PERIODICITY IN THE COHOMOLOGY OF UNIVERSAL G-SPACES

BY

STEFAN WANER

INTRODUCTION

The purpose of this note is to generalize the classical results on periodicity in $H^*(G)$ in the presence of a free G-action on a sphere, and to reinterpret them in terms of global results about equivariant singular cohomology.

Our generalizations proceed in two directions. First, one has a notion of $H^*(G; T)$, where T is a Mackey functor (in the sense of tom Dieck in [2]), generalizing the case T a ZG-module. We show here that classical periodicity continues to hold in this more general setting.

Next, one has the notion of a universal G-space $E\mathscr{F}$, associated with a family \mathscr{F} of subgroups of G. Here, we exhibit periodicity in $H_G^*(E\mathscr{F}; T)$ (for arbitrary G and particular families \mathscr{F}), where * is RO(G)-grading. (The theory of RO(G)-graded equivariant singular cohomology has been announced by Lewis, May, and McClure in [4]. The complete theory will appear in [5], including one of the author's independent formulations, a summary of which appears in §1 below). This periodicity is seen to arise from a "Bott" class $1_V \in H_G^V(\text{point})$ for appropriate representations V, in the sense that $\cup 1_V$ is an isomorphism in a range. Further, we see that this class lies at the source of the classical periodicity results, which emerge as special cases.

Finally, we use the periodicity to extend the computation of $H^n_G(\mathcal{EF}; T)$ carried out in [7] and [8] to that of $H^{nV+m}_G(\mathcal{EF}; T)$ for $m, n \ge 0$ and \mathcal{F} a family of subgroups determined by V. These latter groups (which are also modules over the Burnside ring of G) turn out to be purely algebraic invariants of G and V. (Throughout, G will be a finite group.)

1. Equivariant RO(G)-graded singular cohomology

We recall here in brief some of the theory of equivariant RO(G)-graded singular cohomology, developed by Lewis, May, McClure and the author in [5].

Received October 17, 1983.

^{© 1986} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Let \mathscr{U} be the orthogonal G-module $(\mathbb{R}G)^{\infty}$, $\mathbb{R}G$ being the real group algebra endowed with its natural inner product. We shall write $V < \mathscr{U}$ to signify that V is a finite-dimensional G-invariant submodule of \mathscr{U} .

If $V < \mathcal{U}$, then a G-CW(V) complex is a G-space X with a given decomposition $X = \operatorname{colim} X^n$ such that:

(i) X^0 is a disjoint union of G-orbits, $X^0 = \coprod_{\gamma} G/H_{\gamma}$ where V is a trivial H_{γ} -module for each γ ;

(ii) X^n is obtained from X^{n-1} by attaching "cells" of the form $G \times_H D(V - m)$, where H is such that V has a trivial m-dimensional summand as an H-module, and where $n = \dim V - m$ (here, D(W) denotes the unit disc in $W < \mathcal{U}$).

In [5], one sees that any G-CW complex (in the sense of Bredon-Illman) has the G-homotopy type of a G-CW(V) complex for every $V < \mathcal{U}$. (One considers $X \times D(V) \sim X$ for a G-CW complex X, where D(V) is seen to have a G-CW(V) structure with cells of dimension $\leq \dim V$). Moreover, cellular approximation and an appropriate version of the Whitehead theorem hold in this context.

G-CW(*V*) decompositions give rise to cellular chains, which one may use to define $H_G^{V+n}(X)$ for all $n \in \mathbb{Z}$, as follows.

Denote by $[X, Y]_G$ the set of *G*-equivariant homotopy classes of based *G*-maps $X \to Y$. If $V < \mathcal{U}$, denote by S^V its one-point compactification, (*G* acting trivially at the basepoint ∞) and by $\Sigma^V X$ the smash product $X \wedge S^V$ for a based *G*-space *X*. Let \mathcal{O} be the category whose objects are the *G*-spaces G/H for $H \subset G$ and whose morphisms are given by

$$\mathcal{O}(G/H, G/K) = \operatorname{colim}_{V < \mathscr{U}} \left[\Sigma^{V} G/H_{+}, \Sigma^{V} G/K_{+} \right]_{G},$$

where the subscript + denotes addition of a disjoint basepoint.

A contravariant (resp. covariant) coefficient system (or "Mackey functor") is then a contravariant (resp. covariant) additive functor $T: \mathcal{O} \to \mathscr{A}b$, the category of abelian groups. A map of such systems is then a natural transformation of functors.

If X is G-CW(V), then one has a differentially graded contravariant system given by

$$\overline{C}_{V+n}(X)(G/H) = \operatorname{colim}_{W \perp V} \left[\Sigma^{V+W} G/H_+, \Sigma^{W-n} X^{v+n} / X^{v+n-1} \right]_G$$

where $v = \dim V$ and W is large enough to contain a trivial *n*-dimensional summand.

If \overline{T} and \overline{S} are contravariant and \underline{T} is covariant, one has abelian groups $\operatorname{Hom}_{\mathscr{O}}(\overline{T}, \overline{S})$ and $\overline{T} \otimes_{\mathscr{O}} \underline{T}$, given respectively by the group of natural transformations, and by $\sum_{H \subset G} \overline{T}(G/H) \otimes \underline{T}(G/H) \sim$ where, for $f: G/H \to G/K$ in \mathscr{O} , one identifies $f^*T \otimes t'$ with $t \otimes f_*t'$.

One then defines $H_G^{V+*}(X; \overline{S})$ and $H_{V+*}^G(X; \underline{T})$ respectively by passage to homology of $\operatorname{Hom}_{\mathcal{O}}(\overline{C}_{V+*}(X), \overline{S})$ and $C_{V+*}(X) \otimes_{\mathcal{O}} \underline{T}$.

Observe that (stable) equivariant self s-duality of the spaces G/H_+ implies that $\mathcal{O} \cong \mathcal{O}^{\text{opp}}$, so that every covariant system may be regarded as contravariant, and vice-versa. One has canonical coefficient systems <u>A</u> and <u>A</u>, analogous to **Z**-coefficients in the nonequivariant case, given by

$$\underline{A}(G/H) = \operatorname{colim}\left[S^{V}, \Sigma^{V}G/H_{+}\right]_{G}$$

and

$$\overline{A}(G/H) = \operatorname{colim}\left[\Sigma^{\nu}G/H_{+}, S^{\nu}\right]_{G},$$

each isomorphic with the Burnside ring, A(H) of H (Segal, Petrie, tom Dieck).

Following is a list of basic properties of RO(G)-graded singular cohomology. (There is also an evident dual list for homology.)

(1) "Dimension Axiom". $H^0_G(G/H; \overline{T}) \cong \overline{T}(G/H)$ for each $H \subset G$; $H^n_G(G/H; \overline{T}) = 0$ if $n \neq 0$;

(2) $H_G^{V+n}(G/H; \overline{T}) = H_G^{-(V+n)}(G/H; \overline{T}) = 0$ if n > 0;

(3) $H_G^{\gamma}(G \times_K X; \overline{T}) \cong H_K^{\gamma|K}(X; \overline{T}|K)$ if $K \subset G$, where $\overline{T}|K$ is \overline{T} , regarded naturally as a coefficient system for K-orbits;

(4) "Suspension Isomorphism".

$$\overline{H}_{G}^{\gamma}(X;\overline{T}) \stackrel{\circ}{\cong} \overline{H}_{G}^{\gamma+V}(\Sigma^{V}X;\overline{T}),$$

where the reduced cohomology of a based G-space X is given by the natural construction $H_G((X, *); \overline{T})$ for pairs;

(5) $H_G^*(X; \overline{T})$ has a natural module structure over A(G).

Further, one has for Burnside coefficients \overline{A} , and suitable "ring systems" in general, a cup product \cup : $H_G^{\gamma}(X) \otimes H_G^{\gamma'}(X) \to H_G^{\gamma+\gamma'}(X)$ which is unital, associative and commutative up to certain units in the Burnside ring of G. Further, $H_G^{-}(X; \overline{T})$ is an $H_G^{-}(\text{point}; \overline{A})$ -module for any X and \overline{T} .

All of the above properties and more will be developed in detail in [5]. For the purposes of this paper, suffice to say that the theory can be manipulated just as ordinary cohomology ought to be.

The relationship with Bredon cohomology [1] is as follows. Let \mathscr{G} denote the category whose objects are those of \mathscr{O} and whose morphisms are the G-maps $G/H \to G/K$. A contravariant system $\overline{T}: \mathscr{O} \to \mathscr{O}b$ is automatically a Bredon contravariant system $\overline{T}: \mathscr{G} \to \mathscr{O}b$ (in the sense of [2]) via the inclusion $\mathscr{G} \to \mathscr{O}$. If a Bredon system \overline{T} , extends to a contravariant (Mackey) system \overline{T}' , then Bredon cohomology (with \overline{T} -coefficients) agrees with $H^n_G(X; \overline{T}')$ for $n \in \mathbb{Z}$ up to natural isomorphism.

470

2. The V-dimensional Bott class

By (2) of §1, $H_G^V(\text{point}) = 0$ if V has a trivial summand of dimension ≥ 1 . When $V^G = 0$, there is an element $1_V \in H_G^V(\text{point}; \overline{A})$ given by $1_V = \iota^*(1_0)$, where 1_0 is the fundamental class in $H_G^0(\text{point}; \overline{A}) \cong \overline{H}_G^V(S^V; \overline{A}) \cong A(G)$, and $\iota: S^0 \to S^V$ is inclusion.

The inclusion $S(V) \rightarrow D(V)$ of the unit sphere in V gives rise to a long exact sequence

(with \overline{A} -coefficients suppressed), where μ coincides with $\cup 1_{\nu}$.

Consider the case $\gamma = nV + m$, where, for interest, V should have no trivial summand.

LEMMA 2.2. Let n > 1 and $m \ge 0$. Then $\bigcup 1_V$: $H_G^{(n-1)V+m}(\text{point}) \rightarrow H_G^{nV+m}(\text{point})$ is an isomorphism. (By (2) of §1, the case m > 0 is, of course, immediate).

Proof. By the sequence (2.1), one need only show that

$$H_G^{nV}(S(V)) = H_G^{nV-1}(S(V)) = 0.$$

S(V), however, is made up of G-cells of the form $G \times_H D(V-i)$ with $1 \le i \le \dim V^H$. If $n \ge 1$, $H_G^{nV}(S(V))$ is computed by giving $S(V) \times D((n-1)V)$ the product G-CW(nV) structure, so that $C_{nV}(S(V)) = 0$, the top dimensional cells being in dimension nV - 1. Similarly, $H_G^{(n+1)V-1}(S(V)) = 0$. Indeed, if X denotes the (v - 2)-skeleton of S(V), then $H_G^{(n+1)V-1}(X) = 0$ by the argument above, and the inclusion of X in S(V) gives a long exact sequence

$$\bigoplus_{K_{i}} \overline{H}_{K_{i}}^{(n+1)V-1}(S^{V-i}) \rightarrow H_{G}^{(n+1)V-1}(S(V)) \rightarrow H_{G}^{(n+1)V-1}(X) = 0$$

$$\bigoplus_{K_{i}} H_{K_{i}}^{nV}(\text{point})$$

where $K_i \subset G$ are proper subgroups such that V has a trivial summand as a K_i -module. Hence $H_{K_i}^{nV}(\text{point}) = 0$ if $n \ge 1$. \Box

For the case n = 1, one has the sequence

$$\cdots \to H_G^{\nu-1}(S(V)) \xrightarrow{\xi} H_G^0(\text{point}) \to H_G^{\nu}(\text{point}) \to H_G^{\nu}(S(V)) = 0.$$

$$\underset{A(G)}{\boxtimes}$$

To compute ξ , one has, by equivariant Poincare Duality [9],

$$H_G^{V-1}(S(V)) \cong H_0^G(S(V))$$

(where for the latter, one regards \overline{A} as a covariant system via the canonical equivalence $\mathscr{O} \cong \mathscr{O}^{\text{opp}}$). When V has no one-dimensional fixed-set, it is easy to compute $H_0^G(S(V))$.

Let $\mathscr{F}(V)$ be the family of subgroups given by $H \in \mathscr{F}(V)$ iff $V^H \neq 0$. Then

$$S(V^{\infty}) = \operatorname{colim} S(V^n)$$

is a universal G-space of the form $\mathcal{EF}(V)$. Such a space has the property that $\mathcal{EF}(V)^K$ is empty if $K \notin \mathscr{F}(V)$ and is contractible if $K \in \mathscr{F}(V)$. In [8] it is shown that $H^p_G(\mathcal{EF}(V); T) \cong \operatorname{Ext}^p_{\mathscr{B}(\mathscr{F}(V))}(\overline{\mathbb{Z}}, T)$, where the ext groups are given as follows. $\mathscr{B}(\mathscr{F})$ is the category of Bredon coefficient systems (see [1]) $T: \mathscr{G}(\mathscr{F}) \to \mathscr{A}b$, where $\mathscr{G}(\mathscr{F})$ has objects G/H with $H \in \mathscr{F}$ and morphisms the equivariant maps. $\overline{\mathbb{Z}}$ is the constant coefficient system, $\overline{\mathbb{Z}}(G/H) = \mathbb{Z}; \overline{\mathbb{Z}}(f) = 1$, and the ext groups are constructed in the category $\mathscr{B}(\mathscr{F})$. In particular, $H^0_G(\mathcal{EF}(V); \overline{T}) \cong \operatorname{Hom}_{\mathscr{B}(\mathscr{F})}(\overline{\mathbb{Z}}, \overline{T})$. Dually, one has

$$H_0^G(E\mathscr{F}(V);\underline{T})\cong \overline{\mathbf{Z}}\otimes_{\mathscr{B}(\mathscr{F}(V))}\underline{T},$$

whence $H_0^G(S(V^{\infty}); \underline{A}) \cong \overline{\mathbb{Z}} \otimes_{\mathscr{B}(\mathscr{F}(V))} \underline{A}$, where one regards \underline{A} as a Bredon coefficient system.

LEMMA 2.3. Let V be such that V^H does not have dimension 1 for $H \subset G$. Then

$$H_0^G(S(V)) \cong H_0^G(S(V^\infty)).$$

Proof. Under the hypothesis, and by uniqueness of universal G-spaces, one can obtain a G-homotope X of $S(V^{\infty})$ by attaching G-cells of the form $G/H \times D^i$ with $i \ge 2$ to S(V), giving the result by the associated exact sequences in Bredon-Illman homology. \Box

472

By naturality of Poincare duality, one obtains

$$\xi \colon H_G^{V-1}(S(V)) \cong \overline{\mathbf{Z}} \otimes_{\mathscr{B}(\mathscr{F}(V))} \underline{A} \to A(G) \cong H_G^0(\text{point})$$

coinciding with $\xi(n \otimes a) \cong nf_*(a)$ for $n \in \overline{\mathbb{Z}}(G/H)$, $a \in \underline{A}(G/H)$ and f: $G/H \to G/G$ the only possible map. One then has $H_G^V(\text{point}) \cong A(G)/\text{Im }\xi$. For general V, this remains true, except that ξ must be computed explicitly from the 0- and 1- dimensional geometry of V. In either case, the unit $1 \in H_G^0(\text{point})$ goes to the Bott class $1_V \in H_G^V(\text{point})$ under the quotient $A(G) \to A(G)/\text{Im }\xi$.

LEMMA 2.4. If $m \ge 0$ and n > m, then

$$\cup 1_V: H^{m-(n-1)V}_G(\text{point}) \to H^{m-nV}_G(\text{point})$$

is an isomorphism.

Proof. By the sequence (2.1) with $\gamma = m - nV$, it suffices to show that

$$H_G^{m-nV}(S(V)) = H_G^{m-1-nV}(S(V)) = 0.$$

One has contributions to $\overline{H}_{G}^{m-nV}(S(V))$ of the form

$$\overline{H}_{G}^{m-nV}(G_{+}\wedge_{K}S^{V-i})\cong\overline{H}_{K}^{m-nV}(S^{V-i})\cong\overline{H}_{K}^{m+i}(S^{(n+1)V})=0,$$

since $m + i < n + \dim V^K \le (n + 1) \dim V^K$, $(\dim V^K \text{ being } \ge 1 \text{ for a } G-CW(V)$ decomposition of S(V)). Similarly, $H_G^{m-1-nV}(S(V)) = 0$. \Box

Note that in particular the lemma implies that

$$H_G^{-V}(\text{point}) \cong \cdots \cong H_G^{-nV}(\text{point}) \cong \cdots \text{ for } n \ge 1.$$

One may compute $H_G^{-V}(\text{point})$ explicitly for nice V just as we computed $H_G^{V}(\text{point})$. This is done in [5].

When G is \mathbb{Z}_p with p prime, Stong has computed $H_G^{nV+m}(\text{point})$ for all n and m. The data $H_G^{nV-m}(\text{point})$ for $m, n \ge 0$ and general G are not known, although the author has machinery for grinding these out in general, as well as explicit formulations of $H_G^{n(V-v)}(\text{point})$ in [5].

3. Periodicity in $H_G^*(E\mathscr{F})$

We are now ready to prove the main result. Let $V < \mathcal{U}$ and $\mathcal{F} = \mathcal{F}(\mathcal{V})$, the family determined by V as above.

THEOREM 3.1. Let $\gamma = nV + m$ with $n, m \ge 0$. Then

$$\cup 1_{V}: H_{G}^{\gamma}(E\mathscr{F}; \overline{T}) \to H_{G}^{\gamma+V}(E\mathscr{F}; \overline{T})$$

is an isomorphism for each \overline{T} if n > 0 or m > 0 and an epimorphism if n = 0and m = 0.

Proof. Let N > m + nv + 1, and consider the commutative diagram, obtained from (2.1):

$$\cdots \rightarrow \overline{H}_{G}^{nV+m}(S^{NV}) \rightarrow \overline{H}_{G}^{nV+m}(S^{0}) \rightarrow H_{G}^{nV+m}(S(NV))$$

$$\downarrow e \qquad \downarrow f \qquad \downarrow g$$

$$\cdots \rightarrow \overline{H}_{G}^{(n+1)V+m}(S^{NV}) \rightarrow \overline{H}_{G}^{(n+1)V+m}(S^{0}) \rightarrow H_{G}^{(n+1)V+m}(S(NV))$$

$$\rightarrow \overline{H}_{G}^{nV+m+1}(S^{NV}) \rightarrow 0$$

$$\downarrow h$$

$$\rightarrow \overline{H}_{G}^{(n+1)V+m+1}(S^{NV}) \rightarrow 0$$

Here, the vertical maps are all multiplication by $\cup 1_V$ and coefficients are in \overline{T} . Lemma 2.4 implies that e and h are isomorphisms by our choice of N, and Lemma 2.2 implies that f is an isomorphism if n > 0 or m > 0 and an epimorphism if n and m are 0. The five lemma now implies that the same is true for g.

Finally, one has the inclusion $\iota: S(NV) \to E\mathcal{F}$. One sees that

$$\iota^H: S(NV)^H \to E\mathscr{F}^H$$

is an (nv + m + 1)-equivalence for each $H \subset G$, so that E may be obtained from S(NV) by attaching G-cells of the form $G/H \times D^r$ with r > nv + m. For such cells, $\overline{H}_G^{nV+m}(G/H_+ \wedge S^r) \cong H_H^{nV+m-r}(\text{point}) = 0$, since nv + m - r < 0, and we are done. \Box

Remarks 3.2. (i) This general periodicity is the source of periodicity in $H^*(G)$ under special circumstances, as we shall see in §4.

(ii) There is no class 1_{-V} such that $\cup 1_{-V}$ is inverse to 1_{V} . Indeed, if \overline{T} is the coefficient system arising from a *G*-module *M*, (as will be explained below), then $H_{G}^{-V}(\text{point}; T) = 0$. This also shows that one cannot expect a periodic class in $H_{G}^{-V}(\text{point})$.

Consider the following diagram in the case m = n = 0, with coefficients in \overline{T} :

$$0 \to \overline{H}^0_G(S^{NV}) \to \overline{H}^0_G(S^0) \to H^0_G(S(NV)) \to \overline{H}^{-1}_G(S^{NV}) \to 0$$
$$\downarrow e \qquad \qquad \downarrow f \qquad \qquad \downarrow g \qquad \qquad \downarrow h$$

 $H_G^{\nu-1}(S(NV)) \to \overline{H}_G^{\nu}(S^{N\nu}) \xrightarrow{\eta} \overline{H}_G^{\nu}(S^0) \to H_G^{\nu}(S(NV)) \to \overline{H}_G^{\nu+1}(S^{N\nu}) \to 0.$

Since f and g are epic, one has a short exact sequence

(3.3)
$$0 \to \ker(\eta e) \to \ker f \to \ker g \to 0$$

$$\lim_{\mathbb{R}^{K}} \ker f \cap H_{G}^{-NV}(\text{point}).$$

If V has no one-dimensional fixed-sets, one has

$$\ker f = \operatorname{Im}(\xi \colon \mathbb{Z} \otimes_{\mathscr{B}(\mathscr{F})} \underline{T} \to \underline{T}(G/G)),$$

and

$$H_{G}^{-NV}(\text{point}) = \ker(\mu: \underline{T}(G/G) = \overline{T}(G/G) \to \operatorname{Hom}_{\mathscr{B}(\mathscr{F})}(\overline{\mathbf{Z}}, \overline{T}))$$

by the results in [5] (or by arguments dual to those preceeding Lemma 2.3). Thus

$$\ker g \cong \ker f / \ker f \cap H_G^{-NV}(\text{point})$$
$$\cong \operatorname{Im} \xi / (\operatorname{Im} \xi \cap \ker \mu).$$

It follows that

$$\ker(\cup 1_{V})\colon H^{0}_{G}(E\mathscr{F};\overline{T}) \to H^{V}_{G}(E\mathscr{F};\overline{T}) \cong \operatorname{Im} \xi/(\operatorname{Im} \xi \cap \ker \mu).$$

One now obtains

$$H^{\nu}_{G}(E\mathscr{F};\overline{T}) \cong H^{0}_{G}(E\mathscr{F};\overline{T})/\mathrm{Im}(\mu\xi)$$
$$\cong \mathrm{Hom}_{\mathscr{R}(\mathscr{F})}(\overline{\mathbf{Z}},T)/\mathrm{Im}(\mu\xi),$$

with $\cup 1_V$ coinciding with the natural quotient. We therefore conclude, by the above, Theorem 3.1 and [7] (or its generalization in [8]).

THEOREM 3.4. Let V have no one-dimensional fixed-sets, and let m and $n \ge 0$. Let $\mathscr{F} = \mathscr{F}(V)$. Then

$$H_{G}^{nV+m}(E\mathscr{F};\overline{T}) \cong \begin{cases} \operatorname{Hom}_{\mathscr{G}(\mathscr{F})}(\overline{\mathbf{Z}},T) & \text{if } n = m = 0, \\ \operatorname{Hom}_{\mathscr{G}(\mathscr{F})}(\overline{\mathbf{Z}},T)/\operatorname{Im}(\mu\xi) & \text{if } m = 0, n \ge 1, \\ \operatorname{Ext}_{\mathscr{G}(\mathscr{F})}^{m}(\overline{\mathbf{Z}},T) & \text{if } m \neq 0. \end{cases}$$

As an example, we compute $H_{\mathbf{Z}_2}^{n\rho+m}(E\mathbf{Z}_2; \overline{A})$, where ρ is the non-trivial one-dimensional \mathbf{Z}_2 -module, and $\mathscr{F} = \{e\}$, so that $E\mathscr{F} = E\mathbf{Z}_2$. Since A(e) =

Z, one has

$$\operatorname{Hom}_{\mathscr{B}(\mathscr{F})}(\overline{\mathbf{Z}},\overline{A})\cong \mathbf{Z},$$

and $\xi: \overline{\mathbf{Z}} \otimes_{\mathscr{B}(\mathscr{F})} \underline{A} \cong \mathbf{Z} \otimes \mathbf{Z} \to A(\mathbf{Z}_2)$ coinciding with $1 \otimes 1 \to [\mathbf{Z}_2]$, the class of the free \mathbf{Z}_2 -set, \mathbf{Z}_2 . Finally,

$$\mu: A(\mathbf{Z}_2) \to \operatorname{Hom}_{\mathscr{B}(\mathscr{F})}(\overline{\mathbf{Z}}, \overline{A}) = \operatorname{Hom}(\mathbf{Z}, \mathbf{Z}) \cong \mathbf{Z}$$

takes $[\mathbb{Z}_2]$ to 2, whence $\operatorname{Hom}_{\mathscr{G}(\mathscr{F})}(\overline{\mathbb{Z}}, \overline{A})/\operatorname{Im}(\mu\xi) \cong \mathbb{Z}/2\mathbb{Z}$. $\operatorname{Ext}_{\mathscr{B}(\mathscr{F})}^m(\overline{\mathbb{Z}}, \overline{A})$ will be computed in §4. One therefore has

$$H_G^{n\rho}(E\mathbf{Z}_2; \overline{A}) \cong \begin{cases} \mathbf{Z} & \text{if } n = 0, \\ \mathbf{Z}/2\mathbf{Z} & \text{if } n > 0 \end{cases}$$

,

with $A(\mathbb{Z}_2)$ acting everywhere via the forgetful map $A(\mathbb{Z}_2) \rightarrow A(e) \cong \mathbb{Z}$.

4. Free actions

Now, suppose that G acts freely on S(V), so that $\mathscr{F} = \{e\}$ and $\mathscr{EF} = \mathscr{EG}$. We relate $H_G^{nV+m}(\mathscr{EF})$ to $H_G^{nv+m}(\mathscr{EF})$ and deduce classical periodicity results in a more general setting (in that we allow arbitrary Mackey functor coefficients).

PROPOSITION 4.1. Let X be a free G-CW complex, and let $V < \mathcal{U}$ be any G-module such that the action on V by each $g \in G$ is orientation-preserving. Then there exists a natural isomorphism

$$\phi \colon H^{nV+m}_G(X;\overline{T}) \to H^{nv+m}_G(X,\overline{T})$$

for $n \ge 0$ and any m. (Recall that $v = \dim V$.)

Proof. $H_G^{nV+m}(X; \overline{T})$ may be computed cellularly via a G-CW(V) decomposition of X. Since X is free, the given G-CW decomposition is automatically a G-CW(V) decomposition, so that $\overline{C}_{nV+m}(X) \cong \overline{C}_{nv+m}(X)$ for each m (as contravariant systems). Further, in both cases, X^{nv+m}/X^{nv+m-1} is a wedge of G-spaces of the form $G_+ \wedge S^{nV+m} \cong G_+ \wedge S^{nv+m}$. To compute the boundary homomorphisms for $\overline{C}_{nV+*}(X)$, one orients each summand of $G_+ \wedge S^{nV+m} \cong \bigvee_{g \in G} S^{nV+m}$ by first suspending by a large enough trivial G-module to make S^{nV+m} G-invariant, orienting the identity summand arbitrarily, and then using translation by elements of G to orient the remaining cells. By the hypothesis on V, this coincides with the orientation of cells in $\overline{C}_{nv+*}(X)$, whence the resulting chain complexes are isomorphic. (Naturality follows easily by cellular approximation.)

476

COROLLARY 4.2. Let G act freely on S(V) through orientation-preserving maps. Then $\cup 1_V$ induces isomorphisms $H^i_G(EG; \overline{T}) \to H^{i+\nu}_G(EG; \overline{T})$ for any i > 0, and an epimorphism if i = 0.

Remark 4.3. The hypothesis of Proposition 4.1 explains the failure of period 1 periodicity in $H^*(\mathbb{Z}_2)$, and the presence of a period of 2 (by choosing $V = \rho \oplus \rho$ where ρ is the one-dimensional irreducible \mathbb{Z}_2 -vector space). One still retains, however, *equivariant* period 1 periodicity of the form

$$H_G^{\gamma}(EG;\overline{T})\cong H_G^{\gamma+\rho}(EG;\overline{T}),$$

where ρ has dimension 1.

One may now compute $\operatorname{Ext}_{\mathscr{B}(\mathscr{F})}^{m}(\widehat{\mathbf{Z}}; \overline{A})$ for $G = \mathbb{Z}_{2}$ and $V = \rho$, as promised in §3. By the above, $\operatorname{Ext}_{\mathscr{B}(\mathscr{F})}^{2m}(\overline{\mathbf{Z}}, \overline{A}) \cong H_{G}^{2m}(E\mathbb{Z}_{2}; \overline{A}) \cong H_{G}^{2\rho}(E\mathbb{Z}_{2}; \overline{A}) = \mathbb{Z}/2\mathbb{Z}$, and it remains to compute $\operatorname{Ext}_{\mathscr{B}(\mathscr{F})}^{2m+1}(\overline{\mathbf{Z}}, \overline{A})$. Since

$$\operatorname{Ext}^{1}_{\mathscr{B}(\mathscr{F})}(\overline{\mathbf{Z}}, A) \cong H^{1}_{G}(E\mathbf{Z}_{2}; \overline{A}) \cong H^{2m+1}_{G}(E\mathbf{Z}_{2}; \overline{A}) \cong H^{2m+1}_{G}(E\mathbf{Z}_{2}; \overline{A})$$
$$\cong \operatorname{Ext}^{2m+1}_{\mathscr{B}(\mathscr{F})}(\mathbf{Z}, A),$$

it therefore suffices to compute the first Ext group. By (2.1),

$$\operatorname{Ext}^{1} \cong H^{1}_{G}(S(NV)) \cong H^{2-NV}_{G}(\operatorname{point}) = 0,$$

by Stong's calculation in [5].

5. Relationship with Classical Results

In order to specialize Corollary 4.2 to classical results about $H^*(G; A)$ for a **Z**G-module A, we recall some material from [8].

Let $\mathscr{H}(\mathscr{F})$ denote the category whose objects are the spaces G/H with $H \in \mathscr{F}$, and whose morphisms $G/H \to G/K$ are the ZG-module homomorphisms $\mathbb{Z}G/H \to \mathbb{Z}G/K$, where $\mathbb{Z}G/J$ denotes the free Z-module on G/J. A Hecke functor (based on \mathscr{F}) is then an additive functor

$$T\colon \mathscr{H}(\mathscr{F})\to\mathscr{A}b.$$

If A is a **Z**G-module, then the assignment \overline{A} : $G/H \to \operatorname{Hom}_{\mathbf{Z}G}(\mathbf{Z}G/H, A)$ gives a contravariant Hecke functor, while $G/H \to \operatorname{Hom}_{\mathbf{Z}G}(A, \mathbf{Z}G/H)$ gives a covariant one.

If $\mathcal{O}(\mathscr{F})$ is the full subcategory of \mathcal{O} with objects G/H for $H \in \mathscr{F}$, then one has a forgetful functor $\mathcal{O}(\mathscr{F}) \to \mathscr{H}(\mathscr{F})$ by [8]. This turns every Hecke functor into a Mackey functor.

One now has, by results in [8].

$$H^{i}(G; A) \cong H^{i}_{G}(EG; A),$$

so that all the classical periodicity results follow from §4, and continue to hold in the more general form of 4.2.

References

- 1. G.E. BREDON, *Equivariant cohomology theories*, Springer Lecture Notes in Mathematics, vol. 34, Springer-Verlag, New York, 1967.
- 2. T. TOM DIECK, Transformation groups and representation theory, Springer Lecture Notes in Mathematics, vol. 766, Springer-Verlag, 1979.
- 3. G. LEWIS, *Green functors*, mimeographed notes, Syracuse University, Syracuse, New York, 1983.
- 4. G. LEWIS, J.P. MAY, AND J. MCCLURE, Ordinary equivariant RO(G)-graded cohomology, Bull. Amer. Math. Soc., vol. 4 (1981), pp. 208–212.
- 5. G. LEWIS, J.P. MAY, J. MCCLURE AND S. WANER, Ordinary equivariant RO(G)-graded cohomology, in preparation. University of Chicago, Chicago, Illinois.
- 6. R.E. STONG, The cohomology of a point, Preprint, University of Virginia, 1981.
- S. WANER, A generalization on the cohomology of groups, Proc. Amer. Math. Soc., vol. 85 (1982), pp. 469–474.
- 8. _____, Mackey functors and G-cohomology, Proc. Amer. Math. Soc., vol. 90 (1984), pp. 641-648.
- 9. _____, Oriented G-mainfolds, Preprint, Hofstra University, 1981.

HOFSTRA UNIVERSITY HEMPSTEAD, NEW YORK