ON A FORMULA FOR ALMOST-EVEN ARITHMETICAL FUNCTIONS

BY

HUBERT DELANGE

Introduction

For an arithmetical function the property of being almost-even is a special case of limit-periodicity, which is itself a special case of almost-periodicity.

1.1. An arithmetical function f is said to be *almost-periodic-B* (more precisely almost-periodic- B^1) if, given $\varepsilon > 0$, there exists a trigonometric polynomial P,

$$P(n) = \sum_{k=1}^{m} \lambda_k e(\alpha_k n), \text{ where } e(t) = \exp(2\pi i t),$$

such that

(1)
$$\limsup_{x\to\infty}\frac{1}{x}\sum_{n\leq x}|P(n)-f(n)|\leq \varepsilon.$$

This implies that $\sum_{n \leq x} |f(n)| = O(x)$ and that, for each real α ,

$$\lim_{x\to\infty}\frac{1}{x}\sum_{n\leq x}f(n)e(-\alpha n) \text{ exists, say is } C(f,\alpha).$$

The spectrum of f is the (at most denumerable) subset Sp f of the quotient group \mathbf{R}/\mathbf{Z} consisting of the residue-classes modulo 1 of those α for which $C(f, \alpha) \neq 0$.

The Fourier series of f is the formal sum $\sum C(f, \alpha)e(\alpha n)$ extended to those $\alpha \in [0, 1]$ whose residue-class modulo 1 belongs to Sp f.

The arithmetical function f is said to be *limit-periodic-B* if, given $\varepsilon > 0$, there exists a *periodic* arithmetical function P such that (1) holds.

Since a periodic arithmetical function can be expressed by a trigonometric polynomial, this implies that f is almost-periodic-B. Its spectrum is contained in \mathbf{Q}/\mathbf{Z} (i.e., $C(f, \alpha) = 0$ when α is irrational).

© 1987 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received December 6, 1984.

It can be proved that the periodic function P in (1) can be taken equal to

$$\sigma_N^{(f)}(n) = \sum_{k=0}^{N-1} C\left(f, \frac{k}{N}\right) e\left(\frac{k}{N}n\right)$$

where N is suitably chosen.

1.2. Now, an arithmetical function f is said to be even modulo k if f(n) depends only upon (k, n). It is said to be even if there exists a k such that it is even modulo k.

The arithmetical function f is said to be *almost-even-B* if, given $\varepsilon > 0$, there exists an even arithmetical function g such that

$$\limsup_{x\to\infty}\frac{1}{x}\sum_{n\leq x}|g(n)-f(n)|\leq \varepsilon.$$

Since even arithmetical functions are obviously periodic, this implies that f is limit-periodic-B.

It turns out that a limit-periodic-B arithmetical function is almost-even-B if and only if the following condition is satisfied:

(C) The Fourier coefficient C(f, r) where the rational number r is equal to h/q, with $q \in \mathbb{N}^*$ and (h, q) = 1, depends only upon q.

Condition (C) implies that, by grouping together the terms for which q has the same value, the Fourier series for f may be written in the form

$$\sum_{q=1}^{\infty} a_q c_q(n), \text{ where } c_q(n) \text{ is the Ramanujan sum } \sum_{\substack{1 \le h \le q \\ (h,q)=1}} e\left(\frac{h}{q}n\right).$$

This may be called the Ramanujan expansion of f(n).

It is very easy to see that

$$a_q = \frac{1}{\varphi(q)} \lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} f(n) c_q(n).$$

1.3. Condition (C) obviously implies that, for every $N, \sigma_N^{(f)}(n)$ is of the form

$$\sum_{q/N} \lambda_q c_q(n).$$

On the other hand condition (C) is certainly satisfied if, for every $\varepsilon > 0$, P(n) in (1) can be taken equal to a linear combination of Ramanujan sums (because, if f is an almost-periodic-B arithmetical function and $\{f_{\nu}\}$ a

sequence of almost-periodic-B arithmetical functions such that

$$\lim_{x\to\infty}\left\{\limsup_{x\to\infty}\frac{1}{x}\sum_{n\leq x}|f_{\nu}(n)-f(n)|\right\}=0,$$

then, for every real α , $C(f, \alpha) = \lim_{\nu \to \infty} C(f_{\nu}, \alpha)$).

Thus the assertion that a limit-periodic-B arithmetical function f is almosteven-B if and only if condition (C) is satisfied follows from the following fact:

Let A be the vector space of arithmetical functions. The set of even arithmetical functions is the subspace of A generated by the functions c_q . More precisely, for each positive integer N, the set E_N of those arithmetical functions which are even modulo N is the subspace of A generated by the functions c_q where q/N. This may be seen as follows.

Given the positive integer N and a divisor d of N, let

$$F_{N,d}(n) = \begin{cases} 1 & \text{if } (N,n) = d, \\ 0 & \text{otherwise.} \end{cases}$$

If N is fixed, then the functions $F_{N,d}$ where d runs through the set of the divisors of N is obviously a basis of the vector space E_N . So this space has dimension $\tau(N)$, the number of divisors of N.

On the other hand, for each q dividing N, the function c_q is even modulo N, for

$$c_q(n) = \sum_{d/(q,n)} d\mu\left(\frac{q}{d}\right)$$
 and $(q,n) = (q,(N,n)).$

The functions c_a are linearly independent for

$$\lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} c_{q_1}(n) c_{q_2}(n) = \begin{cases} 0 & \text{if } q_1 \ne q_2, \\ \varphi(q) & \text{if } q_1 = q_2 = q \end{cases}$$

Therefore the $\tau(N)$ functions c_q where q/N form a basis of E_N .

1.4. The following result, due to A. Wintner,¹ is well known.

Given an arithmetical function f, let $f' = f_*\mu$ (i.e., $f'(n) = \sum_{d/n} f(d)\mu(n/d)$). If

$$\sum_{n=1}^{\infty}\frac{|f'(n)|}{n}<\infty,$$

then f is almost-even- B^1 and

$$a_q = \sum_{n=1}^{\infty} \frac{f'(nq)}{nq}.$$

Here the series is obviously absolutely convergent.

¹Eratosthenian averages, Baltimore, Maryland, 1943, Section 33.

One may raise the question whether the same formula (without absolute convergence) holds for any almost-even-B arithmetical function.

We will prove here the following theorem which shows that the answer is yes.

THEOREM. Let f be an arithmetical function, and let $f' = f_*\mu$. Let q be any positive integer.

Suppose that

(i) $\sum_{n \leq x} |f(n)| = O(x);$

(ii) For each positive integer d dividing q,

$$\lim_{x\to\infty}\frac{1}{x}\sum_{\substack{n\leq x\\(q,n)=d}}f(n) \text{ exists.}$$

Then the series $\sum_{n=1}^{\infty} f'(nq)/nq$ converges and its sum is

$$\frac{1}{\varphi(q)}\lim_{x\to\infty}\frac{1}{x}\sum_{n\leq x}f(n)c_q(n).$$

The hypotheses of this theorem are certainly satisfied for all positive q if f is almost-periodic-B, not necessarily almost-even- B^1 .

1.5. We may remark that hypothesis (ii) is equivalent to:

(ii)' For each positive integer d dividing q,

$$\lim_{x\to\infty}\frac{1}{x}\sum_{n\leq x}f(n)c_d(n)$$
 exists.

In fact both condition (ii) and condition (ii)' are equivalent to: (ii)'' For every arithmetical function g even modulo q,

$$\lim_{x\to\infty}\frac{1}{x}\sum_{n\leq x}f(n)g(n)$$
 exists.

This follows immediately from the above mentioned fact that the set of the functions $F_{q, d}$ where d/q and the set of the functions c_d where d/q are bases of the vector space E_q .

1.6. The original proof of our theorem was rather complicated. The one that we give here is inspired by a proof which was communicated to us by Dr. A Hildebrand for the particular case when q = 1, namely the following result:

If $\sum_{n \le x} |f(n)| = O(x)$ and if f has a mean value M(f), then the series $\sum_{n=1}^{\infty} f'(n)/n$ converges and its sum is M(f).

HUBERT DELANGE

2. A basic lemma

The following lemma is essential for our proof.

LEMMA. Let χ_q be the principal character modulo q, where q is any positive integer.

(i)
$$\sum_{n < x} \frac{\mu(n)\chi_q(n)}{n} = O(e^{-\alpha\sqrt{\log x}}) \quad \text{for some } \alpha \in]0,1[;$$

(ii) The series

$$\sum_{n=1}^{\infty} \frac{\mu(n)\chi_q(n)\log n}{n}$$

converges and its sum is $-q/\varphi(q)$.

Proof. A classical proof, using the formula

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)} \quad \text{for } \text{Re } s > 1$$

and an estimate of $|1/\zeta(s)|$, shows that there exists $\alpha > 0$ such that

$$M(x) = \sum_{n \leq x} \mu(n) = O(x e^{-\alpha \sqrt{\log x}}).$$

A quite similar proof, using the formula

(2)
$$\sum_{n=1}^{\infty} \frac{\mu(n)\chi_q(n)}{n^s} = \frac{1}{L(s,\chi_q)} = \frac{1}{\zeta(s)} \prod_{p/q} \left(1 - \frac{1}{p^s}\right)^{-1}$$
 (Re $s > 1$),

shows that there exists $\beta > 0$ such that

(3)
$$M_q(x) = \sum_{n \le x} \mu(n) \chi_q(n) = O(x e^{-\beta \sqrt{\log x}}).$$

This, with the equality

$$\sum_{x < n \le y} \frac{\mu(n)\chi_q(n)}{n} = \frac{M_q(y)}{y} - \frac{M_q(x)}{x} + \int_x^y \frac{M_q(t)}{t^2} dt \quad \text{for } 0 < x < y,$$

shows that the series

$$\sum_{n=1}^{\infty} \frac{\mu(n)\chi_q(n)}{n}$$

converges and that

$$\sum_{n>x} \frac{\mu(n)\chi_q(n)}{n} = O\left(\sqrt{\log x} e^{-\beta\sqrt{\log x}}\right) = O\left(e^{-\alpha\sqrt{\log x}}\right) \quad \text{for } 0 < \alpha < \beta.$$

Now it follows from (2) that

$$\sum_{n=1}^{\infty} \frac{\mu(n)\chi_q(n)}{n} = 0,$$

so that

$$\sum_{n\leq x}\frac{\mu(n)\chi_q(n)}{n}=-\sum_{n>x}\frac{\mu(n)\chi_q(n)}{n}$$

Similarly, (3) shows that the series

$$\sum_{n=1}^{\infty} \frac{\mu(n)\chi_q(n)\log n}{n}$$

converges, and the formula obtained by differentiation of (2) shows that its sum is $-q/\varphi(q)$.

3. Proof of the theorem

We now suppose that f is an arithmetical function satisfying hypotheses (i) and (ii) of the theorem.

3.1. By hypothesis (i) there exists K > 0 such that

(4)
$$\sum_{n \le x} |f(n)| \le Kx \text{ for every positive } x.$$

3.2. We now make the following remark. For each divisor d of q set

$$m_d = \lim_{x \to \infty} \frac{1}{x} \sum_{\substack{n \le x \\ (q, n) = d}} f(n).$$

If σ is any real number > 1, then, as x tends to infinity,

x (.

$$\sum_{\substack{\substack{< n \le \sigma x \\ q, n = d}}} \frac{f(n)}{n} \text{ tends to } m_d \log \sigma.$$

Proof. Let $\Phi(t) = \sum_{n \le t, (q, n)=d} f(n)$. We have $|\Phi(t)| \le Kt$ for every t > 0, and $\Phi(t)/t$ tends to m_d as t tends to infinity. For $x \ge (\sigma - 1)^{-1}$ we also have

$$\sum_{\substack{x < n \le \sigma x \\ (q,n) = d}} \frac{f(n)}{n} = \frac{\Phi(\sigma x)}{\sigma x} - \frac{\Phi(x)}{x} + \int_x^{\sigma x} \frac{\Phi(t)}{t^2} dt.$$

As x tends to infinity, $\Phi(x)/x$ and $\Phi(\sigma x)/\sigma x$ tend to m_d . Furthermore we have

$$\int_{x}^{\sigma x} \frac{\Phi(t)}{t^2} dt = \int_{1}^{\sigma} \frac{\Phi(xu)}{xu^2} du.$$

As

$$\left|\frac{\Phi(xu)}{xu^2}\right| \le \frac{K}{u} \quad \text{for every positive } x$$

and $\Phi(xu)/xu^2$ tends to m_d/u as x tends to infinity, this tends to

$$\int_1^{\sigma} \frac{m_d}{u} \, du = m_d \log \sigma.$$

3.3. Now, for $x \ge 1$, we have

$$\sum_{n \leq x} \frac{f'(qn)}{qn} = \sum_{n \leq x} \frac{1}{qn} \left(\sum_{d/qn} f(d) \mu\left(\frac{qn}{d}\right) \right) = \frac{1}{q} \sum_{\substack{n \leq x \\ d/qn}} \frac{f(d)}{n} \mu\left(\frac{qn}{d}\right).$$

In the last sum we will group together the terms for which (q, d) has the same value. The latter must be a divisor of q. Let δ be any divisor of q and let $q' = q/\delta$. Then (q, d) is equal to δ if and only if $d = \delta d'$ where (q', d') = 1. When it is so, d divides qn if and only if d'/n, that is n = md'. Now n = md'gives qn/d = mq'. Thus we obtain

$$\sum_{n \le x} \frac{f'(qn)}{qn} = \frac{1}{q} \left(\sum_{\substack{\delta q' = q \\ (q', d') = 1}} \frac{f(\delta d')}{md'} \right) \mu(mq') \right)$$
$$= \frac{1}{q} \sum_{\delta q' = q} \left(\sum_{md' \le x} \frac{f(\delta d')}{md'} \chi_{q'}(d') \mu(mq') \right),$$

where $\chi_{q'}$ is the principal character modulo q'.

30

Using the fact that $\mu(mq') = \mu(q')\mu(m)\chi_{q'}(m)$ this gives

$$\sum_{n\leq x}\frac{f'(qn)}{qn}=\frac{1}{q}\sum_{\delta q'=q}\mu(q')\left(\sum_{md'\leq x}\mu(m)\chi_{q'}(md')\frac{f(\delta d')}{md'}\right).$$

We may rewrite this formula in the form

(5)
$$\sum_{n \leq x} \frac{f'(qn)}{qn} = \frac{1}{q} \sum_{\delta/q} \mu(q') G_{\delta}(x),$$

,

where $q' = q/\delta$ and

$$G_{\delta}(x) = \sum_{mn \leq x} \mu(m) \chi_{q'}(mn) \frac{f(\delta n)}{mn}.$$

Thus, to prove the convergence of the series $\sum_{n=1}^{\infty} f'(qn)/qn$, it is sufficient to show that, for each divisor δ of q, $G_{\delta}(x)$ tends to a finite limit as x tends to infinity.

3.4. We now introduce a fixed $\lambda \ge e^{1/4}$ and in the formula which defines $G_{\delta}(x)$ we separate the terms for which $n \le x/\lambda$ and those for which $n > x/\lambda$. We thus obtain, for $x > \lambda$,

(6)
$$G_{\delta}(x) = \sum_{\substack{n \le x/\lambda}} \frac{f(\delta n)\chi_{q'}(n)}{n} \left(\sum_{\substack{m \le x/n}} \frac{\mu(m)\chi_{q'}(m)}{m} \right) + \sum_{\substack{x/\lambda \le n \le x \\ mn \le x}} \mu(m)\chi_{q'}(mn) \frac{f(\delta n)}{mn},$$
$$= \sum_{1} + \sum_{2}, \text{ say.}$$

3.4.1. By the lemma of §2 there exist $\alpha \in [0, 1[$ and C > 0 such that

$$\left|\sum_{m \leq X} \frac{\mu(m)\chi_{q'}(m)}{m}\right| \leq Ce^{-\alpha\sqrt{\log X}} \quad \text{for every } X \geq 1.$$

So

$$\left|\sum_{1}\right| \leq C \sum_{n < x/\lambda} \frac{|f(\delta n)|}{n} e^{-\alpha \sqrt{\log(x/n)}}.$$

Setting $\Psi_{\delta}(t) = \sum_{n \leq t} |f(\delta n)|$ we have

$$\sum_{n \le x/\lambda} \frac{|f(\delta n)|}{n} e^{-\alpha \sqrt{\log(x/n)}} = \Psi_{\delta}\left(\frac{x}{\lambda}\right) \frac{\lambda}{x} e^{-\alpha \sqrt{\log\lambda}} -\int_{1}^{x/\lambda} \Psi_{\delta}(t) \frac{d}{dt} \left(\frac{e^{-\alpha \sqrt{\log(x/t)}}}{t}\right) dt.$$

As $0 \leq \Psi_{\delta}(t) \leq \delta K t$ by (4) and

$$\left| \frac{d}{dt} \left(\frac{e^{-\alpha \sqrt{\log(x/t)}}}{t} \right) \right| = \frac{e^{-\alpha \sqrt{\log(x/t)}}}{t^2} \left| 1 - \frac{\alpha}{2\sqrt{\log(x/t)}} \right|$$
$$\leq \frac{e^{-\alpha \sqrt{\log(x/t)}}}{t^2} \quad \text{for } 1 \leq t \leq \frac{x}{\lambda},$$

this yields

$$\sum_{n \le x/\lambda} \frac{|f(\delta n)|}{n} e^{-\alpha \sqrt{\log(x/n)}} \le \delta K \left(e^{-\alpha \sqrt{\log \lambda}} + \int_1^{x/\lambda} \frac{e^{-\alpha \sqrt{\log(x/t)}}}{t} dt \right).$$

The change of variable $t = xe^{-u^2}$ gives

$$\int_{1}^{x/\lambda} \frac{e^{-\alpha \sqrt{\log(x/t)}}}{t} dt = 2 \int_{\sqrt{\log \lambda}}^{\sqrt{\log x}} u e^{-\alpha u} du$$

whence

$$\int_{1}^{x/\lambda} \frac{e^{-\alpha\sqrt{\log(x/t)}}}{t} dt \le 2 \int_{\sqrt{\log\lambda}}^{\infty} u e^{-\alpha u} du = 2 \left(\frac{\sqrt{\log\lambda}}{\alpha} + \frac{1}{\alpha^2} \right) e^{-\alpha\sqrt{\log\lambda}}.$$

We finally obtain

(7)
$$\left|\sum_{1}\right| \leq C\delta K e^{-\alpha \sqrt{\log \lambda}} \left(1 + \frac{2\sqrt{\log \lambda}}{\alpha} + \frac{2}{\alpha^2}\right) = g_1(\lambda), \text{ say.}$$

Note that $g_1(\lambda)$ tends to zero as λ tends to infinity.

3.4.2. Now, since the conditions $x/\lambda < n \le x$ and $mn \le x$ are equivalent to $m < \lambda$ and $x/\lambda < n \le x/m$, we have

(8)
$$\sum_{2} = \sum_{m < \lambda} \frac{\mu(m) \chi_{q'}(m)}{m} \left(\sum_{x/\lambda < n \le x/m} \frac{\chi_{q'}(n) f(\delta n)}{n} \right).$$

We remark that

$$\sum_{x/\lambda < n \le x/m} \frac{\chi_{q'}(n)f(\delta n)}{n} = \delta \sum_{\substack{\delta x/\lambda < \delta n \le \delta x/m \\ (n, q') = 1}} \frac{f(\delta n)}{\delta n} = \delta \sum_{\substack{\delta x/\lambda < n' \le \delta x/m \\ (n', q) = \delta}} \frac{f(n')}{n'},$$

for the integers n' which satisfy $(n', q) = \delta$ are the integers δn where (n, q') = 1.

It follows, by the remark of \$3.2, that for each m, as x tends to infinity,

$$\sum_{x/\lambda < n \le x/m} \frac{\chi_{q'}(n)f(\delta n)}{n} \text{ tends to } \delta m_{\delta} \log \frac{\lambda}{m}$$

Therefore, by (8), as x tends to infinity we have

$$\sum_{2} \text{ tends to } \delta m_{\delta} \sum_{m < \lambda} \frac{\mu(m) \chi_{q'}(m)}{m} \log \frac{\lambda}{m} = g_2(\lambda), \text{ say.}$$

Also

$$g_2(\lambda)$$
 tends to $\frac{q'}{\varphi(q')}\delta m_{\delta}$

as λ tends to infinity, for

$$g_2(\lambda) = \delta m_{\delta} \left\{ \left(\sum_{m < \lambda} \frac{\mu(m) \chi_{q'}(m)}{m} \right) \log \lambda - \sum_{m < \lambda} \frac{\mu(m) \chi_{q'}(m) \log m}{m} \right\}$$

and, by the lemma of §2,

$$\sum_{m<\lambda} \frac{\mu(m)\chi_{q'}(m)}{m} = O(e^{-\alpha\sqrt{\log\lambda}}) \quad \text{where } \alpha > 0,$$

and

$$\sum_{m < \lambda} \frac{\mu(m) \chi_{q'}(m) \log m}{m} \text{ tends to } -\frac{q'}{\varphi(q')}.$$

3.5. By (6) and (7) we have

$$|G_{\delta}(x) - \frac{q'}{\varphi(q')} \delta m_{\delta}| \leq g_1(\lambda) + \left| \sum_{2} - g_2(\lambda) \right| + \left| g_2(\lambda) - \frac{q'}{\varphi(q')} \delta m_{\delta} \right|.$$

As Σ_2 tends to $g_2(\lambda)$ as x tends to infinity this gives

$$\limsup_{x\to\infty}|G_{\delta}(x)-\frac{q'}{\varphi(q')}\delta m_{\delta}|\leq g_{1}(\lambda)+\left|g_{2}(\lambda)-\frac{q'}{\varphi(q')}\delta m_{\delta}\right|.$$

This holds for every $\lambda \ge e^{1/4}$. Since the right-hand side tends to zero as λ tends to infinity, this shows that

$$G_{\delta}(x)$$
 tends to $\frac{q'}{\varphi(q')}\delta m_{\delta}$

as x tends to infinity. It follows by (5) that the series $\sum_{n=1}^{\infty} f'(qn)/qn$ converges and that

$$\sum_{n=1}^{\infty} \frac{f'(qn)}{qn} = \frac{1}{q} \sum_{\delta q'=q} \frac{q'\mu(q')}{\varphi(q')} \delta m_{\delta} = \sum_{\delta q'=q} \frac{\mu(q')}{\varphi(q')} m_{\delta}.$$

3.6. To complete the proof of our theorem it remains to show that

(9)
$$\lim_{x\to\infty}\frac{1}{x}\sum_{n\leq x}f(n)c_q(n)=\varphi(q)\sum_{\delta q'=q}\frac{\mu(q')}{\varphi(q')}m_{\delta}.$$

(We already know by the remark of §1.5 that the limit exists). **3.6.1.** We have

$$\frac{1}{x}\sum_{n\leq x}f(n)c_q(n) = \frac{1}{x}\sum_{n\leq x}f(n)\left(\sum_{d/q,n\}}d\mu\left(\frac{q}{d}\right)\right)$$
$$= \frac{1}{x}\sum_{\substack{n\leq x\\d/(q,n)}}f(n)\,d\mu\left(\frac{q}{d}\right)$$
$$= \frac{1}{x}\sum_{\substack{\delta/q\\d/\delta}}\left(\sum_{\substack{n\leq x\\(q,n)=\delta}}f(n)\,d\mu\left(\frac{q}{d}\right)\right)$$
$$= \sum_{\substack{\delta/q}}\left\{\left(\sum_{d/\delta}d\mu\left(\frac{q}{d}\right)\right)\left(\frac{1}{x}\sum_{\substack{n\leq x\\(q,n)=\delta}}f(n)\right)\right\}.$$

This shows that

$$\lim_{x\to\infty}\frac{1}{x}\sum_{n\leq x}f(n)c_q(n)=\sum_{\delta/q}\left(\sum_{d/\delta}d\mu\left(\frac{q}{d}\right)\right)m_{\delta}.$$

3.6.2. To obtain (9) it suffices to show that, for each divisor δ of q,

(10)
$$\sum_{d \neq \delta} d\mu \left(\frac{q}{d}\right) = \varphi(q) \frac{\mu(q')}{\varphi(q')} \quad \text{where } q' = \frac{q}{\delta}.$$

We have

$$\mu\left(\frac{q}{d}\right) = \mu\left(\frac{\delta q'}{d}\right) = \mu\left(\frac{\delta}{d}\right)\mu(q')\chi_{q'}\left(\frac{\delta}{d}\right).$$

So

$$\sum_{d/\delta} d\mu\left(\frac{q}{d}\right) = \mu(q') \sum_{d/\delta} d\mu\left(\frac{\delta}{d}\right) \chi_{q'}\left(\frac{\delta}{d}\right).$$

Let $h = i_*(\mu \chi_{q'})$, where i(n) = n for every n. We have

$$\sum_{d\neq\delta}d\mu\left(\frac{\delta}{d}\right)\chi_{q'}\left(\frac{\delta}{d}\right)=h(\delta).$$

h is multiplicative and, for p prime and $r \ge 1$,

$$h(p^{r}) = p^{r} - p^{r-1}\chi_{q'}(p) = \begin{cases} p^{r} & \text{if } p/q', \\ p^{r}\left(1 - \frac{1}{p}\right) & \text{if } p+q'. \end{cases}$$

It follows that

$$\sum_{d/\delta} d\mu\left(\frac{\delta}{d}\right) \chi_{q'}\left(\frac{\delta}{d}\right) = \delta \prod_{\substack{p/\delta\\p+q'}} \left(1 - \frac{1}{p}\right),$$

so that

(11)
$$\sum_{d/\delta} d\mu \left(\frac{q}{d}\right) = \mu(q')\delta \prod_{\substack{p/\delta\\p+q'}} \left(1 - \frac{1}{p}\right).$$

On the other hand we have

$$\begin{split} \varphi(q) &= q \prod_{p/q} \left(1 - \frac{1}{p} \right) = \delta q' \left\{ \prod_{p/q'} \left(1 - \frac{1}{p} \right) \right\} \left\{ \prod_{\substack{p/\delta \\ p+q'}} \left(1 - \frac{1}{p} \right) \right\} \\ &= \delta \varphi(q') \prod_{\substack{p/\delta \\ p+q'}} \left(1 - \frac{1}{p} \right). \end{split}$$

This with (11) gives (10).

Universite de Paris-Sud Orsay, France