PERIODICITY IN THE COHOMOLOGY OF UNIVERSAL G-SPACES

BY
Stefan Waner
\section*{INTRODUCTION}

The purpose of this note is to generalize the classical results on periodicity in $H^{*}(G)$ in the presence of a free G-action on a sphere, and to reinterpret them in terms of global results about equivariant singular cohomology.

Our generalizations proceed in two directions. First, one has a notion of $H^{*}(G ; T)$, where T is a Mackey functor (in the sense of tom Dieck in [2]), generalizing the case T a $\mathbf{Z} G$-module. We show here that classical periodicity continues to hold in this more general setting.

Next, one has the notion of a universal G-space $E \mathscr{F}$, associated with a family \mathscr{F} of subgroups of G. Here, we exhibit periodicity in $H_{G}^{*}(E \mathscr{F} ; T)$ (for arbitrary G and particular families \mathscr{F}), where ${ }^{*}$ is $R O(G)$-grading. (The theory of $R O(G)$-graded equivariant singular cohomology has been announced by Lewis, May, and McClure in [4]. The complete theory will appear in [5], including one of the author's independent formulations, a summary of which appears in $\S 1$ below). This periodicity is seen to arise from a "Bott" class $1_{V} \in H_{G}^{V}$ (point) for appropriate representations V, in the sense that $\cup 1_{V}$ is an isomorphism in a range. Further, we see that this class lies at the source of the classical periodicity results, which emerge as special cases.

Finally, we use the periodicity to extend the computation of $H_{G}^{n}(E \mathscr{F} ; T)$ carried out in [7] and [8] to that of $H_{G}^{n V+m}(E \mathscr{F} ; T)$ for $m, n \geq 0$ and \mathscr{F} a family of subgroups determined by V. These latter groups (which are also modules over the Burnside ring of G) turn out to be purely algebraic invariants of G and V. (Throughout, G will be a finite group.)

1. Equivariant $\mathbf{R O}(\mathbf{G})$-graded singular cohomology

We recall here in brief some of the theory of equivariant $R O(G)$-graded singular cohomology, developed by Lewis, May, McClure and the author in [5].

Let \mathscr{U} be the orthogonal G-module $(\mathbf{R} G)^{\infty}, \mathbf{R} G$ being the real group algebra endowed with its natural inner product. We shall write $V<\mathscr{U}$ to signify that V is a finite-dimensional G-invariant submodule of \mathscr{U}.

If $V<\mathscr{U}$, then a $G-\mathrm{CW}(V)$ complex is a G-space X with a given decomposition $X=\operatorname{colim} X^{n}$ such that:
(i) $\quad X^{0}$ is a disjoint union of G-orbits, $X^{0}=\amalg_{\gamma} G / H_{\gamma}$ where V is a trivial H_{γ}-module for each γ;
(ii) X^{n} is obtained from X^{n-1} by attaching "cells" of the form $G \times{ }_{H} D(V$ $-m$), where H is such that V has a trivial m-dimensional summand as an H-module, and where $n=\operatorname{dim} V-m$ (here, $D(W)$ denotes the unit disc in $W<\mathscr{U}$).

In [5], one sees that any G-CW complex (in the sense of Bredon-Illman) has the G-homotopy type of a G-CW (V) complex for every $V<\mathscr{U}$. (One considers $X \times D(V) \sim X$ for a G-CW complex X, where $D(V)$ is seen to have a $G-\mathrm{CW}(V)$ structure with cells of dimension $\leq \operatorname{dim} V)$. Moreover, cellular approximation and an appropriate version of the Whitehead theorem hold in this context.
G-CW (V) decompositions give rise to cellular chains, which one may use to define $H_{G}^{V+n}(X)$ for all $n \in \mathbf{Z}$, as follows.

Denote by $[X, Y]_{G}$ the set of G-equivariant homotopy classes of based G-maps $X \rightarrow Y$. If $V<\mathscr{U}$, denote by S^{V} its one-point compactification, (G acting trivially at the basepoint ∞) and by $\Sigma^{V} X$ the smash product $X \wedge S^{V}$ for a based G-space X. Let \mathcal{O} be the category whose objects are the G-spaces G / H for $H \subset G$ and whose morphisms are given by

$$
\mathcal{O}(G / H, G / K)=\underset{V<\mathscr{U}}{\operatorname{colim}}\left[\Sigma^{V} G / H_{+}, \Sigma^{V} G / K_{+}\right]_{G}
$$

where the subscript + denotes addition of a disjoint basepoint.
A contravariant (resp. covariant) coefficient system (or "Mackey functor") is then a contravariant (resp. covariant) additive functor $T: \mathcal{O} \rightarrow \mathscr{A} b$, the category of abelian groups. A map of such systems is then a natural transformation of functors.

If X is $G-\mathrm{CW}(V)$, then one has a differentially graded contravariant system given by

$$
\bar{C}_{V+n}(X)(G / H)=\operatorname{colim}_{W \perp V}\left[\Sigma^{V+W_{G}} / H_{+}, \Sigma^{W-n} X^{v+n} / X^{v+n-1}\right]_{G}
$$

where $v=\operatorname{dim} V$ and W is large enough to contain a trivial n-dimensional summand.

If \bar{T} and \bar{S} are contravariant and \underline{T} is covariant, one has abelian groups $\operatorname{Hom}_{\mathcal{O}}(\bar{T}, \bar{S})$ and $\bar{T} \otimes_{\mathcal{O}} \underline{\underline{T}}$, given respectively by the group of natural transformations, and by $\sum_{H \subset G} \overline{\bar{T}}(G / H) \otimes \underline{T}(G / H) \sim$ where, for $f: G / H \rightarrow G / K$ in \mathcal{O}, one identifies $f^{*} T \otimes t^{\prime}$ with $t \otimes f_{*} t^{\prime}$.

One then defines $\underline{H}_{G}^{V+*}(X ; \bar{S})$ and $H_{V+*}^{G}(X ; \underline{T})$ respectively by passage to homology of $\operatorname{Hom}_{\mathscr{O}}\left(\bar{C}_{V+*}(X), \bar{S}\right)$ and $C_{V+*}(X) \otimes_{\mathcal{O}} \underline{T}$.

Observe that (stable) equivariant self s-duality of the spaces G / H_{+}implies that $\mathcal{O} \cong \mathcal{O}^{\mathrm{opp}}$, so that every covariant system may be regarded as contravariant, and vice-versa. One has canonical coefficient systems \underline{A} and \bar{A}, analogous to \mathbf{Z}-coefficients in the nonequivariant case, given by

$$
\underline{A}(G / H)=\operatorname{colim}\left[S^{V}, \Sigma^{V} G / H_{+}\right]_{G}
$$

and

$$
\bar{A}(G / H)=\operatorname{colim}\left[\Sigma^{V} G / H_{+}, S^{V}\right]_{G}
$$

each isomorphic with the Burnside ring, $A(H)$ of H (Segal, Petrie, tom Dieck).

Following is a list of basic properties of $R O(G)$-graded singular cohomology. (There is also an evident dual list for homology.)
(1) "Dimension Axiom". $H_{G}^{0}(G / H ; \bar{T}) \cong \bar{T}(G / H)$ for each $H \subset G$; $H_{G}^{n}(G / H ; \bar{T})=0$ if $n \neq 0$;
(2) $H_{G}^{V+n}(G / H ; \bar{T})=H_{G}^{-(V+n)}(\underline{G} / H ; \bar{T})=0$ if $n>0$;
(3) $H_{G}^{\gamma}\left(G \times_{K} X ; \bar{T}\right) \cong H_{K}^{\gamma \mid K}(X ; \bar{T} \mid K)$ if $K \subset G$, where $\bar{T} \mid K$ is \bar{T}, regarded naturally as a coefficient system for K-orbits;
(4) "Suspension Isomorphism".

$$
\bar{H}_{G}^{\gamma}(X ; \bar{T}) \stackrel{\sigma}{\cong} \bar{H}_{G}^{\gamma+V}\left(\Sigma^{V} X ; \bar{T}\right)
$$

where the reduced cohomology of a based G-space X is given by the natural construction $H_{G}\left(\left(X,{ }^{*}\right) ; \bar{T}\right)$ for pairs;
(5) $\quad H_{G}^{*}(X ; T)$ has a natural module structure over $A(G)$.

Further, one has for Burnside coefficients \bar{A}, and suitable "ring systems" in general, a cup product $\cup: H_{G}^{\gamma}(X) \otimes H_{G}^{\gamma^{\prime}}(X) \rightarrow H_{G}^{\gamma+\gamma^{\prime}}(X)$ which is unital, associative and commutative up to certain units in the Burnside ring of G. Further, $H_{G}^{*}(X ; \bar{T})$ is an H_{G}^{*} (point; \bar{A})-module for any X and \bar{T}.

All of the above properties and more will be developed in detail in [5]. For the purposes of this paper, suffice to say that the theory can be manipulated just as ordinary cohomology ought to be.

The relationship with Bredon cohomology [1] is as follows. Let \mathscr{G} denote the category whose objects are those of \mathcal{O} and whose morphisms are the G-maps $G / H \rightarrow G / K$. A contravariant system $\bar{T}: \mathcal{O} \rightarrow \mathcal{O} b$ is automatically a Bredon contravariant system $\bar{T} \mid: \mathscr{G} \rightarrow \mathcal{O} b$ (in the sense of [2]) via the inclusion $\mathscr{G} \rightarrow \mathcal{O}$. If a Bredon system \bar{T}, extends to a contravariant (Mackey) system \bar{T}^{\prime}, then Bredon cohomology (with \bar{T}-coefficients) agrees with $H_{G}^{n}\left(X ; \bar{T}^{\prime}\right)$ for $n \in \mathbf{Z}$ up to natural isomorphism.

2. The V-dimensional Bott class

By (2) of $\S 1, H_{G}^{V}$ (point) $=0$ if V has a trivial summand of dimension ≥ 1. When $V^{G}=0$, there is an element $1_{V} \in H_{G}^{V}($ point $; \bar{A})$ given by $1_{V}=\iota^{*}\left(1_{0}\right)$, where 1_{0} is the fundamental class in $H_{G}^{0}($ point $; \bar{A}) \cong \bar{H}_{G}^{V}\left(S^{V} ; \bar{A}\right) \cong A(G)$, and $t: S^{0} \rightarrow S^{V}$ is inclusion.

The inclusion $S(V) \rightarrow D(V)$ of the unit sphere in V gives rise to a long exact sequence

$$
\begin{equation*}
H_{G}^{\gamma-V}(\text { point }) \stackrel{\mathcal{O}}{\cong} \bar{H}_{G}^{\gamma}\left(S^{V}\right) \stackrel{\mu}{\rightarrow} H_{\text {degree }-1}^{\gamma}(\text { point }) \rightarrow H_{G}^{\gamma}(S(V)) \tag{2.1}
\end{equation*}
$$

(with \bar{A}-coefficients suppressed), where μ coincides with $\cup 1_{V}$.
Consider the case $\gamma=n V+m$, where, for interest, V should have no trivial summand.

Lemma 2.2. Let $n>1$ and $m \geq 0$. Then $\cup 1_{V}: H_{G}^{(n-1) V+m}$ (point) \rightarrow $H_{G}^{n V+m}$ (point) is an isomorphism. (By (2) of §1, the case $m>0$ is, of course, immediate).

Proof. By the sequence (2.1), one need only show that

$$
H_{G}^{n V}(S(V))=H_{G}^{n V-1}(S(V))=0
$$

$S(V)$, however, is made up of G-cells of the form $G \times_{H} D(V-i)$ with $1 \leq i \leq \operatorname{dim} V^{H}$. If $n \geq 1, H_{G}^{n V}(S(V))$ is computed by giving $S(V) \times D((n-$ 1) V) the product $G-\mathrm{CW}(n V)$ structure, so that $C_{n V}(S(V))=0$, the top dimensional cells being in dimension $n V-1$. Similarly, $H_{G}^{(n+1) V-1}(S(V))=0$. Indeed, if X denotes the $(v-2)$-skeleton of $S(V)$), then $H_{G}^{(n+1) v-1}(X)=0$ by the argument above, and the inclusion of X in $S(V)$ gives a long exact sequence

$$
\begin{aligned}
& \underset{K_{l}}{\oplus} \bar{H}_{K_{l}}^{(n+1) V-1}\left(S^{V-i}\right) \rightarrow H_{G}^{(n+1) V-1}(S(V)) \rightarrow H_{G}^{(n+1) V-1}(X)=0 \\
& \quad \text { ॥II } \\
& \bigoplus_{K_{1}} H_{K_{l}}^{n V}(\text { point })
\end{aligned}
$$

where $K_{i} \subset G$ are proper subgroups such that V has a trivial summand as a K_{i}-module. Hence $H_{K_{i}}^{n V}$ (point) $=0$ if $n \geq 1$.

For the case $n=1$, one has the sequence

$$
\cdots \rightarrow H_{G}^{V-1}(S(V)) \xrightarrow{\xi} H_{G}^{0}(\text { point }) \rightarrow H_{G}^{V}(\text { point }) \rightarrow H_{G}^{V}(S(V))=0
$$

$$
\stackrel{\imath \|}{A(G)}
$$

To compute ξ, one has, by equivariant Poincare Duality [9],

$$
H_{G}^{V-1}(S(V)) \cong H_{0}^{G}(S(V))
$$

(where for the latter, one regards \bar{A} as a covariant system via the canonical equivalence $\mathcal{O} \cong \mathcal{O}^{\text {opp }}$). When V has no one-dimensional fixed-set, it is easy to compute $H_{0}^{G}(S(V))$.

Let $\mathscr{F}(V)$ be the family of subgroups given by $H \in \mathscr{F}(V)$ iff $V^{H} \neq 0$. Then

$$
S\left(V^{\infty}\right)=\operatorname{colim} S\left(V^{n}\right)
$$

is a universal G-space of the form $E \mathscr{F}(V)$. Such a space has the property that $E \mathscr{F}(V)^{K}$ is empty if $K \notin \mathscr{F}(V)$ and is contractible if $K \in \mathscr{F}(V)$. In [8] it is shown that $H_{G}^{P}(E \mathscr{F}(V) ; T) \cong \operatorname{Ext}_{\mathscr{F}(\mathscr{F}(V))}^{P}(\overline{\mathbf{Z}}, T)$, where the ext groups are given as follows. $\mathscr{B}(\mathscr{F})$ is the category of Bredon coefficient systems (see [1]) $T: \mathscr{G}(\mathscr{F}) \rightarrow \mathscr{A} b$, where $\mathscr{G}(\mathscr{F})$ has objects G / H with $H \in \mathscr{F}$ and morphisms the equivariant maps. $\overline{\mathbf{Z}}$ is the constant coefficient system, $\overline{\mathbf{Z}}(G / H)=$ $\mathbf{Z} ; \overline{\mathbf{Z}}(f)=1$, and the ext groups are constructed in the category $\mathscr{B}(\mathscr{F})$. In particular, $H_{G}^{0}(E \mathscr{F}(V) ; \bar{T}) \cong \operatorname{Hom}_{\mathscr{B}(\mathscr{F})}(\overline{\mathbf{Z}}, \bar{T})$. Dually, one has

$$
H_{0}^{G}(E \mathscr{F}(V) ; \underline{T}) \cong \overline{\mathbf{Z}} \otimes_{\mathscr{G}(\mathscr{F}(V))} \underline{T}
$$

whence $H_{0}^{G}\left(S\left(V^{\infty}\right) ; \underline{A}\right) \cong \overline{\mathbf{Z}} \otimes_{\mathscr{G}(\mathscr{F}(V))} \underline{A}$, where one regards \underline{A} as a Bredon coefficient system.

Lemma 2.3. Let V be such that V^{H} does not have dimension 1 for $H \subset G$. Then

$$
H_{0}^{G}(S(V)) \cong H_{0}^{G}\left(S\left(V^{\infty}\right)\right)
$$

Proof. Under the hypothesis, and by uniqueness of universal G-spaces, one can obtain a G-homotope X of $S\left(V^{\infty}\right)$ by attaching G-cells of the form $G / H \times D^{i}$ with $i \geq 2$ to $S(V)$, giving the result by the associated exact sequences in Bredon-Illman homology.

By naturality of Poincare duality, one obtains

$$
\xi: H_{G}^{V-1}(S(V)) \cong \overline{\mathbf{Z}} \otimes_{\mathscr{F}(\mathscr{F}(V))} \underline{A} \rightarrow A(G) \cong H_{G}^{0}(\text { point })
$$

coinciding with $\xi(n \otimes a) \cong n f_{*}(a)$ for $n \in \overline{\mathbf{Z}}(G / H), a \in \underline{A}(G / H)$ and f : $G / H \rightarrow G / G$ the only possible map. One then has $H_{G}^{V}($ point $) \cong A(G) / \operatorname{Im} \xi$. For general V, this remains true, except that ξ must be computed explicitly from the 0 - and 1- dimensional geometry of V. In either case, the unit $1 \in H_{G}^{0}$ (point) goes to the Bott class $1_{V} \in H_{G}^{V}$ (point) under the quotient $A(G) \rightarrow A(G) / \operatorname{Im} \xi$.

Lemma 2.4. If $m \geq 0$ and $n>m$, then

$$
\cup 1_{V}: H_{G}^{m-(n-1) V}(\text { point }) \rightarrow H_{G}^{m-n V}(\text { point })
$$

is an isomorphism.
Proof. By the sequence (2.1) with $\gamma=m-n V$, it suffices to show that

$$
H_{G}^{m-n V}(S(V))=H_{G}^{m-1-n V}(S(V))=0 .
$$

One has contributions to $\bar{H}_{G}^{m-n V}(S(V))$ of the form

$$
\bar{H}_{G}^{m-n V}\left(G_{+} \wedge_{K} S^{V-i}\right) \cong \bar{H}_{K}^{m-n V}\left(S^{V-i}\right) \cong \bar{H}_{K}^{m+i}\left(S^{(n+1) V}\right)=0
$$

since $m+i<n+\operatorname{dim} V^{K} \leq(n+1) \operatorname{dim} V^{K},\left(\operatorname{dim} V^{K}\right.$ being ≥ 1 for a G CW (V) decomposition of $S(V)$). Similarly, $H_{G}^{m-1-n V}(S(V))=0$.

Note that in particular the lemma implies that

$$
H_{G}^{-V}(\text { point }) \cong \cdots \cong H_{G}^{-n V}(\text { point }) \cong \cdots \quad \text { for } n \geq 1
$$

One may compute $H_{G}^{-}{ }^{V}$ (point) explicitly for nice V just as we computed H_{G}^{V} (point). This is done in [5].

When G is \mathbf{Z}_{p} with p prime, Stong has computed $H_{G}^{n V+m}$ (point) for all n and m. The data $H_{G}^{n V-m}$ (point) for $m, n \geq 0$ and general G are not known, although the author has machinery for grinding these out in general, as well as explicit formulations of $H_{G}^{n(V-v)}$ (point) in [5].

3. Periodicity in $\boldsymbol{H}_{\boldsymbol{G}}^{*}(\boldsymbol{E} \mathscr{F})$

We are now ready to prove the main result. Let $V<\mathscr{U}$ and $\mathscr{F}=\mathscr{F}(\mathscr{V})$, the family determined by V as above.

Theorem 3.1. Let $\gamma=n V+m$ with $n, m \geq 0$. Then

$$
\cup 1_{V}: H_{G}^{\gamma}(E \mathscr{F} ; \bar{T}) \rightarrow H_{G}^{\gamma+V}(E \mathscr{F} ; \bar{T})
$$

is an isomorphism for each \bar{T} if $n>0$ or $m>0$ and an epimorphism if $n=0$ and $m=0$.

Proof. Let $N>m+n v+1$, and consider the commutative diagram, obtained from (2.1):

$$
\begin{array}{cccc}
\cdots \rightarrow \bar{H}_{G}^{n V+m}\left(S^{N V}\right) & \rightarrow \bar{H}_{G}^{n V+m}\left(S^{0}\right) & \rightarrow & H_{G}^{n V+m}(S(N V)) \\
\downarrow e & \downarrow f & & \downarrow g \\
\cdots \rightarrow \bar{H}_{G}^{(n+1) V+m}\left(S^{N V}\right) \rightarrow \bar{H}_{G}^{(n+1) V+m}\left(S^{0}\right) & \rightarrow H_{G}^{(n+1) V+m}(S(N V)) \\
& \rightarrow \bar{H}_{G}^{n V+m+1}\left(S^{N V}\right) & \rightarrow 0 \\
\downarrow h
\end{array}
$$

Here, the vertical maps are all multiplication by $\cup 1_{V}$ and coefficients are in \bar{T}. Lemma 2.4 implies that e and h are isomorphisms by our choice of N, and Lemma 2.2 implies that f is an isomorphism if $n>0$ or $m>0$ and an epimorphism if n and m are 0 . The five lemma now implies that the same is true for g.

Finally, one has the inclusion $\iota: S(N V) \rightarrow E \mathscr{F}$. One sees that

$$
\iota^{H}: S(N V)^{H} \rightarrow E \mathscr{F}^{H}
$$

is an $(n v+m+1)$-equivalence for each $H \subset G$, so that E may be obtained from $S(N V)$ by attaching G-cells of the form $G / H \times D^{r}$ with $r>n v+m$. For such cells, $\bar{H}_{G}^{n V+m}\left(G / H_{+} \wedge S^{r}\right) \cong H_{H}^{n V+m-r}($ point $)=0$, since $n v+m-$ $r<0$, and we are done.

Remarks 3.2. (i) This general periodicity is the source of periodicity in $H^{*}(G)$ under special circumstances, as we shall see in $\S 4$.
(ii) There is no class 1_{-V} such that $\cup 1_{-V}$ is inverse to 1_{V}. Indeed, if \bar{T} is the coefficient system arising from a G-module M, (as will be explained below), then $H_{G}^{-V}($ point $; T)=0$. This also shows that one cannot expect a periodic class in H_{G}^{-V} (point).

Consider the following diagram in the case $m=n=0$, with coefficients in $\bar{T}:$

$$
\left.\begin{array}{rlrl}
0 \rightarrow & \bar{H}_{G}^{0}\left(S^{N V}\right) \rightarrow \bar{H}_{G}^{0}\left(S^{0}\right) \rightarrow & H_{G}^{0}(S(N V)) \rightarrow & \bar{H}_{G}^{-1}\left(S^{N V}\right) \rightarrow 0 \\
& \downarrow e & \downarrow f & \downarrow g
\end{array}\right)
$$

Since f and g are epic, one has a short exact sequence

$$
\begin{gather*}
0 \rightarrow \operatorname{ker}(\eta e) \rightarrow \operatorname{ker} f \rightarrow \operatorname{ker} g \rightarrow 0 \tag{3.3}\\
\operatorname{ker} f \cap H_{G}^{-N V}(\text { point }) .
\end{gather*}
$$

If V has no one-dimensional fixed-sets, one has

$$
\operatorname{ker} f=\operatorname{Im}\left(\xi: \overline{\mathbf{Z}} \otimes_{\mathscr{B}(\mathscr{F})} \underline{T} \rightarrow \underline{T}(G / G)\right)
$$

and

$$
H_{G}^{-N V}(\text { point })=\operatorname{ker}\left(\mu: \underline{T}(G / G)=\bar{T}(G / G) \rightarrow \operatorname{Hom}_{\mathscr{F}(\mathscr{F})}(\overline{\mathbf{Z}}, \bar{T})\right)
$$

by the results in [5] (or by arguments dual to those preceeding Lemma 2.3). Thus

$$
\begin{aligned}
\operatorname{ker} g & \cong \operatorname{ker} f / \operatorname{ker} f \cap H_{G}^{-N V}(\text { point }) \\
& \cong \operatorname{Im} \xi /(\operatorname{Im} \xi \cap \operatorname{ker} \mu)
\end{aligned}
$$

It follows that

$$
\operatorname{ker}\left(\cup 1_{V}\right): H_{G}^{0}(E \mathscr{F} ; \bar{T}) \rightarrow H_{G}^{V}(E \mathscr{F} ; \bar{T}) \cong \operatorname{Im} \xi /(\operatorname{Im} \xi \cap \operatorname{ker} \mu)
$$

One now obtains

$$
\begin{aligned}
H_{G}^{V}(E \mathscr{F} ; \bar{T}) & \cong H_{G}^{0}(E \mathscr{F} ; \bar{T}) / \operatorname{Im}(\mu \xi) \\
& \cong \operatorname{Hom}_{\mathscr{O}(\mathscr{F})}(\overline{\mathbf{Z}}, T) / \operatorname{Im}(\mu \xi)
\end{aligned}
$$

with $\cup 1_{V}$ coinciding with the natural quotient. We therefore conclude, by the above, Theorem 3.1 and [7] (or its generalization in [8]).

Theorem 3.4. Let V have no one-dimensional fixed-sets, and let m and $n \geq 0$. Let $\mathscr{F}=\mathscr{F}(V)$. Then

$$
H_{G}^{n V+m}(E \mathscr{F} ; \bar{T}) \cong \begin{cases}\operatorname{Hom}_{\mathscr{B}(\mathscr{F})}(\overline{\mathbf{Z}}, T) & \text { if } n=m=0 \\ \operatorname{Hom}_{\mathscr{B}(\mathscr{F})}(\overline{\mathbf{Z}}, T) / \operatorname{Im}(\mu \xi) & \text { if } m=0, n \geq 1 \\ \operatorname{Ext}_{\mathscr{B}(\mathscr{F})}^{m}(\overline{\mathbf{Z}}, T) & \text { if } m \neq 0\end{cases}
$$

As an example, we compute $H_{\mathbf{Z}_{2}}^{n \rho+m}\left(E \mathbf{Z}_{2} ; \bar{A}\right)$, where ρ is the non-trivial one-dimensional \mathbf{Z}_{2}-module, and $\mathscr{F}=\{e\}$, so that $E \mathscr{F}=E \mathbf{Z}_{2}$. Since $A(e)=$

Z, one has

$$
\operatorname{Hom}_{\mathscr{B}(\mathscr{F})}(\overline{\mathbf{Z}}, \bar{A}) \cong \mathbf{Z}
$$

and $\xi: \overline{\mathbf{Z}} \otimes_{\mathscr{G}(\mathscr{F})} \underline{A} \cong \mathbf{Z} \otimes \mathbf{Z} \rightarrow A\left(\mathbf{Z}_{2}\right)$ coinciding with $1 \otimes 1 \rightarrow\left[\mathbf{Z}_{2}\right]$, the class of the free \mathbf{Z}_{2}-set, \mathbf{Z}_{2}. Finally,

$$
\mu: A\left(\mathbf{Z}_{2}\right) \rightarrow \operatorname{Hom}_{\mathscr{B}(\mathscr{F})}(\overline{\mathbf{Z}}, \bar{A})=\operatorname{Hom}(\mathbf{Z}, \mathbf{Z}) \cong \mathbf{Z}
$$

takes $\left[\mathbf{Z}_{2}\right]$ to 2, whence $\operatorname{Hom}_{\mathscr{B}(\mathscr{F})}(\overline{\mathbf{Z}}, \bar{A}) / \operatorname{Im}(\mu \xi) \cong \mathbf{Z} / 2 \mathbf{Z} . \quad \operatorname{Ext}_{\mathscr{F}(\mathscr{F})}^{m}(\overline{\mathbf{Z}}, \bar{A})$ will be computed in $\S 4$. One therefore has

$$
H_{G}^{n \rho}\left(E \mathbf{Z}_{2} ; \bar{A}\right) \cong \begin{cases}\mathbf{Z} & \text { if } n=0 \\ \mathbf{Z} / 2 \mathbf{Z} & \text { if } n>0\end{cases}
$$

with $A\left(\mathbf{Z}_{2}\right)$ acting everywhere via the forgetful map $A\left(\mathbf{Z}_{2}\right) \rightarrow A(e) \cong \mathbf{Z}$.

4. Free actions

Now, suppose that G acts freely on $S(V)$, so that $\mathscr{F}=\{e\}$ and $E \mathscr{F}=E G$. We relate $H_{G}^{n V+m}(E \mathscr{F})$ to $H_{G}^{n v+m}(E \mathscr{F})$ and deduce classical periodicity results in a more general setting (in that we allow arbitrary Mackey functor coefficients).

Proposition 4.1. Let X be a free G-CW complex, and let $V<\mathscr{U}$ be any G-module such that the action on V by each $g \in G$ is orientation-preserving. Then there exists a natural isomorphism

$$
\phi: H_{G}^{n V+m}(X ; \bar{T}) \rightarrow H_{G}^{n v+m}(X, \bar{T})
$$

for $n \geq 0$ and any m. (Recall that $v=\operatorname{dim} V$.)
Proof. $\quad H_{G}^{n V+m}(X ; \bar{T})$ may be computed cellularly via a G-CW (V) decomposition of X. Since X is free, the given G-CW decomposition is automatically a $G-\mathrm{CW}(V)$ decomposition, so that $\bar{C}_{n V+m}(X) \cong \bar{C}_{n v+m}(X)$ for each m (as contravariant systems). Further, in both cases, $X^{n v+m} / X^{n v+m-1}$ is a wedge of G-spaces of the form $G_{+} \wedge S^{n++m} \cong G_{+} \wedge S^{n v+m}$. To compute the boundary homomorphisms for $\bar{C}_{n V+*}(X)$, one orients each summand of $G_{+} \wedge S^{n V+m} \cong$ $\vee_{g \in G^{\prime}} S^{n V+m}$ by first suspending by a large enough trivial G-module to make $S^{g V+m} G$-invariant, orienting the identity summand arbitrarily, and then using translation by elements of G to orient the remaining cells. By the hypothesis on V, this coincides with the orientation of cells in $\bar{C}_{n v+*}(X)$, whence the resulting chain complexes are isomorphic. (Naturality follows easily by cellular approximation.)

Corollary 4.2. Let G act freely on $S(V)$ through orientation-preserving maps. Then $\cup 1_{V}$ induces isomorphisms $H_{G}^{i}(E G ; \bar{T}) \rightarrow H_{G}^{i+v}(E G ; \bar{T})$ for any $i>0$, and an epimorphism if $i=0$.

Remark 4.3. The hypothesis of Proposition 4.1 explains the failure of period 1 periodicity in $H^{*}\left(\mathbf{Z}_{2}\right)$, and the presence of a period of 2 (by choosing $V=\rho \oplus \rho$ where ρ is the one-dimensional irreducible \mathbf{Z}_{2}-vector space). One still retains, however, equivariant period 1 periodicity of the form

$$
H_{G}^{\gamma}(E G ; \bar{T}) \cong H_{G}^{\gamma+\rho}(E G ; \bar{T})
$$

where ρ has dimension 1 .
One may now compute $\operatorname{Ext}_{\mathscr{G}(\mathscr{F})}^{m}(\hat{\mathbf{Z}} ; \bar{A})$ for $G=\mathbf{Z}_{2}$ and $V=\rho$, as promised in §3. By the above, $\operatorname{Ext}_{\mathscr{G}(\mathscr{F})}^{2 m}(\overline{\mathbf{Z}}, \bar{A}) \cong H_{G}^{2 m}\left(E \mathbf{Z}_{2} ; \bar{A}\right) \cong H_{G}^{2 \rho}\left(E \mathbf{Z}_{2} ; \bar{A}\right)=$ $\mathbf{Z} / 2 \mathbf{Z}$, and it remains to compute $\operatorname{Ext}_{\mathscr{\mathscr { F }}\left(\mathscr{F}^{2}\right)}^{2 m+1}(\overline{\mathbf{Z}}, \bar{A})$. Since

$$
\begin{aligned}
\operatorname{Ext}_{\mathscr{O}(\mathscr{F})}^{1}(\overline{\mathbf{Z}}, A) & \cong H_{G}^{1}\left(E \mathbf{Z}_{2} ; \bar{A}\right) \cong H_{G}^{2 m+1}\left(E \mathbf{Z}_{2} ; \bar{A}\right) \cong H_{G}^{2 m+1}\left(E \mathbf{Z}_{2} ; \bar{A}\right) \\
& \cong \operatorname{Ext}_{\mathscr{O}(\mathscr{F})}^{2 m+1}(\mathbf{Z}, A)
\end{aligned}
$$

it therefore suffices to compute the first Ext group. By (2.1),

$$
\operatorname{Ext}^{1} \cong H_{G}^{1}(S(N V)) \cong H_{G}^{2-N V}(\text { point })=0
$$

by Stong's calculation in [5].

5. Relationship with Classical Results

In order to specialize Corollary 4.2 to classical results about $H^{*}(G ; A)$ for a $\mathbf{Z} G$-module A, we recall some material from [8].

Let $\mathscr{H}(\mathscr{F})$ denote the category whose objects are the spaces G / H with $H \in \mathscr{F}$, and whose morphisms $G / H \rightarrow G / K$ are the $\mathbf{Z} G$-module homomorphisms $\mathbf{Z} G / H \rightarrow \mathbf{Z} G / K$, where $\mathbf{Z} G / J$ denotes the free \mathbf{Z}-module on G / J. A Hecke functor (based on \mathscr{F}) is then an additive functor

$$
T: \mathscr{H}(\mathscr{F}) \rightarrow \mathscr{A} b
$$

If A is a $\mathbf{Z} G$-module, then the assignment $\overline{A:} G / H \rightarrow \operatorname{Hom}_{\mathbf{Z} G}(\mathbf{Z} G / H, A)$ gives a contravariant Hecke functor, while $G / H \rightarrow \operatorname{Hom}_{\mathbf{Z} G}(A, \mathbf{Z} G / H)$ gives a covariant one.

If $\mathcal{O}(\mathscr{F})$ is the full subcategory of \mathcal{O} with objects G / H for $H \in \mathscr{F}$, then one has a forgetful functor $\mathcal{O}(\mathscr{F}) \rightarrow \mathscr{H}(\mathscr{F})$ by [8]. This turns every Hecke functor into a Mackey functor.

One now has, by results in [8].

$$
H^{i}(G ; A) \cong H_{G}^{i}(E G ; \bar{A})
$$

so that all the classical periodicity results follow from §4, and continue to hold in the more general form of 4.2.

References

1. G.E. Bredon, Equivariant cohomology theories, Springer Lecture Notes in Mathematics, vol. 34, Springer-Verlag, New York, 1967.
2. T. том Dieck, Transformation groups and representation theory, Springer Lecture Notes in Mathematics, vol. 766, Springer-Verlag, 1979.
3. G. Lewis, Green functors, mimeographed notes, Syracuse University, Syracuse, New York, 1983.
4. G. Lewis, J.P. May, and J. McClure, Ordinary equivariant $R O(G)$-graded cohomology, Bull. Amer. Math. Soc., vol. 4 (1981), pp. 208-212.
5. G. Lewis, J.P. May, J. McClure and S. Waner, Ordinary equivariant $R O(G)$-graded cohomology, in preparation. University of Chicago, Chicago, Illinois.
6. R.E. Stong, The cohomology of a point, Preprint, University of Virginia, 1981.
7. S. Waner, A generalization on the cohomology of groups, Proc. Amer. Math. Soc., vol. 85 (1982), pp. 469-474.
8. \qquad , Mackey functors and G-cohomology, Proc. Amer. Math. Soc., vol. 90 (1984), pp. 641-648.
9. \qquad , Oriented G-mainfolds, Preprint, Hofstra University, 1981.

Hofstra University
Hempstead, New York

