ON A FORMULA FOR ALMOST-EVEN ARITHMETICAL FUNCTIONS

BY
Hubert Delange

Introduction

For an arithmetical function the property of being almost-even is a special case of limit-periodicity, which is itself a special case of almost-periodicity.
1.1. An arithmetical function f is said to be almost-periodic- B (more precisely almost-periodic- B^{1}) if, given $\varepsilon>0$, there exists a trigonometric polynomial P,

$$
P(n)=\sum_{k=1}^{m} \lambda_{k} e\left(\alpha_{k} n\right), \quad \text { where } e(t)=\exp (2 \pi i t)
$$

such that

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x}|P(n)-f(n)| \leq \varepsilon \tag{1}
\end{equation*}
$$

This implies that $\sum_{n \leq x}|f(n)|=O(x)$ and that, for each real α,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} f(n) e(-\alpha n) \text { exists, say is } C(f, \alpha)
$$

The spectrum of f is the (at most denumerable) subset $\operatorname{Sp} f$ of the quotient group \mathbf{R} / \mathbf{Z} consisting of the residue-classes modulo 1 of those α for which $C(f, \alpha) \neq 0$.

The Fourier series of f is the formal sum $\Sigma C(f, \alpha) e(\alpha n)$ extended to those $\alpha \in[0,1[$ whose residue-class modulo 1 belongs to $\operatorname{Sp} f$.

The arithmetical function f is said to be limit-periodic- B if, given $\varepsilon>0$, there exists a periodic arithmetical function P such that (1) holds.

Since a periodic arithmetical function can be expressed by a trigonometric polynomial, this implies that f is almost-periodic- B. Its spectrum is contained in \mathbf{Q} / \mathbf{Z} (i.e., $C(f, \alpha)=0$ when α is irrational).

Received December 6, 1984.

It can be proved that the periodic function P in (1) can be taken equal to

$$
\sigma_{N}^{(f)}(n)=\sum_{k=0}^{N-1} C\left(f, \frac{k}{N}\right) e\left(\frac{k}{N} n\right)
$$

where N is suitably chosen.
1.2. Now, an arithmetical function f is said to be even modulo k if $f(n)$ depends only upon (k, n). It is said to be even if there exists a k such that it is even modulo k.

The arithmetical function f is said to be almost-even- B if, given $\varepsilon>0$, there exists an even arithmetical function g such that

$$
\limsup _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x}|g(n)-f(n)| \leq \varepsilon
$$

Since even arithmetical functions are obviously periodic, this implies that f is limit-periodic-B.

It turns out that a limit-periodic-B arithmetical function is almost-even-B if and only if the following condition is satisfied:
(C) The Fourier coefficient $C(f, r)$ where the rational number r is equal to h / q, with $q \in \mathbf{N}^{*}$ and $(h, q)=1$, depends only upon q.

Condition (C) implies that, by grouping together the terms for which q has the same value, the Fourier series for f may be written in the form

$$
\sum_{q=1}^{\infty} a_{q} c_{q}(n), \quad \text { where } c_{q}(n) \text { is the Ramanujan sum } \sum_{\substack{1 \leq h \leq q \\(h, q)=1}} e\left(\frac{h}{q} n\right)
$$

This may be called the Ramanujan expansion of $f(n)$.
It is very easy to see that

$$
a_{q}=\frac{1}{\varphi(q)} \lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} f(n) c_{q}(n)
$$

1.3. Condition (C) obviously implies that, for every $N, \sigma_{N}^{(f)}(n)$ is of the form

$$
\sum_{q / N} \lambda_{q} c_{q}(n)
$$

On the other hand condition (C) is certainly satisfied if, for every $\varepsilon>0$, $P(n)$ in (1) can be taken equal to a linear combination of Ramanujan sums (because, if f is an almost-periodic- B arithmetical function and $\left\{f_{\nu}\right\}$ a
sequence of almost-periodic- B arithmetical functions such that

$$
\lim _{\nu \rightarrow \infty}\left\{\limsup _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x}\left|f_{\nu}(n)-f(n)\right|\right\}=0
$$

then, for every real $\alpha, C(f, \alpha)=\lim _{\nu \rightarrow \infty} C\left(f_{\nu}, \alpha\right)$).
Thus the assertion that a limit-periodic- B arithmetical function f is almost-even- B if and only if condition (C) is satisfied follows from the following fact:

Let A be the vector space of arithmetical functions. The set of even arithmetical functions is the subspace of A generated by the functions c_{q}. More precisely, for each positive integer N, the set E_{N} of those arithmetical functions which are even modulo N is the subspace of A generated by the functions c_{q} where q / N. This may be seen as follows.

Given the positive integer N and a divisor d of N, let

$$
F_{N, d}(n)= \begin{cases}1 & \text { if }(N, n)=d \\ 0 & \text { otherwise }\end{cases}
$$

If N is fixed, then the functions $F_{N, d}$ where d runs through the set of the divisors of N is obviously a basis of the vector space E_{N}. So this space has dimension $\tau(N)$, the number of divisors of N.

On the other hand, for each q dividing N, the function c_{q} is even modulo N, for

$$
c_{q}(n)=\sum_{d /(q, n)} d \mu\left(\frac{q}{d}\right) \quad \text { and } \quad(q, n)=(q,(N, n))
$$

The functions c_{q} are linearly independent for

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} c_{q_{1}}(n) c_{q_{2}}(n)= \begin{cases}0 & \text { if } q_{1} \neq q_{2} \\ \varphi(q) & \text { if } q_{1}=q_{2}=q\end{cases}
$$

Therefore the $\tau(N)$ functions c_{q} where q / N form a basis of E_{N}.
1.4. The following result, due to A . Wintner, ${ }^{1}$ is well known.

Given an arithmetical function f, let $f^{\prime}=f_{*} \mu$ (i.e., $f^{\prime}(n)=$ $\left.\sum_{d / n} f(d) \mu(n / d)\right)$. If

$$
\sum_{n=1}^{\infty} \frac{\left|f^{\prime}(n)\right|}{n}<\infty
$$

then f is almost-even- B^{1} and

$$
a_{q}=\sum_{n=1}^{\infty} \frac{f^{\prime}(n q)}{n q}
$$

Here the series is obviously absolutely convergent.

[^0]One may raise the question whether the same formula (without absolute convergence) holds for any almost-even- B arithmetical function.

We will prove here the following theorem which shows that the answer is yes.

Theorem. Let f be an arithmetical function, and let $f^{\prime}=f_{*} \mu$. Let q be any positive integer.

Suppose that
(i) $\sum_{n \leq x}|f(n)|=O(x)$;
(ii) For each positive integer d dividing q,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{\substack{n \leq x \\(q, n)=d}} f(n) \text { exists. }
$$

Then the series $\sum_{n=1}^{\infty} f^{\prime}(n q) / n q$ converges and its sum is

$$
\frac{1}{\varphi(q)} \lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} f(n) c_{q}(n)
$$

The hypotheses of this theorem are certainly satisfied for all positive q if f is almost-periodic-B, not necessarily almost-even- B^{1}.
1.5. We may remark that hypothesis (ii) is equivalent to:
(ii)' For each positive integer d dividing q,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} f(n) c_{d}(n) \text { exists. }
$$

In fact both condition (ii) and condition (ii)' are equivalent to:
(ii) ${ }^{\prime \prime}$ For every arithmetical function g even modulo q,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} f(n) g(n) \text { exists. }
$$

This follows immediately from the above mentioned fact that the set of the functions $F_{q, d}$ where d / q and the set of the functions c_{d} where d / q are bases of the vector space E_{q}.
1.6. The original proof of our theorem was rather complicated. The one that we give here is inspired by a proof which was communicated to us by Dr. A Hildebrand for the particular case when $q=1$, namely the following result:

If $\Sigma_{n \leq x}|f(n)|=O(x)$ and if f has a mean value $M(f)$, then the series $\sum_{n=1}^{\infty} f^{\prime}(n) / n$ converges and its sum is $M(f)$.

2. A basic lemma

The following lemma is essential for our proof.
Lemma. Let χ_{q} be the principal character modulo q, where q is any positive integer.
(i) $\quad \sum_{n<x} \frac{\mu(n) \chi_{q}(n)}{n}=O\left(e^{-\alpha \sqrt{\log x}}\right) \quad$ for some $\left.\alpha \in\right] 0,1[$;
(ii) The series

$$
\sum_{n=1}^{\infty} \frac{\mu(n) \chi_{q}(n) \log n}{n}
$$

converges and its sum is $-q / \varphi(q)$.
Proof. A classical proof, using the formula

$$
\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}=\frac{1}{\zeta(s)} \quad \text { for } \operatorname{Re} s>1
$$

and an estimate of $|1 / \zeta(s)|$, shows that there exists $\alpha>0$ such that

$$
M(x)=\sum_{n \leq x} \mu(n)=O\left(x e^{-\alpha \sqrt{\log x}}\right)
$$

A quite similar proof, using the formula
(2) $\sum_{n=1}^{\infty} \frac{\mu(n) \chi_{q}(n)}{n^{s}}=\frac{1}{L\left(s, \chi_{q}\right)}=\frac{1}{\zeta(s)} \prod_{p / q}\left(1-\frac{1}{p^{s}}\right)^{-1} \quad(\operatorname{Re} s>1)$,
shows that there exists $\beta>0$ such that

$$
\begin{equation*}
M_{q}(x)=\sum_{n \leq x} \mu(n) \chi_{q}(n)=O\left(x e^{-\beta \sqrt{\log x}}\right) \tag{3}
\end{equation*}
$$

This, with the equality

$$
\sum_{x<n \leq y} \frac{\mu(n) \chi_{q}(n)}{n}=\frac{M_{q}(y)}{y}-\frac{M_{q}(x)}{x}+\int_{x}^{y} \frac{M_{q}(t)}{t^{2}} d t \quad \text { for } 0<x<y
$$

shows that the series

$$
\sum_{n=1}^{\infty} \frac{\mu(n) \chi_{q}(n)}{n}
$$

converges and that

$$
\sum_{n>x} \frac{\mu(n) \chi_{q}(n)}{n}=O\left(\sqrt{\log x} e^{-\beta \sqrt{\log x}}\right)=O\left(e^{-\alpha \sqrt{\log x}}\right) \text { for } 0<\alpha<\beta
$$

Now it follows from (2) that

$$
\sum_{n=1}^{\infty} \frac{\mu(n) \chi_{q}(n)}{n}=0
$$

so that

$$
\sum_{n \leq x} \frac{\mu(n) \chi_{q}(n)}{n}=-\sum_{n>x} \frac{\mu(n) \chi_{q}(n)}{n}
$$

Similarly, (3) shows that the series

$$
\sum_{n=1}^{\infty} \frac{\mu(n) \chi_{q}(n) \log n}{n}
$$

converges, and the formula obtained by differentiation of (2) shows that its sum is $-q / \varphi(q)$.

3. Proof of the theorem

We now suppose that f is an arithmetical function satisfying hypotheses (i) and (ii) of the theorem.
3.1. By hypothesis (i) there exists $K>0$ such that

$$
\begin{equation*}
\sum_{n \leq x}|f(n)| \leq K x \quad \text { for every positive } x \tag{4}
\end{equation*}
$$

3.2. We now make the following remark.

For each divisor d of q set

$$
m_{d}=\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{\substack{n \leq x \\(q, n)=d}} f(n)
$$

If σ is any real number >1, then, as x tends to infinity,

$$
\sum_{\substack{x<n \leq \sigma x \\(q, n)=d}} \frac{f(n)}{n} \text { tends to } m_{d} \log \sigma
$$

Proof. Let $\Phi(t)=\sum_{n \leq t,(q, n)=d} f(n)$. We have $|\Phi(t)| \leq K t$ for every $t>0$, and $\Phi(t) / t$ tends to m_{d} as t tends to infinity.

For $x \geq(\sigma-1)^{-1}$ we also have

$$
\sum_{\substack{x<n \leq \sigma x \\(q, n)=d}} \frac{f(n)}{n}=\frac{\Phi(\sigma x)}{\sigma x}-\frac{\Phi(x)}{x}+\int_{x}^{\sigma x} \frac{\Phi(t)}{t^{2}} d t .
$$

As x tends to infinity, $\Phi(x) / x$ and $\Phi(\sigma x) / \sigma x$ tend to m_{d}. Furthermore we have

$$
\int_{x}^{\sigma x} \frac{\Phi(t)}{t^{2}} d t=\int_{1}^{\sigma} \frac{\Phi(x u)}{x u^{2}} d u
$$

As

$$
\left|\frac{\Phi(x u)}{x u^{2}}\right| \leq \frac{K}{u} \quad \text { for every positive } x
$$

and $\Phi(x u) / x u^{2}$ tends to m_{d} / u as x tends to infinity, this tends to

$$
\int_{1}^{\sigma} \frac{m_{d}}{u} d u=m_{d} \log \sigma
$$

3.3. Now, for $x \geq 1$, we have

$$
\sum_{n \leq x} \frac{f^{\prime}(q n)}{q n}=\sum_{n \leq x} \frac{1}{q n}\left(\sum_{d / q n} f(d) \mu\left(\frac{q n}{d}\right)\right)=\frac{1}{q} \sum_{\substack{n \leq x \\ d / q n}} \frac{f(d)}{n} \mu\left(\frac{q n}{d}\right)
$$

In the last sum we will group together the terms for which (q, d) has the same value. The latter must be a divisor of q. Let δ be any divisor of q and let $q^{\prime}=q / \delta$. Then (q, d) is equal to δ if and only if $d=\delta d^{\prime}$ where $\left(q^{\prime}, d^{\prime}\right)=1$. When it is so, d divides $q n$ if and only if d^{\prime} / n, that is $n=m d^{\prime}$. Now $n=m d^{\prime}$ gives $q n / d=m q^{\prime}$. Thus we obtain

$$
\begin{aligned}
\sum_{n \leq x} \frac{f^{\prime}(q n)}{q n} & =\frac{1}{q}\left(\sum_{\delta q^{\prime}=q}\left(\sum_{\substack{m d^{\prime} \leq x \\
\left(q^{\prime}, d^{\prime}\right)=1}} \frac{f\left(\delta d^{\prime}\right)}{m d^{\prime}}\right) \mu\left(m q^{\prime}\right)\right) \\
& =\frac{1}{q} \sum_{\delta q^{\prime}=q}\left(\sum_{m d^{\prime} \leq x} \frac{f\left(\delta d^{\prime}\right)}{m d^{\prime}} \chi_{q^{\prime}}\left(d^{\prime}\right) \mu\left(m q^{\prime}\right)\right)
\end{aligned}
$$

where $\chi_{q^{\prime}}$ is the principal character modulo q^{\prime}.

Using the fact that $\mu\left(m q^{\prime}\right)=\mu\left(q^{\prime}\right) \mu(m) \chi_{q^{\prime}}(m)$ this gives

$$
\sum_{n \leq x} \frac{f^{\prime}(q n)}{q n}=\frac{1}{q} \sum_{\delta q^{\prime}=q} \mu\left(q^{\prime}\right)\left(\sum_{m d^{\prime} \leq x} \mu(m) \chi_{q^{\prime}}\left(m d^{\prime}\right) \frac{f\left(\delta d^{\prime}\right)}{m d^{\prime}}\right)
$$

We may rewrite this formula in the form

$$
\begin{equation*}
\sum_{n \leq x} \frac{f^{\prime}(q n)}{q n}=\frac{1}{q} \sum_{\delta / q} \mu\left(q^{\prime}\right) G_{\delta}(x) \tag{5}
\end{equation*}
$$

where $q^{\prime}=q / \delta$ and

$$
G_{\delta}(x)=\sum_{m n \leq x} \mu(m) \chi_{q^{\prime}}(m n) \frac{f(\delta n)}{m n} .
$$

Thus, to prove the convergence of the series $\sum_{n=1}^{\infty} f^{\prime}(q n) / q n$, it is sufficient to show that, for each divisor δ of $q, G_{\delta}(x)$ tends to a finite limit as x tends to infinity.
3.4. We now introduce a fixed $\lambda \geq e^{1 / 4}$ and in the formula which defines $G_{\delta}(x)$ we separate the terms for which $n \leq x / \lambda$ and those for which $n>x / \lambda$. We thus obtain, for $x>\lambda$,

$$
\begin{align*}
G_{\delta}(x)= & \sum_{n \leq x / \lambda} \frac{f(\delta n) \chi_{q^{\prime}}(n)}{n}\left(\sum_{m \leq x / n} \frac{\mu(m) \chi_{q^{\prime}}(m)}{m}\right) \tag{6}\\
& +\sum_{\substack{x / \lambda<n \leq x \\
m n \leq x}} \mu(m) \chi_{q^{\prime}}(m n) \frac{f(\delta n)}{m n}, \\
= & \sum_{1}+\sum_{2}, \text { say. }
\end{align*}
$$

3.4.1. By the lemma of $\S 2$ there exist $\alpha \in] 0,1[$ and $C>0$ such that

$$
\left|\sum_{m \leq X} \frac{\mu(m) \chi_{q^{\prime}}(m)}{m}\right| \leq C e^{-\alpha \sqrt{\log X}} \quad \text { for every } X \geq 1
$$

So

$$
\left|\sum_{1}\right| \leq C \sum_{n<x / \lambda} \frac{|f(\delta n)|}{n} e^{-\alpha \sqrt{\log (x / n)}}
$$

Setting $\Psi_{\delta}(t)=\sum_{n \leq t}|f(\delta n)|$ we have

$$
\begin{aligned}
\sum_{n \leq x / \lambda} \frac{|f(\delta n)|}{n} e^{-\alpha \sqrt{\log (x / n)}}= & \Psi_{\delta}\left(\frac{x}{\lambda}\right) \frac{\lambda}{x} e^{-\alpha \sqrt{\log \lambda}} \\
& -\int_{1}^{x / \lambda} \Psi_{\delta}(t) \frac{d}{d t}\left(\frac{e^{-\alpha \sqrt{\log (x / t)}}}{t}\right) d t
\end{aligned}
$$

As $0 \leq \Psi_{\delta}(t) \leq \delta K t$ by (4) and

$$
\begin{aligned}
\left|\frac{d}{d t}\left(\frac{e^{-\alpha \sqrt{\log (x / t)}}}{t}\right)\right| & =\frac{e^{-\alpha \sqrt{\log (x / t)}}}{t^{2}}\left|1-\frac{\alpha}{2 \sqrt{\log (x / t)}}\right| \\
& \leq \frac{e^{-\alpha \sqrt{\log (x / t)}}}{t^{2}} \quad \text { for } 1 \leq t \leq \frac{x}{\lambda}
\end{aligned}
$$

this yields

$$
\sum_{n \leq x / \lambda} \frac{|f(\delta n)|}{n} e^{-\alpha \sqrt{\log (x / n)}} \leq \delta K\left(e^{-\alpha \sqrt{\log \lambda}}+\int_{1}^{x / \lambda} \frac{e^{-\alpha \sqrt{\log (x / t)}}}{t} d t\right)
$$

The change of variable $t=x e^{-u^{2}}$ gives

$$
\int_{1}^{x / \lambda} \frac{e^{-\alpha \sqrt{\log (x / t)}}}{t} d t=2 \int_{\sqrt{\log \lambda}}^{\sqrt{\log x}} u e^{-\alpha u} d u
$$

whence

$$
\int_{1}^{x / \lambda} \frac{e^{-\alpha \sqrt{\log (x / t)}}}{t} d t \leq 2 \int_{\sqrt{\log \lambda}}^{\infty} u e^{-\alpha u} d u=2\left(\frac{\sqrt{\log \lambda}}{\alpha}+\frac{1}{\alpha^{2}}\right) e^{-\alpha \sqrt{\log \lambda}}
$$

We finally obtain

$$
\begin{equation*}
\left|\sum_{1}\right| \leq C \delta K e^{-\alpha \sqrt{\log \lambda}}\left(1+\frac{2 \sqrt{\log \lambda}}{\alpha}+\frac{2}{\alpha^{2}}\right)=g_{1}(\lambda), \text { say. } \tag{7}
\end{equation*}
$$

Note that $g_{1}(\lambda)$ tends to zero as λ tends to infinity.
3.4.2. Now, since the conditions $x / \lambda<n \leq x$ and $m n \leq x$ are equivalent to $m<\lambda$ and $x / \lambda<n \leq x / m$, we have

$$
\begin{equation*}
\sum_{2}=\sum_{m<\lambda} \frac{\mu(m) \chi_{q^{\prime}}(m)}{m}\left(\sum_{x / \lambda<n \leq x / m} \frac{\chi_{q^{\prime}}(n) f(\delta n)}{n}\right) \tag{8}
\end{equation*}
$$

We remark that

$$
\sum_{x / \lambda<n \leq x / m} \frac{\chi_{q^{\prime}}(n) f(\delta n)}{n}=\delta \sum_{\substack{\delta x / \lambda<\delta n \leq \delta x / m \\\left(n, q^{\prime}\right)=1}} \frac{f(\delta n)}{\delta n}=\delta \sum_{\substack{\delta x / \lambda<n^{\prime} \leq \delta x / m \\\left(n^{\prime}, q\right)=\delta}} \frac{f\left(n^{\prime}\right)}{n^{\prime}}
$$

for the integers n^{\prime} which satisfy $\left(n^{\prime}, q\right)=\delta$ are the integers δn where $\left(n, q^{\prime}\right)$ $=1$.

It follows, by the remark of $\S 3.2$, that for each m, as x tends to infinity,

$$
\sum_{x / \lambda<n \leq x / m} \frac{\chi_{q^{\prime}}(n) f(\delta n)}{n} \text { tends to } \delta m_{\delta} \log \frac{\lambda}{m}
$$

Therefore, by (8), as x tends to infinity we have

$$
\sum_{2} \text { tends to } \delta m_{\delta} \sum_{m<\lambda} \frac{\mu(m) \chi_{q^{\prime}}(m)}{m} \log \frac{\lambda}{m}=g_{2}(\lambda), \text { say }
$$

Also

$$
g_{2}(\lambda) \text { tends to } \frac{q^{\prime}}{\varphi\left(q^{\prime}\right)} \delta m_{\delta}
$$

as λ tends to infinity, for

$$
g_{2}(\lambda)=\delta m_{\delta}\left\{\left(\sum_{m<\lambda} \frac{\mu(m) \chi_{q^{\prime}}(m)}{m}\right) \log \lambda-\sum_{m<\lambda} \frac{\mu(m) \chi_{q^{\prime}}(m) \log m}{m}\right\}
$$

and, by the lemma of $\S 2$,

$$
\sum_{m<\lambda} \frac{\mu(m) \chi_{q^{\prime}}(m)}{m}=O\left(e^{-\alpha \sqrt{\log \lambda}}\right) \quad \text { where } \alpha>0
$$

and

$$
\sum_{m<\lambda} \frac{\mu(m) \chi_{q^{\prime}}(m) \log m}{m} \text { tends to }-\frac{q^{\prime}}{\varphi\left(q^{\prime}\right)}
$$

3.5. By (6) and (7) we have

$$
\left|G_{\delta}(x)-\frac{q^{\prime}}{\varphi\left(q^{\prime}\right)} \delta m_{\delta}\right| \leq g_{1}(\lambda)+\left|\sum_{2}-g_{2}(\lambda)\right|+\left|g_{2}(\lambda)-\frac{q^{\prime}}{\varphi\left(q^{\prime}\right)} \delta m_{\delta}\right|
$$

As Σ_{2} tends to $g_{2}(\lambda)$ as x tends to infinity this gives

$$
\limsup _{x \rightarrow \infty}\left|G_{\delta}(x)-\frac{q^{\prime}}{\varphi\left(q^{\prime}\right)} \delta m_{\delta}\right| \leq g_{1}(\lambda)+\left|g_{2}(\lambda)-\frac{q^{\prime}}{\varphi\left(q^{\prime}\right)} \delta m_{\delta}\right|
$$

This holds for every $\lambda \geq e^{1 / 4}$. Since the right-hand side tends to zero as λ tends to infinity, this shows that

$$
G_{\delta}(x) \text { tends to } \frac{q^{\prime}}{\varphi\left(q^{\prime}\right)} \delta m_{\delta}
$$

as x tends to infinity. It follows by (5) that the series $\sum_{n=1}^{\infty} f^{\prime}(q n) / q n$ converges and that

$$
\sum_{n=1}^{\infty} \frac{f^{\prime}(q n)}{q n}=\frac{1}{q} \sum_{\delta q^{\prime}=q} \frac{q^{\prime} \mu\left(q^{\prime}\right)}{\varphi\left(q^{\prime}\right)} \delta m_{\delta}=\sum_{\delta q^{\prime}=q} \frac{\mu\left(q^{\prime}\right)}{\varphi\left(q^{\prime}\right)} m_{\delta}
$$

3.6. To complete the proof of our theorem it remains to show that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} f(n) c_{q}(n)=\varphi(q) \sum_{\delta q^{\prime}=q} \frac{\mu\left(q^{\prime}\right)}{\varphi\left(q^{\prime}\right)} m_{\delta} \tag{9}
\end{equation*}
$$

(We already know by the remark of $\S 1.5$ that the limit exists).
3.6.1. We have

$$
\begin{aligned}
\frac{1}{x} \sum_{n \leq x} f(n) c_{q}(n) & =\frac{1}{x} \sum_{n \leq x} f(n)\left(\sum_{d / q, n)} d \mu\left(\frac{q}{d}\right)\right) \\
& =\frac{1}{x} \sum_{\substack{n \leq x \\
d /(q, n)}} f(n) d \mu\left(\frac{q}{d}\right) \\
& =\frac{1}{x} \sum_{\delta / q}\left(\sum_{\substack{n \leq x \\
(q, n)=\delta \\
d / \delta}} f(n) d \mu\left(\frac{q}{d}\right)\right) \\
& =\sum_{\delta / q}\left\{\left(\sum_{d / \delta} d \mu\left(\frac{q}{d}\right)\right)\left(\frac{1}{x} \sum_{\substack{n \leq x \\
(q, n)=\delta}} f(n)\right)\right\}
\end{aligned}
$$

This shows that

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} f(n) c_{q}(n)=\sum_{\delta / q}\left(\sum_{d / \delta} d \mu\left(\frac{q}{d}\right)\right) m_{\delta}
$$

3.6.2 To obtain (9) it suffices to show that, for each divisor δ of q,

$$
\begin{equation*}
\sum_{d / \delta} d \mu\left(\frac{q}{d}\right)=\varphi(q) \frac{\mu\left(q^{\prime}\right)}{\varphi\left(q^{\prime}\right)} \quad \text { where } q^{\prime}=\frac{q}{\delta} \tag{10}
\end{equation*}
$$

We have

$$
\mu\left(\frac{q}{d}\right)=\mu\left(\frac{\delta q^{\prime}}{d}\right)=\mu\left(\frac{\delta}{d}\right) \mu\left(q^{\prime}\right) \chi_{q^{\prime}}\left(\frac{\delta}{d}\right)
$$

So

$$
\sum_{d / \delta} d \mu\left(\frac{q}{d}\right)=\mu\left(q^{\prime}\right) \sum_{d / \delta} d \mu\left(\frac{\delta}{d}\right) \chi_{q^{\prime}}\left(\frac{\delta}{d}\right)
$$

Let $h=i_{*}\left(\mu \chi_{q^{\prime}}\right)$, where $i(n)=n$ for every n. We have

$$
\sum_{d / \delta} d \mu\left(\frac{\delta}{d}\right) \chi_{q^{\prime}}\left(\frac{\delta}{d}\right)=h(\delta)
$$

h is multiplicative and, for p prime and $r \geq 1$,

$$
h\left(p^{r}\right)=p^{r}-p^{r-1} \chi_{q^{\prime}}(p)= \begin{cases}p^{r} & \text { if } p / q^{\prime} \\ p^{r}\left(1-\frac{1}{p}\right) & \text { if } p+q^{\prime}\end{cases}
$$

It follows that

$$
\sum_{d / \delta} d \mu\left(\frac{\delta}{d}\right) \chi_{q^{\prime}}\left(\frac{\delta}{d}\right)=\delta \prod_{\substack{p / \delta \\ p+q^{\prime}}}\left(1-\frac{1}{p}\right)
$$

so that

$$
\begin{equation*}
\sum_{d / \delta} d \mu\left(\frac{q}{d}\right)=\mu\left(q^{\prime}\right) \delta \prod_{\substack{p / \delta \\ p+q^{\prime}}}\left(1-\frac{1}{p}\right) \tag{11}
\end{equation*}
$$

On the other hand we have

$$
\begin{aligned}
\varphi(q) & =q \prod_{p / q}\left(1-\frac{1}{p}\right)=\delta q^{\prime}\left\{\prod_{p / q^{\prime}}\left(1-\frac{1}{p}\right)\right\}\left\{\prod_{\substack{p / \delta \\
p+q^{\prime}}}\left(1-\frac{1}{p}\right)\right\} \\
& =\delta \varphi\left(q^{\prime}\right) \prod_{\substack{p / \delta, p+q^{\prime}}}\left(1-\frac{1}{p}\right)
\end{aligned}
$$

This with (11) gives (10).

Universite de Paris-Sud
 Orsay, France

[^0]: ${ }^{1}$ Eratosthenian averages, Baltimore, Maryland, 1943, Section 33.

