given (T, , x), (V, q, y) in (G, S, F), define (T, , x) (V, $, y) to equal

(T(.JV, 6 q, x 4- y).

The latter is an object of (G, S, F) since F is additive. It is routine to check
that is a categorical coproduct for (G, S, F).
Given G-sets T and V together with G-maps ,/,: T S and +: V S, the

pullback of T and V over S is defined to be

T sv= ((t, v) T V: O(t) q(v)}.

There is a well defined G-map ,/, s q" T s V--. S given by

( s +)(t, v) (t) (= (x)),

for all (t, v) T s V, which makes the diagram

qT"V
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commute, where rr, rv are the projection mappings. With this notation we
define (T, , x) xs (V, q, y) to equal (T s V, q, s q, rrr(x) rv(Y)), which
is again an object in (G, S, F).
The operations and s satisfy all of the necessary identities to form the

half ring A (S) of isomorphism classes of objects in (G, S, F), with addition
induced by and multiplication by s. We denote the associated
Grothendieck ring by AF(S), and refer to this ring as the F-Burnside ring of
G-sets over S. We let IT, q, x] denote the image of (T, q, x) in A F(S). The
following lemma collects some standard results about this construction, as
applied to AF(S).

2.1 LEMMA. (a) Each element ofAF(S) has the form T, , x V, /, y ],
for suitable (T, dp, x), (V, hb, y) in (G, S, F).

(b)

and

It, x][V, +, y] [r x,v, xs ,
Moreover, 1A(S) S, id, 1 F(S) ]"

(c) IT, q, x] IV, , y] if and only if there exists U, k, z) in G, S, F)
such that (TO U, ep (C) , x -i- z) V O U, p O , y 4- z) in ( G, S, F ).

The next goal of this section is the strengthening of 2.1(c) above. We begin
by considering the transitive case.

2.2 LEMMA. Suppose ( T, a, x ), ( V, fl, y) and ( W, "/, z) are in ( G, S, F)
and that T is a transitive G-set. If T, a, x) 9 ( V, fl, y) ( T, t, x) ( W, y, z)
in (G, S, F), then (V, fl, y) (W, 3/, z).

Proof By hypothesis, (T t V, a J fl, x 4- y) (T (C) W, a (C) ,{, x 4- z), so
there is a G-isomorphism

q: Tt V T W witha)/3= (a,)and(x-i-z) =x-i-y.

Since T is transitive, and q(T) is non-empty, either q(T) T or q(T) c_ W.
We treat these cases separately.

Case (1) q(T) T. Then (V) W. Write q t , where

/x--qlr: T T and , =’lv: V W.

Let Kv" V T t V, Kw" W T W be inclusions. Clearly, qKv= Kwh,
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so that

XO(z) x0/0(x + ) =/00(x + z) =/0(x + y) y.

Moreover, if v V, then

.,,x(,,) (, o .,,),t,(o) (, o )(,,) (,),

that is, ,;k =/3. Thus X" (V,/3, y) (W, y, z) is an isomorphism, finishing
this case.

Case (2) (T)
_

W, and therefore T (V). Hence we may write

V= T1(C) V’ where (T1) T,

and

W= T20 W’ where q(T) T..

By additivity of F, write y x -[-y’ and z x 2 -z’, where x F(T),
y’ F(V’), and z’ F(W’). We may also write q, ff (C) ;k (C) , with

ff elf T T2 X el:r, TI T and q’lv,

all isomorphisms. As in case 1, it follows that #(x2)= x, X(x)= x and
6(z’) y’. Define q" V W to be X (C) 8. Then

v.,(z) (.x o )o( -i- z,) (.x)(_) 4- O(z,)
x%o() 4- ,O(z,) x, 4-y,= y.

Finally, to show fl ,q, let v V. With the obvious inclusion mappings in
mind we then have for v Ta,

,,/.,(,.,) .,,,x(,.,) ,,t,x(,) (, 0 ,)x(,) (,,, 0/)x(,)
(, 0 ,),t,(,) (, 0 t)(,) (,.,),

while if v V’ then

.,,+(,) (,) (, o ).(,) (, o .)(,)

Thus, q" (V,/3, y) (W, ’, z) is an isomorphism.

2.3 PROPOSITION. Suppose (T, a, x), (V, fl, y), (W, y, z) are in (G, S, F),
and satisfy (T, a, x) (V, fl, y) (T, a, x) (W, y, z). Then (V, fl, y)
(w, v, z).
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Proof Write T T 0 0 T as a disjoint union of transitive G-sets,
and let a air,: T S. By additivity of F, there exist xi F(T) so that
(T, a, x)= i(Ti, ai, xi). By 2.2, we may cancel the (Ti, ai, xi) one at a
time, yielding the result. I

2.4 COROLLARY. [V fl, y] [W, 3’, z] in A F(S if and only if ( V, fl, y)
(W, , z) in (G, S, F).

We introduce some notational conveniences. If H < G, then G/H denotes
the transitive G-set of left cosets modulo H. We will denote AF(G/H) by
AF(H). If H G, then for any non-empty G-set T, there is exactly one
G-map lr: T G/G. Thus we may abbreviate the category (G, G/G, F) to
(G, F), the object (T, r, x) of (G, F) to (T, x), and the element [T, , x] of
AF(G) to T, x ]. Then isomorphism in (G, F) of objects (T, x) and (V, y) is
equivalent with the existence of a G-isomorphism/3: T V with ri0(y) x.

For any G-set T, let Wr Auta(T). Especially, if a P (= P(G)) we shall
abbreviate Wso to W Auta(Sa). We use Wr to define an equivalence
relation -r on F(T); namely, for elements x, y F(T), we say x --r y if
and only if there exists a Wr with a(x)= y. For a P we shall let
x "’a Y denote x "-so.Y. For each a P, choose a set R c_C_ F(Sa) of
equivalence class representatives under ---. With these conventions we are
ready to complete the final task of this section: to show that AF(G) is free as
an abelian group, and to explicitly display a basis.

2.5 LEMMA. Fix a P and suppose that y[mi=l[Sa xi] -,i=l[Sa Yi] for
some xi, Yi Ra. Then m n, and there is a permutation r of {1,..., n } such
that x y,i), all i.

Proof By 2.4,

Sa, x 4-... X [,.JSa, y14- 4-y
i= i=1

in particular, (0 1S 0 1S so m n For notational ease, we set.i OnS=S 1 < i<n. Let a" ___1S be an isomorphism with

oO(yl 4-"’" 4-y.)= X 4-"’" 4-Xn.

For each i, a(S) is a transitive subset of 0;=lad, so there is an index rr(i)
with a(S’)= Sa{0. This defines rr. Since c is an isomorphism, r is a
permutation of {1,..., n }. For each i, let K" S’ (C) __SJ be inclusion, and
let
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Plainly, aK Kr(i)ai. Thus

a,.O(y,,.,.(+)) 0 0 +aiK,(i) ( y
--K?o(yl 4-...-i-yn)- K?(x -’i- 4-x

that is, X "a Yet(i)" Since x i, y(i) R a, it follows that x y(>, all i. I

2.6. PROPOSITION. Let F: f#--> AM be an additive contraoariant functor.
Define BF {[Sa, x]: a P(G), x Ra). Then BF is a Z-basis Of AF(G).

Proof Let [T, y] AF(G ). Write T= (C) =IT, with each T a transitive
G-set. By additivity of F, we may find elements y F(T) with [T, y]
2 ITs, y]. For each i, choose a,. P and an isomorphism : S T. Theni-----1

0for each i, there is a unique x R,, with x,.-a, ai,(y). Thus

(ri, Yi) (Sa,, ai(Yi)) (Sat, xi)

so that [T, y] E"i=l[ga,, xi], and BF spans.
For independence, first suppose there is a dependence relation

i=1

for some fixed a P, where x R all i, and xg 4: yg if 4= j. Assume each c
is non-zero. Then by 2.5, the equality

ct>0 c<0

yields x xj for some 4: j, a contradiction. In general, if there is a
dependence relation EapEx RoC,x[Sa, x] 0, then since the S are pairwise
non-isomorphic, 2.4 yields Z,xRfa, x[S, x] 0, for each a P. By the
above argument, Ca, 0 for all a P, x R. I

3. The structure of the F-Burnside algebra

Fixed in this section are a finite group G, and an additive functor
F: f AM. By 2.6, AF(G) is torsion free (as an abelian group), and thus it
embeds faithfully in the tensor product Q (R)z AF(G). For simplicity we shall
denote Q (R)z AF(G) by QAF(G), and consider its elements to be rational
multiples of elements of AF(G ). The principal aim of this section is the
explicit computation of QAF(G).
As may have become evident to the reader, there is an obvious isomorphism

A(G) AI(G), where I: f AM is the trivial functor. In particular, we may
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identify A(G) with the subring of AF(G) consisting of the elements

([S, 1]-[T, 1]’S,T}.

This is an important observation since, as we shall see, much of what is known
about QA(G) lifts up, in a suitably modified version, to all of QAF(G). First
off then, we will recall some well known facts about the structure of QA(G)
(see [4], [5], [17]).
The set P has a natural partial ordering, where we set a < b precisely when

H,, is subconjugate to Hb (denoted H <_ Hb). Then QA(G) has primitive
idempotents (ea: a P}, where e _b<akb, a[Sb] for suitable constants

b,a Q-Weset Xb, a=0ifba so that we may write

e .,)b,a[Sb].
b

It follows that F_,cec 1,(G), and that eaeb 8abea, for all a, b P.
For a, b, c P, let Va, b, be the number of orbits in S Sb, under the

diagonal action of G, which are isomorphic with S as G-sets. We summarize
some known results on the constants ,

a, b and Va, b, c.

3.1

(b)
(c)
(d)

PROPOSITION. (a) For a, b P, [Sa][Sb] EcVa, b, c[St’]" Thus the
are structure constants for A(G).
For any a P, Va, a, )-la, [NG(Ha): Ha].
For any a, b, c P, Va, b, 0 unless both c < a and c < b.
For any a P, Glea A(G). Thus GI b, Z for all a, b P.

We just remark that 3.1(d) can be strengthened to the statement

IN(Ha)l e A(G),

for any a P, by the idempotent formula of Gluck [7]. For brevity we shall
denote V V, a, and Va, b Va, b, b, all a, b P. Fundamental to what
follows are the following propositions relating the constants Va, b, and a, b-

3.2 PROPOSITION. Let a < b P. Then for all d P, Ec P c, bVa, c, d O.

Proof Note that

0 e eb

E Xc,
c,d

E )kc, a)kd, bVc, d,e[Se]
c, d, e

E( E)kc, a)kd, bVc, d,e)[Se]"
e c,d
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It follows that

(*) 2tc, ad, bVc, d, 0 for all e P.
c,d

We establish the required formula by induction on a P with respect to the
partial order < If a (1} (the unique minimal element) then since X c, 0
if C a, (*) becomes )a,aUXu, bVa, u,e 0, all e P. Since X a, 4:0 by
3.1(b), this starts the induction. Assume that a 4: (1), and that whenever
c < a, and e P, then 2uX, bVc, , 0. By (*), for any e P we have

O-- ka, aEkd, bVa, d,e+ E kc, a(Ekd, bVc, d,e)
d c<a d

Xa, 2Xd, bga, b,e (by induction).
d

Since X a, 4: O, }2uX u, bVa, a, 0 for all e P, as claimed.

3.3 PROPOSITION. Let a, b P with b a. Then [Sa]eb O.

Proof Note that

[S]e [Slebe
y’ ?t,b[Sa][S]eb
c<_b

E E ?tc,Va, c,[Sule.
c<b d<_a,

Thus it suffices to show [Sd]eb 0 whenever c < b and d < a, c. The condi-
tion b a then forces d < b, so we may as well assume a < b to begin with.
Then, by the above computation and 3.2,

[Sa]eb (d .,aV,c,a)[Sale =0.
3.4 PROPOSITION. (a) For any a P, e vl[Sa]ea
(b) If a, c P, then Eb)t b, aVa, b,

)k
c, aVa

Proof. (a)
e e ea

E )kb, a[Sblea
b<a

ka, a[Sa]e (by 3.3)
gl[Sa]ea (by 3.1).
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(b) By (a),
ea= vffl[Sa]e

w:lEXb, a[Sa][Sb]
b

g-1 E kb, cga, b,c[Sc]
b,c

c (v:lEkb, aVa, b,c)[Sc]
b

Comparing coefficients yields A , V2A,V, , as claimed.

Our next oNective is to lift 3.3 up to the level of Ae(G). We need
prelinary lemma that will be useful in other contexts as well.

3.5 LEMMA. Let a, b P and x F(Sa). Then for some r >_ 0,

[&,x]t&,ll v,,[&,xl +
j=l

where ay < a and x F(S), 1 _< j < r.

Proof Set n V, , . If a g b, then n 0 and the result is clear. So we
may assume a < b and that n > 0. Set S- S, 1 < < n. Then by 3.1(c),
there is an integer r > 0 so that

so x & s O Cos2(C) U so, s,
j=l

for some a < a, 1 < j < r. Let a: S --, S x S be this isomorphism, and let
K;: S’ --, S, l" S --, S be the canonical injections. Let rr: S X S S be
the projection map. Since each composite rraK/ S’ - S is a G-map, it must
be an automorphism, by the transitivity of S. Thus

[Sa, x] [S, (l’aKi)(x)] AF(G), all i.

Set xg (ralg)(x) F(S). By the additivity of F, and the above remarks,

[so, xl[&, 11 [so x &, 0(xl]
Is, ,(x)l

I<,  ,o o o(x)l
i----1 j=l

i=1 j=l

xl + i
j=l
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3.6 PROPOSITION. Let a, b P with b a, and let x F(Sa). Then
[Sa, X]eb=O.

Proof. The proof proceeds by induction on a P with respect to
a {1 }, then by 3.2 and 3.5,

<. If

ISa, x]eb X

Assume [Sc, y]eb 0 whenever c < a and y F(Sc) (note that b a implies
b ). Then several applications of 3.5 yields

[S,X]eb=[Sa, Xleb’eb
EX,b[S,,, x][S, 1]eb

EX,a Va,,[Sa,x] + E Sa,,Xs, eb
j=l

(Y’)tc, bVa,,a)[Sa, x]eb + ,
c c j=l

Since each aj., < a, induction implies that all [Saj, c, xj, c]eb 0, and therefore,

[S,X]eb EXc, bVa, c,a)[Sa, xleb

The hypothesis b a implies that either a < b or a b. If a < b, then 3.2
implies Y’.cX,., bVa, c, 0. If a b, then a c for all c < b, so that Va, , O,
all c < b by 3.1(c). Since ? , b 0 if C b, it follows that )2cX c, bVa, c, 0 in
this case also. In either case, this implies [Sa, x]eb O.

For the next lemma recall that for any a P, Auta(Sa) Na(Ha)/H,, in
particular Auta(Sa)l Va"

3.7LEMMA. Let a P, and setS’a= S, l < < Va. Say that

Auta(Sa) (oi: 1 <i < V }.

For each i, define Oti: S S X S by Oti(S ) "-(S, Oi(S)). Then there is a
(possibly empty) set { aj: 1 < j < n } P with each aj < a, and an isomor-

phism
n

Sla + USa - SaSo
j=l



THE BRAUER RING OF A FIELD 493

such that if Ki:
all i.

is inclusion, then ai aKi,

Proof Since each a is injective, and a 4: aj
consequence of the definition of V and 3.2.

if 4: j, the lemma is a direct

Since F is a functor, there is a natural action of Ws (= Auto(S)) on F(S),
for any G-set S, given by o x (a- 1)0(x), all x F(S), o Ws. Con-
travariance implies (or)- x o. r. x. For brevity we denote o. x by xo.
This action plays a key role in the structure of AF(G), as illustrated by the
following proposition.

3.8 PROPOSITION. Let a P, x, y F( Sa). Then

[Sa, x][Sa, Y]ea E [Sa, xyo]ea"

Proof Let (aj: 1 < j < n } c_ P, a, oli, oi, K be as in Lemma 3.7. Let

n

s=s2O OSa O USa,,
j=l

and let ,/’/-i S X S --+ S be the coordinate projection, i= 1, 2. Using the
additivity of F, together with 3.6 and 3.7 we have

[S, x][S, y le [S Sa rOx (x) %0(y)]ea
[S, a(r(x) %(y))]e_, [S’a, Ka(rrl(X) rr2(y))] ea
i=1_, [S, ot(rrl(X) rr2(y))]ea
i=1

,(rrlOti)(x)’(rt20ti)(y)]ea

_, [S, x. (oi)(y)]ea
i=1

E [Sa, xyo]ea"

For any monoid H, let QH denote the rational group algebra. For a P,
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define

6a" QF(Sa) QAF(G)e

by 6(x) l/a-[S, x]e, all x F(S); then exiend linearly to all of QF(S).

3.9 LEMMA. For any a P, / is a surjective Q-space homomorphism.

Proof Everything is clear except surjectivity. It is sufficient to show that
for any b P, x F(Sb) we have [Sb, x]e im +a" We proceed by induc-
tion on b with respect to <. First note that if a b, then ISb, X]ea 0
im Pa, by 3.6, and if a b, then [Sb, x]e qa(Vax) im p. In particular
this covers the case b 1, and we may assume a < b. Assume that b > 1, and
that whenever c < b and y F(Sc), then [Sc, y]e im +a" Applying 3.4(a)
and 3.5 we have

where bj < b, and xj F(Sb,), 1 < j < r. Since a < b, 3.1(c) implies Vb, a, b

0. By induction, each [S., x]e, -im +,, so that

[S,x]eo v-1 k [Sb,,xa]e, im
j=l

completing the induction step.

If S ff and o Ws, then clearly o (xy) (o x)(o y), all x, y F(S).
It follows that Ws acts as a group of ring automorphisms on QF(S). We let
QF(S)wS denote the fixed ring under this action, that is,

QF(S) ws {x QF(S)" o x x all o Ws).

Then there is a Q-space epimorphism O: QF(S) ---, QF(S)ws given by

t,(x) Wl-. Y’. ,,. x.
o Ws

Note that the restriction of O to QF(S)w is the identity; moreover, p(xp(y))
p(x)p(y), all x, y QF(S). If a P and S Sa, then we let pa p, so

that t%(x) VlEowoO’x, all x QF(S). For convenience in what fol-
lows, we let X denote the restriction of q to QF(S)wo.
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3.10 PROPOSITION. Let a P. Then a atoa" Moreover, Xa is a surjec-
tire Q-algebra homomorphism.

Proof If o W and x F(Sa), then Sa, x Sa, x ], so that q (X)
qa(Xo). Therefore, atoa(X) V-I., . Wala(Xo) V- 1E Waldo(X) +a(X).
The first result follows, since F(Sa) spans QF(Sa). Furthermore, the surjectiv-
ity of qa, together with la latoa, imply that Xa is surjective. To see that X
is an algebra homomorphism, let x, y F(Sa). Then

Since the elements (to(x)" x F(S)) span QF(Sa)w’, Xa is a Q-algebra
homomorphism, as asserted, m

Of course our objective is to show that each X is an isomorphism. This will
follow from the next lemma.

3.11 LEMMA. Let x,..., x, F(Sa) be pairwise inequioalent (under "a)"
Then ([S,, xi]e: 1 < < n ) is a linearly independent subset of QAF(G)e.
Proof For any i, 3.5 implies that

[Sa, xilea E kb, a[Sa, Xi][Sb, 1]
b<a

ka, a[Sa, xi][Sa, 1] + E kb,a[Sa, Xi][Sb, 1]
b<a

[Sa, xi] + Ecj[Saj, yj],
J

some aj. < a P, cj Q, yj F(Saj ). Thus a dependence relation

di[Sa, xi]e 0 (d Q)
i=1
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yields a dependence relation Y’.7=ldi[Sa, xi] 0, by virtue of 2.4. But then the
assumption on the x;, together with 2.6, imply that d 0, all i. m

3.12 THEOREM. For any a P, the map Xa: QF(Sa)Wa QAF(G)ea is a
Q-algebra isomorphism.

Proof All that remains is injectivity. Let R be a set of representatives for

"’a in F(So). Let x, y F(Sa), and suppose that x "a Y" Thus there is some
a W with a(x) y. Then

Po(Y) ga-1 E o(Y)= Va-1 ’ a(x)

"--Va-1 Z (OO)0(X) --Va--1 E O0(X) --Oa(X)
OWa

It follows that (Pa(X): x Ra) spans QF(Sa)w as a Q-space. By 3.11, the
set

is linearly independent over Q. The result follows.

3.13 THEOREM. Let G be a finite group, and let F: f- AM be an additive
contravariant functor. Then there is a Q-algebra isomorphism

QAF(G) I-I QF(S,,) w
aP

Of course, the isomorphism in question is the product of the injections (Xa:
a P }. Several ring theoretic properties of QAF(G) now become transparent.
We single out the following.

3.14 COROLLARY.
J(QAF(G)) O.

If the functor F takes values in abelian groups, then

Proof By a result of Montgomery [13], if R is any ring acted upon by a
finite group W of ring automorphisms, and if IW1-1 R, then J(Rw)
J(R) N RW (j denotes the Jacobson radical). Applying this to R QF(Sa)
and W= Wa, it follows that J(QF(So)wo) 0 (see [14, p. 73]). Since the
radical respects products of tings, the result follows directly from 3.13. m

3.15 COROLLARY. Suppose that for all S f, F(S) is a torsion abelian
group. Suppose further that for every transitive G-set S, the action of Ws on

F(S) is trivial (every element of Ws acts as the identity ofF(S)). Then QAF(G)
is a oon Neumann regular ring.
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Proof Under the conditions imposed on F, it follows from a theorem of
Villamayor [18] that QF(S) is von Neumann regular for any S . The
corollary follows since QAF(G) 1-I aQF(S ). []

We shall finish this section by outlining a method by which the structure of
QAF(G/H) can be computed for any subgroup H < G. These results will not
be needed later, so details will be sparse at times. Throughout this discussion
we fix a subgroup H of G.

If S is any H-set, then the fibered product of G with S, denoted G / S, is
the G-set of (equivalence classes of) pairs (g, s), where g G, s S, with the
identifications (g, s) (gh -1, hs), all h H, where the G-action on G / S
arises from left multiplication in the first component. Given two H-sets S and
T, and an H-map q: S T, the map q: GHS G/T given by
q(g, s)= (g, q,(s)) is a well defined G-map. It is easily seen that the cor-
respondences S G /S, q q,, define a covariant, sum preserving functor
from
Thus we may obtain from the additive functor F: f AM, an additive

functor Fn: o, AM, defined by FI(S ) F(G i-I S), all S ’. For any
H-map q: S T, we have Fn(q)= F(q): Fn(T) FH(S ). We can now
state the result of interest.

3.16 PROPOSITION. Let F: f-, AM be an additive contravariant functor,
and let H < G. Then there is a ring isomorphism AF(G/H) AF,,(H/H).

Proof We shall define this isomorphism, and leave the rest as an exercise.
Suppose S is a G-set, and a" S G/H is a G-map. Let

S {x S" a(x) 1H}.

Plainly, S is an H-set. Denote by / the G-map G / S S given by
/(g, s) g s. It follows easily that / is a G-isomorphism. Then the
isomorphism in question is given by A: AF(G/H) AF,,(H/H), where

A([S, a, x]) [S,,/,(x)], all IS, a, x] AF(G/H).

The reader can now deduce several corollaries by combining this result with
3.13, 3.14 and 3.15.

4. The structure of the Brauer algebra

In this section we shall connect the Brauer ring with the F-Burnside ring, for
suitably chosen F. The tool at our disposal is Galois theory. However, Galois
theory only connects intermediate subfields with subgroups (hence with transi-
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tive G-sets), whereas our needs will require connecting finite products of
intermediate subfields with G-sets. The details of this extension are messy, but
straightforward. The author could not find these results, although they are
alluded to in [5].
We will not be working with arbitrary additive functors in this section, so

without confusion let ElF denote a finite Galois extension of fields, with
Galois group G Gal(E/F). The category f of finite G-sets is then
anti-equivalent with the category CSEP(E, F) of commutative algebras in
SEP(E, F). This anti-equivalence is given as follows. For S , define
Rs Homa(S, E), under pointwise operations. Then Rs CSEP. Moreover,
if S G/H for some subgroup H of G, then Rs En (fixed field of H)
under the correspondence 7 3,(1H). For a G-map : S T, there is an
induced F-algebra homomorphism .: Rr Rs, given by .(3,) 7, all
! R r. Conversely, if R CSEP, define Sn HomF(R, E), a finite set,
which becomes a G-set using the G-action on E. Again note that if L is a
subfield of ElF, then SL is isomorphic with the transitive G-set of cosets
modulo GaI(E, L). If a: R R’ is an F-algebra homomorphism, then the
map a*: SR, Sn, given by a*(f)= f a, is a G-map. The details of this
anti-equivalence we shall need are summarized in the following sequence of
lemmas (complete proofs are given in [8]).

4.1 LEMMA. Let S and T be any G-sets, and suppose a" Rr Rs is an
F-algebra isomorphism. Then there is a G-isomorphism ok: S T such that

4.2 LEMMA. Suppose a, fl" S - T are G-maps, with T a transitive G-set. If
fl," R r--. Rs, then a= fl.

4.3 LEMMA. If S1, S2 are G-sets, then Rsl6s --Rsl-]-Rs2. This isomor-
phism takes a Rsa 6 s2 to the pair (alS1, alSo).

The next lemma says that pullbacks in f correspond to tensor products in
CSEP.

4.4 LEMMA. Let H < G. Let S1, S2 be G-sets, and suppose there are G-maps
ai: S G/H, 1,2. Denote the pullback: SI a/n S by T, and let

R6/t_I. Define d. Rs (R)r Rs Rr by d(f (R) g)(x, y) f(x)g(y). Then
is an R6/n-algebra and Rs Rs bimodule isomorphism.

The reason for the previous discussion is the following observation. If
p" CSEP AM is any covariant, product preserving functor, then we may
construct an additive contravariant functor Fp: AM by defining Fp(S)
p(Rs), and for a G-map q,: S T, we let F(q) O(q,)" F(T) F(S). As
usual, we also denote qo= Fo(q,). It follows that we may obtain the Fo-Burn-
side tings AF,(S ), S f, which for brevity we denote Ao(S).
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Our applications arise as follows. For any commutative ring R, let AZ(R)
denote the category of Azumaya (central separable) R-algebras. When R is a
field, AZ(R) coincides with the category of finite dimensional, central simple
R-algebras. For an algebra A in AZ(R), let (A) denote its R-algebra isomor-
phism class, and (A } denote its image in the Brauer group, Br(R). Denote the
set of all isomorphism classes in AZ(R) by AZ0(R). Then AZ0(R) becomes
an abelian monoid under tensor products over R, with identity element (R). If
q: R S is a homomorphism of commutative rings, then the correspondence
(A) (S (R)R A) (where S is considered an R-algebra via q) defines a monoid
homomorphism AZ0(R) AZ0(S ). Moreover, for any commutative rings
R, S, there is a natural isomorphism

AZo(R 4- S) --- AZo(R ) AZo(S ).

Similar remarks apply to Br(R). Thus the correspondences R AZ0(R),
R Br(R) yield covariant, product preserving functors from CSEP to AM.
By the construction of the previous paragraph, we obtain the rings Az(S),
and ABr(S), for any G-set S. More explicitly, a typical element of Az(S) will
be a formal difference

[T1, 1, (A1)] IT2, (])2, (A2)],

where T is a G-set, qi: T S is a G-map, and (Ai) AZ(Rr,), i= 1,2. A
similar description holds for ABr(S )-
We need one last bit of notation before we can attack the main result of this

section. Let H< G, SG, and suppose a: SG/H is a G-map. If
A AZ(Rs), then define the R/H-algebra A to be A as a ring, with R/n
action induced from a,: R/I Rs. Thus, for x R/n and a A, we
have x. a a,(x)a. Note that A -= A as F-algebras, since a, is an F-alge-
bra homomorphism.

4.5 LEMMA. Let H < G, and let [S, a, (A)], [T, fl, (B)] be in Az(H). Then
S, a, (A)] T, fl, (B)] /f and only if A B as R/t4-algebras.

Proof () By 2.4, there is a G-isomorphism q: T S with aq fl and
qO((A)) (B). This last condition yields an Rv-algebra isomorphism

+" RT(R)RsA B.

Define 7" A ---, B by 7(a) q(1 (R) a), all a A. Since Rs =- Rr, 7 is a ring
isomorphism. Furthermore, if x R/n, then

y(x. a) y(a,(x)a) (1 (R) a,(x)a) q(q,a,(x) (R) a)
(fl,(x) (R) a) fl,(x)(1 (R) a) fl,(x)7(a) x. y(a).
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Thus, 3’ is an R6//r-algebra isomorphism of A to Bt.
() Suppose 3’: A Ba is an R/H algebra isomorphism. Then

/(Z(A)) Z(Ba), that is, /(Rs) RT’. By 4.1, there is a G-isomorphism q:
T S with q. . We claim that aq =/3. By 4.2, it is enough to show that

fl, ok,a," RG/H
"’) R 7".

If x RG/H, then

,,(x) r(,(x)) Z,(z)r() Z,(x).

Note that the map " RT’(R)Rs A B, given by +(x(R)a)=x’(a), is an
Rr-algebra isomorphism, so that q(A) (B) in AZ0(RT"). It follows that

,. (, ,(s))-. (s, ,(A))

is an isomorphism.

For any subgroup H < G, the isomorphism RG/n EH allows us to
replace Ra/ by E. Define functions q,: AAz(H) -* S(E, E) by

and XH: ABr(H) B(E, EH) by

x,,([s.,. (A}]) (A.).

4.6 THEOREM. Let ElF be a finite Galois extension with Galois group G, and
let H < G. Then the functions bH and XH are ring isomorphisms, that is,

AAz(H) S(E, E H) and ABr(H)-= B(E, EH).

Proof. We give the proof for pH, the proof for XH is almost identical. For
convenience, let k qH- By 4.5, q is well defined and injective. Let
[S, a,(A)],[T, fl, (B)] be in AAz(H). Since

(A) -i-(B) (A -i- B) and A. -i- B,e (A -i- B),6t,

we have
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so k preserves sums. For products, let V denote the pullback S o/n T, with
projections rs, rr, and let ok: V G/H be the induced map (q ars ).
Let K Ra/n. Note that

A).

( A s RsRrB) (by4.4).

Since the identity map (A (R)K
the above implies

A (R)K Ba is a K-algebra isomorphism,

To see that k is surjective, let A SEP(E, EH) be simple, with Z(A) =- Es

for some subgroup J < H. Let a: G/J G/H be projection, that is, a(gJ)
gH, all g G. Then, viewing A as an Ro/s-algebra via the Ro//c-isomor-

phism Ro# Es, we have A AZ(Ro/s). An easy computation then yields
k ([G/J, a, (A)]) A], so that q is surjective, by 1.3.

Let us combine this theory with 3.13 to obtain the structure of QB(E, F)
(= Q (R)z B(E, F)). For this recall that isomorphism classes of transitive
G-sets correspond bijectively with conjugacy classes of subgroups of G, hence
with F-isomorphism classes of intermediate subfields in the extension ElF.
Let S=-G/H be a transitive G-set, and set L=En. Then Auto(S)---
GaI(L/F). The only remaining detail is to describe the action of Gal(L/F)
on Br(L). It turns out that this action is well known (see [2], [3], [6], or [10]);
however, for the readers convenience, we will be explicit.

For any o GaI(L/F) and central simple L-algebra A, define a new
R-algebra A by letting A A as tings, with L-algebra structure given by
l*a o-l(l)a, where the multiplication on the right is that in A. Then, as in
[3], or [10], it is seen that this induces a bona fide action of GaI(L/F) on
Br(L), given by o( A } { A ). As before, this action extends to an action by
ring automorphisms of the group algebra Q Br(L). For convenience in stating
the next theorem, we let HL Gal(L/F).
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4.7 THEOREM. Let ElF be a finite Galok extension. Then

QB(E, F) =- I]QBr(L)u
L

where the product is over a set of representatives of F-isomorphism classes of
intermediate subfields of the extension ElF.

Proof Follows directly from 3.13, 4.6, and the preceding remarks.

We pause to give an exampleby computing the Brauer algebra of the p-adic
field Q,, for any prime 0 4: p Z. We quote a lemma due to Janusz [10]. Its
essential content is that for p-adic fields, the action on the Brauer group that
we have described is trivial.

4.8 LEMMA. Let 0 4: p Z be a prime. For 1,2, let L be a finite
extension of Qp, and let A be a central simple Li-algebra. If A and A 2 are
isomorphic as rings, then invA1 invA 2.

We remark that the notation invA for a central simple L-algebra A denotes
its Hasse invariant. For a discussion of this invariant, see [15]. The most
important fact for us is that the class of the algebra A in Br(L) is completely
determined by its Hasse invariant. If o Gal(L/F), it follows since A A
as rings, that invAa invA. Hence o { A } { A } { A }. Combining this
with 4.7, and the well known fact that the Brauer group of a local field is Q/Z,
we have the following.

4.9 THEOREM. Let E be a finite Galois extension of the p-adic field Qp, and
let n be the number of Ql-isomorphism classes of intermediate subfields ofE/Qp.
Then QB(E, Qp)-= I-I,Q(Q/Z) where the right hand side is a product of n
copies of the group algebra Q(Q/Z).

Passing to direct limits we can state the following.

4.10 COROLLARY. The Brauer algebra QB(Qp) is yon Neumann regular.

Proof The result is direct from 1.6, 3.15, 4.9, and the fact that the property
of being von Neumann regular is preserved under the taking of direct limits, m

Note that 4.8 holds trivially for the real numbers R, so that by 4.7 we have

QB(C,R) Q(C2) -i- Q Q 4 Q 4 Q,

where C2 is the cyclic group of order two. This isomorphism does not behave
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well at the level of B(C, R); in fact, it can be shown that

(4Z)(C:) -i- 4Z c B(C,R) c Z(Cz) -i- Z,

with both containments proper. More generally, if F is an additive con-
travariant functor such that for every transitive G-set S the action of Ws on
F(S) is trivial (as in 3.15), then one has

I-I (IGI2Z)F(Sa) AF(G) I--I ZF(Sa).
a.P a-P

In particular, the quotient of the last two groups has [G[:-torsion (see [8],
Corollary 6.5).
The structure of B(E/Q) is currently under study.

5. Functorial properties

The importance of the isomorphism 4.6 lies not only with its structural
consequences, but also in the fact that the correspondence S AF(S) defines
a functor with especially nice properties. It is the purpose of this section to
describe these properties, and to show what consequences they have for
associative algebras. We start with a definition (see [5] or [11]).

DEFINITION 5.1. Let G be a finite group, and let AB denote the category of
abelian groups. A Green-functor on G is a bifunctor M (M*, M,): AB,
where M* is covariant, M, is contravariant, M* and M, agree on objects,
such thai the following conditions are fulfilled by M.

(a) If

X2

is a pullback diagram in G, then the following diagram commutes"

M*(X2)

M(X) M(X:)

m(x) I T
M(Xx) - M(Y)M*(qbl)

M.(42 )"
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(b)
phisms

If St, $2 with inclusions Ki: S --* S 0 $2, then the homomor-

M,(K,)" M(S J S2) ---> M(S)

induce an isomorphism

M,(K) X M,(K2)" M(S O $2) -* M(St) X M(S2).

(c) For each G-set S, M(S) is a commutative ring with 1.
(d) For each G-map a: S T, M,(a) is a ring homomorphism (preserv-

ing unit).
(e) For each G-map a: S T we may view M(S) as a M(T)-module via

M,(a). We then require M*(a) to be a M(T)-module homomorphism. Thus,
for any s M(S), M(T), we have M*(a)(M,(a)(t) s) t(M*(a)(s)).

Let F: ff AM be a contravariant additive functor. We now show how to
turn AF into a Green-functor.

Suppose S, T f, and a: S T is a G-map. Then the map

given by

,,,(Iv, Iv, xl
is a group homomorphism. To describe a map a, AF,(a)" AF(T) ---> AF(S),
note that for any [W, , y] AF(T), there is a pullback diagram

WXT S IW 1
W .T

hence we obtain the element [W XT S, rrs, rr(y)] of AF(S). We then define
a, by a,([W, k, Y]) [W r S, rrs, rrw(y)].
A tedious but routine check of the axioms in 5.1 establishes the following.

5.2 THEOREM. Let G be a finite group, and let F: ff AM be a con-
travariant additive functor. Then AF (A*F, AF*) is a Green-functor.

Because of this result, we should be able to locate analogues of A, AF, in
the Brauer ring. For notational convenience, let E/D denote a finite Galois
extension. For any intermediate subfield D _c K

_
E, we shall let [A] r (resp.

(A)r) denote the image of A SEP(E, K) in S(E, K) (resp. B(E, K)).



THE BRAUER RING OF A FIELD 505

5.3 PROPOSITION. Let D c_ K c_ L c_ E be a tower of fields, with E/D a

finite Galois extension.

(a) There is a group homomorphism ind ind L-. K: S(E, L) - S(E, K),
such that ind([A L) A K for all A SEP(E, L).

(b) ind factors through the projection of S to B, that is, there is a group
homomorphism ind= indL_,r: B(E, L)- B(E, K) such that the following
diagram commutes:

ind

S(E,L) -S(E,K)

B(E,L) ,B(E,K)
ind

Proof (a) Clear from 1.3.
(b) Let fir denote the endomorphism of S(E, K) given in 1.4. We must

show that indL_ r(kerflL)
_

kerflr. Suppose [A] [B] kerry. Write

A Mn(D1) 3r 3rMn,(Dr) and B --- Mm,(D) 4- 3eMm(D).
L L

Then 1.2(c), together with the uniqueness statement of Wedderburns theorem,
insures r s, and (wlog) D --D[ as L-algebras, all i. Thus D --D[ as
K-algebras, all i, so that [A]K- [B]K kerflr since A --- A, as D-algebras. m

5.4 PROPOSITION. Let D c_ K c_ L c_ E be a tower of fields, with E/D a

finite Galois extension.

(a) There is a ring homomorphism res resr_. L: S(E, K) - S(E, L)
such that res([A] K) L (R)r A] L, all A SEP(E, K).

(b) res factors through the projection of S onto B.

Proof (a) The existence of res follows from 1.3 and the observation that
if A B as K-algebras, then L (R)r A L (R)r B as L-algebras. Hence, from
the distributive property of tensor products over algebra products, and the fact
that L (R)r (A (R)r B) =- (L (R)r A) (R) (L (R)r B) as L-algebras, res is a ring
homomorphism.

(b) To see that resK_. (ker ilK) C_ ker flL note that if n Z+, then

reSK_.L([M,(K)] K--[KIK) [M,(L)] [L].

The inclusion thus holds by 1.5, and the fact that res is a ring homomorphism.

The following lemma shows how the functorial properties of AAZ and S
coincide. A similar result can be proven for ABr and B.
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5.5 LEMMA. Let E/D be a finite Galois extension, with Galois group G. Let
H <_ G and set L EI4. Let l" G/H - G/G be the canonical map. Then the
following diagrams commute.

rl* l*
Ahz(n) .AAz(G) AAz(G) rAhz(n)

S(E, L) S(E, D) S(E, D) ,S(E, L)
ind rest)

where qn, PG are the isomorphisms of 4.6.

Proof Let [S, a,(A)] AAz(H). Then

qr*([S, a, (A)]) xt,([S, (A)]) [A]) [A,]z)= ind_D([A,])
indz_ oqn([S, a, (A)]).

Let [S, (A)] AAz(G). Let r14 and rs be the projections of G/H S. By
4.4, rff(A) (RG/14s (R)Rs A) (R/14 (R). A) (R/ (R)D A) (identify-
ing R/G with D). Moreover, r14," R/H ---) /14s =- R/14 (R)D Rs is injec-
tion: r14,(x) x (R) 1. Thus the identity map defines an R/14-algebra
isomorphism

Ra (R)D A --) (R/14 (R)o A),..
Therefore,

qs,.([S, (A)]) "P14([G/. S, .14, rf(A)] ) [(R/14 (R)0 A).,,]
[L (R)D AlL= reSD-,L([AIF) resD_,q’([S,(A)]). =

We are interested in looking at ker(reso_. L) and im(indL_D); it will be
convenient to proceed more generally. Let M be any Green-functor: --, AB,
and let S be a G-set. Denote by Km(S) the kernel of the map M.(s):
M(G) M(G/G) - M(S), and by IM(S) the image of M*(ls): M(S)
m().

5.6 PROPOSITION. Let G be a finite group, and M: f AB a Green-functor.
Then for any G-set S,

(a) IGI (IM(S) N KM(S)) 0,
(b) IGI" M(G) c_ IM(S ) + KM(S).

Proof. The condition that M be a Green-functor is stronger than neces-
sary. For a proof, see [5].
Combining 5.2, 5.5 and 5.6, we obtain:
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5.7 COROLLARY. Let E/D be a finite Galois extension with Galois group G.
Let H < G, and set L E i. Then

(a) im(indL-, 9) tq ker(resz_. L) 0,
(b) GI S(E, D)

_
im(ind 9) / ker(resz )-

What this corollary says about associative algebras is expressed by the
following two theorems.

5.8 THEOREM. Let L/D be a finite separable fieM extension, and let A, B be
separable L-algebras. If L Go A L Go B as L-algebras, then A B as
D-algebras.

Proof. By a standard characterization of separable algebras over fields, A
and B may be expressed as finite products of finite dimensional, simple
L-algebras, where each simple algebra has as center a finite separable field
extension of L (see [15]). Since L/D is finite separable, it follows that there is
a finite Galois extension E/D containing the centers of all of these simple
algebras. Thus, A, B SEP(E, L). Consider A] z B z S(E, D). Plainly

ind_o([A]-[B]L) [A]o-[B]o.

Also,

reSD_,([A]D- [BID)= [L (R)D A]-[L (R)D B]z= 0,

since L Go A -= L GD B as L-algebras. Thus

[AID [BID im(ind_, D) N ker(resD_ L) 0,

so that A B]. By 1.2(c), A -= B as D-algebras.

5.9 THEOREM. Let E/D be a finite Galois extension, and suppose A
SEP(E, D). Then there are algebras D, C SEP(E, D) with E Go B E GoC
as E-algebras, and there are algebras Y, Z SEP(E, E) (that is, finite products
of central simple E-algebras), such that A -i- A - B 3r Y-- C -i- Z as
D-algebras, where E" D] copies ofA appear in the left hand product.

Proof. Take H=(1) in 5.7(b),
GaI(E/D)I. Then by 5.7(b),

so that L=E. Set n=[E’D]=

n[A]D indE_.o([Z]E-[Y]e) + ([C]z

where [C]o- [B]o ker(resD e). Thus, n[A]o + [Y]z + [B]o
[C] o, and the result follows from 1.2(c).

[z]) +
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The purpose of the remainder of this section is to describe the functorial
properties of the Green-functor AF more fully. Although these results tell us
nothing new about the Brauer ring, they do underscore the reasons for calling
this particular Brauer ring the best possible choice.
For the remainder of this section, fix a finite group G. We shall denote by

AMa the category of additive contravariant functors F: AM, with
natural transformations as morphisms, and by GFa the category of Green-
functors M: f- AB, with binatural transformations as morphisms. Given
M GF, it follows from 5.1(b) that M, AM, where for S we have
M,(S) M(S). We thus obtain the forgetful functor U: GF AM given
by U(M)= M,. The point of our present discussion is to show that the
correspondence F - Ar from AMa to FGG is the left adjoint to the functor
U. We must first show how this correspondence defines a functor. Let
F1, F2 AM, and let 7" F - F2 be a natural transformation. Then there is
an induced natural transformation of Green-functors $: A F1 - AF2, such that
for all S G, [T, , x] AFx(S), we have

qs([T, +, x]) [T,,, y(x)] AF(S ).

5.10 PROPOSITION. The correspondences F - AF, 7 define a covariant

functor from AMa to GFG.

Proof
reader.

There are many minor points to check, we leave them all to the

Let F AMa, and M GFa, and let p: F U(M) be a natural transfor-
mation. Define, for S G, a map

bs" AF(S) M(S) by Ss([T, , x]) M*()(pr(x)),

all [T, q, x] AF(S ). Then, as is readily seen, (s: S N} defines a
natural transformation of Green-functors Av M.

5.11 THEOREM. The functor F - AF from AMG to GFa is the left adjoint of
the forgetful functor U: GF6 AM6.

Proof Let F AMa, M GFa. The natural bijection

Mor(AF, M) Mor(F, U(M))

is then given by inverse bijections described as follows. Define

" Mor(AF, M) Mor(F, U(M))
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by (’)s(X) ,s([S, 1s, x]), all S G, x F(S); and

Mor(F, U(M)) Mor(AF, M)

by (p)= ft.

If we let M AF, then adjointness implies that the identity transformation

1AF Mor(AF, AF) determines a universal arrow (1): F U(AF). Ex-
plicitly, we have dP(IAF)S(X ) ---[S, 1s, X], all S f, x F(S), and the
universality may be rephrased thus:

5.12 COROLLARY. Given any Green-functor M, and natural transformation
p: F U(M), there is a natural transformation of Green-functors : Ar M
such that p (I)(1AF).

The trivial functor I: ff AM is both an initial and final object in AMa.
For each F AMa, let aF: I F, and F: F I be the canonical natural
transformations. Since FaF is the identity map, it follows that for each G-set
S, &F,S: At(S) AF(S) embeds At(S ) as a direct summand of AF(S ), and
that &F,S" AF(S) At(S) is surjective. Using the fact that &F and gF are
natural transformations of Green-functors, together with the fact that A AI
is an initial object in GFa, we obtain our final result.

5.13 COROLLARY. For any F AM6, AF is an initial object in the category
of Green-functors GF6.

6. Comments

6.1. We have done little to relate the structure of the Brauer ring B(F) to
the properties of the field F. Of particular interest of B(Q) and B(Fab, F),
where Fat is the maximal abelian unramified extension of the number field F.
It may also be interesting to look at the case when E is the maximal abelian
field extension of a field F which contains n-th roots of unity for all n. To
begin with, it would be valuable to have information on the subalgebra of
B(E, F) in which the division algebras are restricted to those with n as
exponent (fixed n), where E is the maximal abelian extension with exponent n
and F has a primitive n-th root of unity.

6.2. The category theory we’ve used is only a fraction of what’s available;
in particular, 5.6 can be strengthened considerably. The reader who is inter-
ested in these aspects may profit by consulting [5] or [12].

6.3. There are homology and cohomology theories available for the
Green-functors AF (see [5]). It may be interesting to see how the cohomology
groups for the functor Anr, and the Galois cohomology groups are related.



510 E.T. JACOBSON

6.4. By analogy with Dress’ work on the prime ideals of the Burnside ring
[4], for a certain class of additive contravariant functors the prime ideal
structure of AF(G) can be described. In particular, the prime ideals of
B(E, Qp) (E/Qp finite Galois) are known. For details, consult Chapter 6 of
[8].
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