
ILLINOIS JOURNAL OF MATHEMATICS
Volume 30, Number 3, Fall 1986

PERIODICITY IN THE COHOMOLOGY OF UNIVERSAL
G-SPACES

BY

STEFAN WANER

INTRODUCTION

The purpose of this note is to generalize the classical results on periodicity
in H*(G) in the presence of a free G-action on a sphere, and to reinterpret
them in terms of global results about equivariant singular cohomology.
Our generalizations proceed in two directions. First, one has a notion of

H*(G; T), where T is a Mackey functor (in the sense of tom Dieck in [2]),
generalizing the case T a ZG-module. We show here that classical periodicity
continues to hold in this more general setting.

Next, one has the notion of a universal G-space E-, associated with a
family - of subgroups of G. Here, we exhibit periodicity in H(E; T) (for
arbitrary G and particular families -), where * is RO(G)-grading. (The
theory of RO(G)-graded equivariant singular cohomology has been an-
nounced by Lewis, May, and McClure in [4]. The complete theory will appear
in [5], including one of the author’s independent formulations, a summary of
which appears in 1 below). This periodicity is seen to arise from a "Bott"
class 1 v H(point) for appropriate representations V, in the sense that 1 v
is an isomorphism in a range. Further, we see that this class lies at the source
of the classical periodicity results, which emerge as special cases.

Finally, we use the periodicity to extend the computation of Hg(E,; T)
carried out in [7] and [8] to that of Hv+m(E,’; T) for m, n >_ 0 and a
family of subgroups determined by V. These latter groups (which are also
modules over the Burnside ring of G) turn out to be purely algebraic
invariants of G and V. (Throughout, G will be a finite group.)

1. Equivariant RO(G)-graded singular cohomology

We recall here in brief some of the theory of equivariant RO(G)-graded
singular cohomology, developed by Lewis, May, McClure and the author in
IS].
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Let ak’ be the orthogonal G-module (RG), RG being the real group algebra
endowed with its natural inner product. We shall write V < qz’ to signify that
V is a finite-dimensional G-invariant submodule of k’.

If V < , then a G-CW(V) complex is a G-space X with a given decom-
position X colim X such that:

(i) X is a disjoint union of G-orbits, X LIvG/H. where V is a trivial

Hv-module for each ,;
(ii) X is obtained from X by attaching "cells" of the form G / D(V
m), where H is such that V has a trivial m-dimensional summand as an

H-module, and where n dim V- rn (here, D(W) denotes the unit disc in
W<).

In [5], one sees that any G-CW complex (in the sense of Bredon-Illman) has
the G-homotopy type of a G-CW(V) complex for every V < qz’. (One consid-
ers X D(V) X for a G-CW complex X, where D(V) is seen to have a
G-CW(V) structure with cells of dimension < dim V). Moreover, cellular
approximation and an appropriate version of the Whitehead theorem hold in
this context.
G-CW(V) decompositions give rise to cellular chains, which one may use to

define HV+n(X) for all n Z, as follows.
Denote by [X, Y]e the set of G-equivariant homotopy classes of based

G-maps X--> Y. If V < q/, denote by S v its one-point compactification, (G
acting trivially at the basepoint c) and by y, Vx the smash product X/x S v

for a based G-space X. Let be the category whose objects are the G-spaces
G/H for H c G and whose morphisms are given by

(9 ( G/H, G/K ) colim XVG/H+, XVG/K+ ,
v<

where the subscript + denotes addition of a disjoint basepoint.
A contravariant (resp. covariant) coefficient system (or "Mackey functor")

is then a contravariant (resp. covariant) additive functor T: (9---> zC’b, the
category of abelian groups. A map of such systems is then a natural transfor-
mation of functors.

If X is G-CW(V), then one has a differentially graded contravariant system
given by

Cv+, ( X)(G/H) colim Z, v+ WG/H+,
w_l_ v

where v dim V and W is large enough to contain a trivial n-dimensional
summand.

If T and S are contravariant and _T is covariant, one has abelian groups
Home(T, S) and T (R)o_T, given respectively by the group of natural transfor-
mations, and by nT(G/H) (R) T_(G/H) where, for f: G/H - G/K in
(9, one identifies f*T (R) t’ with (R) f,t’.
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One then defines Hv+ *(-__a X; ) and Hv+,(X; _T) respectively by passage to
homology of Horno(Cv+,(X), S) and Cv+,(X) (R)o T_.

Observe that (stable) equivariant self s-duality of the spaces G/H+ implies
that (9 =_ (.0 pp, SO that every covariant system may be regarded as con-
travariant, and vice-versa. One has canonical coefficient systems A and
analogous to Z-coefficients in the nonequivariant case, given by

A(G/H) colim[S V, VG/H+] a

and

(G/H) colim ZVG/H+, S v] G,

each isomorphic with the Burnside ring, A(H) of H (Segal, Petrie, tom
Dieck).

Following is a list of basic properties of RO(G)-graded singular cohomol-
ogy. (There is also an evident dual list for homology.)

(1) "Dimension Axiom". H(G/H; ) =- (G/H) for each H c G;
H(G/H; T) 0 if n 4= 0;

(2) H+"(G/H; ) HV+n)(G/H; ) 0 if n > 0;
(3) H(G K X; ) H.I:(X; TIK) if K c G, where IK is , regarded

naturally as a coefficient system for K-orbits;
(4) "Suspension Isomorphism".

where the reduced cohom_ology of a based G-space X is given by the natural
construction H_((X, *); T) for pairs;

(5) H(X; T) has a natural module structure over A(G).
Further, one has for Burnside coefficients and suitable "ring systems" in

general, a cup product u" H(X) (R) H’(X) H+v’(X) which is unital,
associative and commutative up to certain units in the Burnside ring of G.
Further, H3(X; T) is an H(point; A )-module for any X and T.

All of the above properties and more will be developed in detail in [5]. For
the purposes of this paper, suffice to say that the theory can be manipulated
just as ordinary cohomology ought to be.

The relationship with Bredon cohomology [1] is as follows. Let ff denote the
category whose objects are those of 0 and whose morphisms are the G-maps
G/H --, G/K. A contravariant system T: (9---, (gb is automatically a Bredon
contravariant system T ---, Ob (in the sense of [2]) via the inclusion ---, (9.
If a Bredon system T, extends_ to a contravariant (Mackey)_system T’, then
Bredon cohomology (with T-coefficients) agrees with H(X; T’) for n Z up
to natural isomorphism.
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2. The V-dimensional Bott class

By (2) of 1, HV(point) 0 if V has a trivial summand of dimension > 1.
When Va= 0, there is an element I v Hff(point; A ) given by I v t*(10),
where 10 is the fundamental class in H(point; Y) V(sV; ) =- A(G),
and t: S o S v is inclusion.
The inclusion S(V) D(V) of the unit sphere in V gives rise to a long

exact sequence

(2.1) H- V(point) H(S v) L H(point) H(S(V))

I degree ]

(with A-coefficients suppressed), where/ coincides with u I v.
Consider the case 3’ n V + m, where, for interest, V should have no trivial

summand.

LEMMA 2.2. Let n > 1 and rn > O. Then ) 1 v" H(n-1)v+m(point) --Hv+m(point) is an isomorphism. (By (2) of 1, the case m > 0 is, of course,
immediate).

Proof By the sequence (2.1), one need only show that

oV(g(v)) oV-l(g(v)) O.

S(V), however, is made up of G-cells of the form G r D(V-i) with
1 < i< dimVn.Ifn > 1, ,vHa (S(V)) is computed by giving S(V) D((n
1)V) the product G-CW(nV) structure, so that Cnv(S(V))= 0, the top
dimensional cells being in dimension nV- 1. Similarly, Hn+ 1)v-I(S(V)) O.
Indeed, if X denotes the (o 2)-skeleton of S(V)), then Hn+l)v-l(X) 0
by the argument above, and the inclusion of X in S(V) gives a long exact
sequence

) H--(KT+I)V-I(s V-i) H(Gn+I)V-I(s(v)) O(Gn+l)V-l(x) 0
K,

H,V(point)
K,

where K c G are proper subgroups such that V has a trivial summand as a

Ki-module. Hence Hc,V(point) 0 if n > 1. rq
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For the case n 1, one has the sequence

-- H-I(s(v)) L H(point) - H(point) H(S(V)) O.

A(G)

To compute , one has, by equivariant Poincare Duality [9],

i g(s(v))

(where for the latter, one regards A as a covariant system via the canonical
equivalence (9 (9opp). When V has no one-dimensional fixed-set, it is easy to
compute H0a(S(V)).

Let if(V) be the family of subgroups given by H if(V) iff VII 4: 0. Then

S(V) colim S(V")

is a universal G-space of the form Eit(V). Such a space has the property that
Ef(V)K is empty if K -(V) and is contractible if K if(V). In [8] it is
shown that H(Ef(V); T)--ExtP (,, T), where the ext groups are((v))
given as follows. ’(-) is the category of Bredon coefficient systems (see [1])
T: (f) --, zC’b, where (__(if) has objects G/H with H f and_morphisms
the equivariant maps. Z is the constant coefficient system, Z(G/H)=
Z; Z(f) 1, and the ext groups are constructed in the category ’(if). In
particular, H(Ef(V); T) Hom()(Z, T). Dually, one has

Hg( (v); _T ) -= Z

whence Hoa(S(V); A)--Z(R)((v))A, where one regards A as a Bredon
coefficient system.

LEMMA 2.3.
Then

Let V be such that VII does not have dimension 1 for H c G.

I g(s(v)) ttg(s(w)).

Proof Under the hypothesis, and by uniqueness of universal G-spaces, one
can obtain a G-homotope X of S(V) by attaching G-cells of the form
G/H D with i> 2 to S(V), giving the result by the associated exact
sequences in Bredon-Illman homology. D
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By naturality of Poincare duality, one obtains

" Hff-(S(V)) Z(R)((v))A --+ A(G) H(point)

coinciding with (n (R) a) nf,(a) for n Z(G/H), a A_(G/H) and f:
G/H GIG the only possible map. One then has Hff(point) --- A(G)/Im .For general V, this remains true, except that must be computed explicitly
from the 0- and 1- dimensional geometry of V. In either case, the unit
1 H(point) goes to the Bott class 1 v Hff(point) under the quotient
A(G) A(G)/Im .
LEMMA 2.4. If m > 0 and n > m, then

tO 1 v" n-(n-- )V(Pint) H’-"V(Pint)

is an isomorphism.

Proof By the sequence (2.1) with ,/= m n V, it suffices to show that

o-nV(g(v)) o-l-nV(g(v)) O.

One has contributions to H-nv(s(v)) of the form

-nV(G+ /K sV-i) -nV(SV-i) (+i(S(n+l)V) O,

since m+ i<n +dimVK<(n+ 1)dimVK, (dimVK being > 1 for a G-
CW(V) decomposition of S(V)). Similarly, H’-I-"V(S(V)) O. rn

Note that in particular the lemma implies that

H V(point) --- HnV(point) =- for n > 1.

One may compute H V(point) explicitly for nice V just as we computed
Hff(point). This is done in [5].
When G is Zp with p prime, Stong has computed Hv+m(point) for all n

and m. The data Hv-m(point) for m, n > 0 and general G are not known,
although the author has machinery for grinding these out in general, as well as
explicit formulations of H(V-v)(point) in [5].

3. Periodicity in Hd(E

We are now ready to prove the main result. Let V < k’ and o= -(U), the
family determined by V as above.
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THEOREM 3.1. Let y n V + m with n, m > O. Then

tO1 v" H(E; T) H+V(EoW; T)
is an isomorphism for each T if n > 0 or m > 0 and an epimorphism if n 0
and m O.

Proof Let N > m + nv + 1, and consider the commutative diagram, ob-
tained from (2.1)"

V+m(sNV --> oV+m(sO) --> Hv+m(s(uv))

...._.> H{o.+ 1)V+m(sNV --+ HD.+ 1)V+m(sO ) -..+ HD,,+ 1)v+’(S(NV))

--* V+m+I(sNV) ---) 0

{h

Hb,+ 1)v+ m+ I(sNV 0

Here, the vertical maps are all multiplication by t_J 1 v and coefficients are in
T. Lemma 2.4 implies that e and h are isomorphisms by our choice of N, and
Lemma 2.2 implies that f is an isomorphism if n > 0 or m > 0 and an
epimorphism if n and m are 0. The five lemma now implies that the same is
true for g.

Finally, one has the inclusion t: S(NV) E. One sees that

t" S(NV) " "F_,.

is an (no + m + 1)-equivalence for each H G, so that E may be obtained
from S(NV) by attaching G-cells of the form G/H D" with r > no + m.
For such cells, Hv+’(G/H+ A S’) HV+-(point) 0, since no + m
r < 0, and we are done. 3

Remarks 3.2. (i) This general periodicity is the source of periodicity in
H*(G) under special circumstances, as we shall see in 4.

(ii) There is no class 1_ v such that t21_ v is inverse to I v. Indeed, if T is
the coefficient system arising from a G-module M, (as will be explained
below), then H V(point; T)= 0. This also shows that one cannot expect a
periodic class in H V(point).

Consider the following diagram in the case m n 0, with coefficients in
T:

O _+Ho( Nv) _+ He(S-- o) _+H(S(NV)) __.>I(sNV) -+0

,[,e ,f ,g h

H-(S(NV)) (SNv) Z --v o) + + O.H(S H{(S(NV)) 5+’(S)
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Since f and g are epic, one has a short exact sequence

(3.3) 0 ker(vle) ker f ker g - 0

kerf HNV(point).

If V has no one-dimensional fixed-sets, one has

kerf= Im(" Z(R)e,.)T_ T_(G/G)),

and

HUV(point) ker(/" T_(G/G)= (G/G) Hom()(Z, ))

by the results in [5] (or by arguments dual to those preceeding Lemma 2.3).
Thus

ker g ker f/kerf (3 HNV(point)

--= Im /(Im ( C ker/).

It follows that

ker( to lg)" Ha(Eo-; f) Ha(E-; ) --- Im /(Im ker/).

One now obtains

Eo ’;
-_- Home(  (Z,

with u I v coinciding with the natural quotient. We therefore conclude, by the
above, Theorem 3.1 and [7] (or its generalization in [8]).

THEOREM 3.4. Let V have no one-dimensional fixed-sets, and let m and
n >_ O. Let o= (V). Then

Hom()(Z, T )
HV+m(E.,’; ) Hom()(Z, T)/Im(/)

Ext()(Z, T )

ifn=m=O,

/fm=0, n > 1,

ifmO.

As an example, we compute H:+m(EZ2; A ), where 0 is the non-trivial
one-dimensional Z2-module, and o’= (e}, so that Eo-= EZ. Since A(e)
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Z, one has

Hom(-)(Z, A ) Z,

and : Z(R)()A --- Z (R) Z ---, A(Z2) coinciding with 1 (R) 1 ---, [Z2], the class
of the free Z2-set, 7’,

2. Finally,

g" A(Z2) --> Hom()(Z, A) Hom(Z,Z) Z

takes [Z2] to 2, whence Hom()(Z, A)/Im() Z/2Z.
will be computed in 4. One therefore has

Ext()(Z, A )

Zz:; X) z/2z /fn>0

with A(Z2) acting everywhere via the forgetful map A(Z.) --, A(e) Z.

4. Free actions

Now, suppose that G acts freely on S(V), so that -= (e } and E-= EG.
We relate nV+m(E,) tO nv+m(E,.") and deduce classical periodicity
results in a more general setting (in that we allow arbitrary Mackey functor
coefficients).

PROPOSITION 4.1. Let X be a free G-CW complex, and let V < ql be any
G-module such that the action on V by each g G is orientation-preserving. Then
there exists a natural isomorphism

" HV+m( X; ) ----> nv+m( x, )

for n > 0 and any m. (Recall that v dim V.)

Proof Hv+m(x; T) may be computed cellularly via a G-CW(V) decom-
position of X. Since X is free, the given G-CW deco_mposition is automatically
a G-CW(V) decomposition, so that Cnv+ m( X) =-- Cno+m(X) for each m (as
contravariant systems). Further, in both cases, X"v+m,/X"v+m-1 is a wedge of
G-spaces of the form G+/x S"v+m = G+/x S"o+m. To compute the boundary
homomorphisms for ,v+,(X), one orients each summand of G+/x S"v+m

VgeS"v+m by first suspending by a large enough trivial G-module to make
nV+mS G-invariant, orienting the identity summand arbitrarily, and then using

translation by elements of G to orient the remaining cells. By the hypothesis
on V, this coincides with the orientation of cells in Cno+,(X), whence the
resulting chain complexes are isomorphic. (Naturality follows easily by cellular
approximation.)
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COROLLARY 4.2. Let G act freely on S(V) through orientation-preserving
maps. Then U1v induces isomorphisms Hb(EG; T) - H+V(EG; T) for any
> O, and an epimorphism if O.

Remark 4.3. The hypothesis of Proposition 4.1 explains the failure of
period 1 periodicity in H*(Z2), and the presence of a period of 2 (by choosing
V p p where p is the one-dimensional irreducible Z2-vector space). One
still retains, however, equivariant period 1 periodicity of the form

H(EG; T) --- H+’(EG; T),

where p has dimension 1.

^" and V p, as promisedOne may now compute Ext((Z, A ) for G Z2
in [}3 By the above, Ext )-= )-=(%)(Z, 2m 20H(EZ Y)=H (EZ2; 2;
Z/2Z, and it remains to compute 2,,+Ext()(Z, A ). Since

it therefore suffices to compute the first Ext group. By (2.1),

Ext1= H(S(NV)) H-UV(point)= O,

by Stong’s calculation in [5].

5. Relationship with Classical Results

In order to specialize Corollary 4.2 to classical results about H*(G; A) for a
ZG-module A, we recall some material from [8].

Let (’) denote the category whose objects are the spaces G/H with
H , and whose morphisms G/H G/K are the ZG-module homomor-
phisms ZG/H ZG/K, where ZG/J denotes the free Z-module on G/J. A
Hecke functor (based on -) is then an additive functor

T: $f(’) --) ’b.

If A is a ZG-module, then the assignment A" G/H Homz(ZG/H, A)
gives a contravariant Hecke functor, while G/H Homz(A, ZG/H) gives a
covariant one.

If (9() is the full subcategory of (9 with objects G/H for H -, then
one has a forgetful functor (-) (o-) by [8]. This turns every Hecke
functor into a Mackey functor.
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One now has, by results in [8].

A) A),

so that all the classical periodicity results follow from 4, and continue to hold
in the more general form of 4.2.
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