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ON A FORMULA FOR ALMOST-EVEN ARITHMETICAL
FUNCTIONS

BY
HUBERT DELANGE

Introduction

For an arithmetical function the property of being almost-even is a special
case of limit-periodicity, which is itself a special case of almost-periodicity.

1.1. An arithmetical function f is said to be almost-periodic-B (more
precisely almost-periodic-B?) if, given & > 0, there exists a trigonometric
polynomial P,

P(n) = Y Me(an), where e(t) = exp(2mit),
k=1

such that

1) limsup + ¥ |P(n) - f(n) <e.

X =00 n<x

This implies that ¥, _ |f(n)| = O(x) and that, for each real a,

lim % Y f(n)e(—an) exists, say is C(f, a).

n<x

The spectrum of f is the (at most denumerable) subset Sp f of the quotient
group R/Z consisting of the residue-classes modulo 1 of those a for which
C(f,a) # 0.

The Fourier series of f is the formal sum YC(f, a)e(an) extended to those
a € [0, 1] whose residue-class modulo 1 belongs to Sp f.

The arithmetical function f is said to be limit-periodic-B if, given € > 0,
there exists a periodic arithmetical function P such that (1) holds.

Since a periodic arithmetical function can be expressed by a trigonometric
polynomial, this implies that f is almost-periodic-B. Its spectrum is contained
in Q/Z (i.e., C(f, @) = 0 when « is irrational).
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It can be proved that the periodic function P in (1) can be taken equal to

P = T c(r.L)e(X
oy)(n) = C(f,—-—)e(-—n)
= NJ"\N
where N is suitably chosen.
1.2. Now, an arithmetical function f is said to be even modulo k if f(n)

depends only upon (k, n). It is said to be even if there exists a k such that it is
even modulo k.

The arithmetical function f is said to be almost-even-B if, given & > 0, there
exists an even arithmetical function g such that

limsup = ¥ [g(n) = f(n)| < e.

X000 n<x

Since even arithmetical functions are obviously periodic, this implies that f
is limit-periodic-B.

It turns out that a limit-periodic-B arithmetical function is almost-even-B if
and only if the following condition is satisfied:

(C) The Fourier coefficient C(f, r) where the rational number r is equal
to h/q, with ¢ € N* and (h, g) = 1, depends only upon g.

Condition (C) implies that, by grouping together the terms for which ¢ has
the same value, the Fourier series for f may be written in the form

o0
a,,(n), where c,(n)isthe Ramanujan sum e ﬁn .
q“q q
gq=1 l<h<g q
(h,q)=1

This may be called the Ramanujan expansion of f(n).
It is very easy to see that

1 .1
4= olq) dm 2 f(n)e,(n).

n<x

1.3. Condition (C) obviously implies that, for every N, o{/’(n) is of the
form

2 A, (n).

q/N

On the other hand condition (C) is certainly satisfied if, for every & > 0,
P(n) in (1) can be taken equal to a linear combination of Ramanujan sums
(because, if f is an almost-periodic-B arithmetical function and {f,} a
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sequence of almost-periodic-B arithmetical functions such that

im {timsup 3 X 1f,(n) = £} =0,
V2o x-0 n<x

then, for every real o, C(f, @) = lim, _, ,C(f,, @)).

Thus the assertion that a limit-periodic-B arithmetical function f is almost-
even-B if and only if condition (C) is satisfied follows from the following fact:

Let A be the vector space of arithmetical functions. The set of even
arithmetical functions is the subspace of 4 generated by the functions c,.
More precisely, for each positive integer N, the set E, of those arithmetical
functions which are even modulo N is the subspace of 4 generated by the
functions ¢, where g/N. This may be seen as follows.

Given the positive integer N and a divisor d of N, let

1 if(N,n)=d
F, n) = ’ >
N’d( ) {0 otherwise.

If N is fixed, then the functions F , where d runs through the set of the
divisors of N is obviously a basis of the vector space E,. So this space has
dimension 7(N), the number of divisors of N.

On the other hand, for each ¢ dividing N, the function ¢ ‘ is even modulo N,
for

ef(m)= T dp(§) and (q.n) = (g, (N, n).
d/(q,n)
The functions c, are linearly independent for
0 if ¢, # q,,
{qv(q) ifq=q,=q.

Therefore the 7(N) functions c, where g/N form a basis of E,.
1.4. The following result, due to A. Wintner,! is well known.
Given an arithmetical function f, let f’' = fup (i.e., f'(n) =

La/nf(d)p(n/d)). If

lim 3 T e, (n)eg (n) =

n<x

R,
n=1

then f is almost-even-B* and

n

a,= ngl f'(’;‘I) )

Here the series is obviously absolutely convergent.

1Eratosthenian averages, Baltimore, Maryland, 1943, Section 33.
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One may raise the question whether the same formula (without absolute
convergence) holds for any almost-even-B arithmetical function.

We will prove here the following theorem which shows that the answer is
yes.

THEOREM. Let f be an arithmetical function, and let f’ = f,pu. Let q be any
positive integer.

Suppose that

@) Z,..f(n)] = 0(x);

(ii) For each positive integer d dividing q,

hml Y f(n) exists.

X X nsx
(q,n)=d

Then the series ¥3_,f'(nq)/nq converges and its sum is

1 .1
() Am 5 Exf(")cq(n)-

The hypotheses of this theorem are certainly satisfied for all positive g if f
is almost-periodic-B, not necessarily almost-even-B'.

1.5. We may remark that hypothesis (ii) is equivalent to:

(ii)’ For each positive integer d dividing g,

lim % Y. f(n)c,(n) exists.

n<x

In fact both condition (ii) and condition (ii)’ are equivalent to:
(ii))” For every arithmetical function g even modulo ¢,

lim 315 Y f(n)g(n) exists.

n<x

This follows immediately from the above mentioned fact that the set of the
functions F, , where d/q and the set of the functions ¢, where d/q are bases
of the vector space E,.

1.6. The original proof of our theorem was rather complicated. The one that
we give here is inspired by a proof which was communicated to us by Dr. A
Hildebrand for the particular case when g = 1, namely the following result:

If £,_.1f(n)] = O(x) and if f has a mean value M(f), then the series

%1 f’(n)/n converges and its sum is M(f).



28 HUBERT DELANGE
2. A basic lemma
The following lemma is essential for our proof.

LEMMA. Let x, be the principal character modulo q, where q is any positive
integer.

0 > p(n)x,(n)

n<x

= O(e""Vi°5") for some o €]0,1[;

(i) The series

i p(n)x,(n)logn

n

n=1
converges and its sum is —q/9(q).

Proof. A classical proof, using the formula

i p(n)

= ——1— forRes > 1
n=1 {(S)

and an estimate of |1/{(s)|, shows that there exists « > 0 such that

M(x) = ¥ p(n) = O(xe~x).

n<x

A quite similar proof, using the formula

© p(n )x () __ 1 -1
shows that there exists 8 > 0 such that
(3) My(x) = ¥ p(n)x,(n) = O(xe~Asx).

This, with the equality

dt for0<x<y,

> p(M)xe(n) _ My(y)  My(x) fyMt( )

x<n<y n y x
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shows that the series

i p(n)x,(n)

converges and that

Y p,(n)nﬂ = 0(\/logxe’pm) = O(e“"‘ﬁ".g?) for0 < a < B.
Now it follows from (2) that
2 p(n)x,(n)
E + =

n=1

0,

so that

5 B o mdxg(n)

n n
n<x n>x

Similarly, (3) shows that the series

2 B(mx(nog

n=1

converges, and the formula obtained by differentiation of (2) shows that its
sum is —q/@(q).

3. Proof of the theorem

We now suppose that f is an arithmetical function satisfying hypotheses (i)
and (ii) of the theorem.

3.1. By hypothesis (i) there exists K > 0 such that

(4) Y. If(n)] < Kx for every positive x.

n<x

3.2. We now make the following remark.
For each divisor d of ¢ set

m, = lim% Y, f(n).

X—> n<x
(g,n)=d
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If o is any real number > 1, then, as x tends to infinity,
f(n)
L =
x<n<ox

(g,n)=d

Proof. Let ®(t) =L, ., (4 ny=a f(n). Wehave |®(2)| < Kt forevery ¢t > 0,
and ®(z)/t tends to m, as ¢ tends to infinity.
For x > (6 — 1)~! we also have

y L) _ oo oG, o),
t2

tends to m log o.

n oX X
x<n<ox x

(g,n)=d

As x tends to infinity, ®(x)/x and ®(ox)/0x tend to m,. Furthermore we
have

[ [t
O (xu)

K f .
ol =< o lorevery positive x

and ®(xu)/xu? tends to m,/u as x tends to infinity, this tends to
om
f —4 du = mylogo.
L U

3.3. Now, for x > 1, we have

. gl (dgnf(d)u(%))%g%f “y(g).

In the last sum we will group together the terms for which (g, d) has the same
value. The latter must be a divisor of q. Let § be any divisor of ¢ and let
q’ = q/8. Then (q, d) is equal to § if and only if d = 8d’ where (¢’,d’) = 1.
When it is so, d divides gn if and only if d’/n, thatis n = md’. Now n = md’
gives gn/d = mq’. Thus we obtain

y o)1 82( Py fﬁ;fj,’))u(mq')
"= 7o 0
-ix(xf )|

where x . is the principal character modulo ¢’.
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Using the fact that p(mq’) = p(q")n(m)x ,(m) this gives

y L) 1 g ra| T u(m)x (mary 284D )

’
n<x qn q 8q' = md’ <x md

We may rewrite this formula in the form

5) y L) 106,00,

n<x 9 q 8/q
where ¢’ = ¢q/8 and

Go(x) = T n(m)xy (mm L),

mn<x

Thus, to prove the convergence of the series 2°_, f’(gn)/qn, it is sufficient to
show that, for each divisor & of g, G5(x) tends to a finite limit as x tends to
infinity.

3.4. We now introduce a fixed A > ¢}/* and in the formula which defines

Gs(x) we separate the terms for which n < x/A and those for which n > x/A.
We thus obtain, for x > A,

n m

(6) G(x)= T M’l( 5 Hmxy(m)

n<x/A m<x/n

dn
b T wlm)xg(mn 200
s

=Y + ) ,say.
1 2
3.4.1. By the lemma of §2 there exist a €]0,1[ and C > 0 such that

5> p(m)x ,(m)

m<X

< Ce~Vle X for every X > 1.

So
) If(in)l o ayfiogCi/m)

n<x/\

Yi<cC
1
Setting ¥5(¢) = X, ., |f(8n)| we have

If(8n)| —ayflog(x/n) — x}\—alo)\
> L ﬁs(/)_\ys(x);e Viog X

n<x/A

t

/A d [ e—oVios/ |
—jl ‘I’s(t)a(— .
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As 0 < ¥g(r) < 8Kt by (4) and

d (e—a‘ﬁog(x/r) )

dt ;

- a‘ﬁog(x/t ‘

21 og(x/t)
e_av io&(x/’) X
< —7— forl<t< X’

this yields

n<x/A\

Z |f(;o;n)| ”"WS&K( _4M+fx/>\e a\ﬁ (x/1) dt).

The change of variable ¢ = xe ¥ gives

*a‘/iog(x/t
fx/)\f______ dt = 2f‘/logxue_au du,
1

t

log)\
whence
-—a‘/iog(x/t
fx/ke dt < 2/ e~ dy =2 @ + _15 e—/logX
1 t logk a a

We finally obtain
(7) lZl < C8Ke“"\/i°3"(l ;2 lzgh + %) = g1(A), say.
1

Note that g,(A) tends to zero as A tends to infinity.
3.4.2. Now, since the conditions x/A < n < x and mn < x are equivalent
to m < A and x/\ < n < x/m, we have

® Z ZM(m)x,,(m)( > xqf(nif(%))'

m<>A x/A<n<x/m

We remark that

Xy (n)f(8n) on n’
Z q =9 Z f(an)___a Z f(n,)’
x/A<n<x/m Sx/A<8n<dx/m 8x/A<n’ <8x/m

(n,g)=1 (n',q)=8

for the integers n’ which satisfy (n’, ¢) = § are the integers n where (n, q’)
=1.
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It follows, by the remark of §3.2, that for each m, as x tends to infinity,

> Xg(n)f(8n)

tends to ém slog%.
x/A<n<x/m
Therefore, by (8), as x tends to infinity we have

Y tends to 8m, Y. -“-(ﬂ)—:-;—q’—(in—)—log% = g,(A), say.
2

m<X\

Also

ql
A) tends to ——<8m
82( ) tends to q)(q,) )

as A tends to infinity, for

8:2(X) =8ms{( )y M(m)zq,(m") )logk— > ”(m)xq,(m)logm}

m<A m<>\ m

and, by the lemma of §2,

)y M—(Z’)ZL(’”) = 0(e~/2})  where a > 0,

m<X\

and

m)x,(m)logm ’
Y a )Xq( Jlog tendsto——q—,.
m<r m ?(q’)

3.5. By (6) and (7) we have

|Gs(x) — '(‘ﬂq_q,f)'amsl <g(A) +

L - s+

ql
A) — —F—0my)|.
g2(N) p(g) ™
As L, tends to g,(A) as x tends to infinity this gives

. q’
lim G - ——9 <g,(AN)+
sup| s(x) (p(q') m| gl( )

X—> 00

£:(0) = oy oms

This holds for every A > /4. Since the right-hand side tends to zero as A
tends to infinity, this shows that

q/
G tends to — 8
s(x) tends to o(q) O
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as x tends to infinity. It follows by (5) that the series ¥%_, f’(qn)/qn
converges and that

Z [’ (‘1”)

n=1

hﬁl'—‘
o

¥ qﬁfq) ¥ rg)
q9=q ¢ q’

o, ()™

3.6. To complete the proof of our theorem it remains to show that

©) sim L% f(n)e,(n) = p(g) T HLm

nsx 8q'= qtp(q )

(We already know by the remark of §1.5 that the limit exists).
3.6.1. We have

3 T sy = 3 T 1| p )du(%))
-3 L 0 au(g)
d/(q,n)

-3l = £(n) du(%)

8/q n<x

(q}ln/)s‘s
_ a))|(L "
) gq{(gsd“(:g’))(x (q%’f-sf( ))}

This shows that

gim 2 ¥ f(n)ey(n) = £ (gsdu(%))ms

nsx 8/q

3.6.2. To obtain (9) it suffices to show that, for each divisor é of g,

(¢) ,_
(10) E:sdu( ) <p(q)f;(z,) where g —%.

We have

8) o) o rorn )
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So
8 8
Y (%) =p(a) X du(-)x (*)
d/é (d) d/é d \d

Let h = i,(px, ), where i(n) = n for every n. We have

% an(3)x,(3) = 18,

d/s
h is multiplicative and, for p prime and r > 1,
2 if p/q’,
Y = pr — pr-1 , =
h(p") =p" =P "xqy(p) p,(l B %) iptq

It follows that

Eol4e8) o102
so that
) £ au(§) = m(a)s I/]s(l -5 )

On the other hand we have

v(q) = q}l;!}(l - %) - 8q’{};£’(1 - %)}{ }]}(1 _ %

=s0(@) I] (1~ 5.

prtq

This with (11) gives (10).
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