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ON A FORMULA FOR ALMOST-EVEN ARITHMETICAL
FUNCTIONS

BY

HUBERT DELANGE

Introduction

For an arithmetical function the property of being almost-even is a special
case of limit-periodicity, which is itself a special case of almost-periodicity.

1.1. An arithmetical function f is said to be almost-periodic-B (more
precisely almost-periodic-B1) if, given e > 0, there exists a trigonometric
polynomial P,

m

P(n) E Xke(akn),
k=l

where e (t) exp(2rit),

such that

(1) 1
limsup Z IP(n) f(n)l -< e.
x-- oO

This implies that Exlf(n)l O(x) and that, for each real a,

lim
1 E f( n ) e ( an) exists say is C(f, a)

X O0 X
NX

The spectrum of f is the (at most denumerable) subset Sp f of the quotient
group R/Z consisting of the residue-classes modulo 1 of those a for which
C(f, a), O.
The Fourier series of f is the formal sum .C(f, a)e(an) extended to those

a [0,1[ whose residue-class modulo 1 belongs to Sp f.
The arithmetical function f is said to be limit-periodic-B if, given e > 0,

there exists a periodic arithmetical function P such that (1) holds.
Since a periodic arithmetical function can be expressed by a trigonometric

polynomial, this implies that f is almost-periodic-B. Its spectrum is contained
in Q/Z (i.e., C( f, a) 0 when a is irrational).
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It can be proved that the periodic function P in (1) can be taken equal to

o)(n)= E C f,- e -n
k,O

where N is suitably chosen.
1.2. Now, an arithmetical function f is said to be even modulo k if f(n)

depends only upon (k, n). It is said to be even if there exists a k such that it is
even modulo k.
The arithmetical function f is said to be almost-even-B if, given e > 0, there

exists an even arithmetical function g such that

1
limsup E Ig(n) f(n)l -< e.
X" O0 IIX

Since even arithmetical functions are obviously periodic, this implies that f
is limit-periodic-B.

It turns out that a limit-periodic-B arithmetical function is almost-even-B if
and only if the following condition is satisfied:

(C) The Fourier coefficient C(f, r) where the rational number r is equal
to h/q, with q N* and (h, q) 1, depends only upon q.

Condition (C) implies that, by grouping together the terms for which q has
the same value, the Fourier series for f may be written in the form

E a qCq ( n ), where Cq ( n ) is the Ramanujan sum E e n
q.=l l<h<q

(h, q)=l

This may be called the Ramanujan expansion of f(n).
It is very easy to see that

1
lim

1 y,. f(n)Cq(n)aq p(q) x-o

1.3. Condition (C) obviously implies that, for every N, o(Y)(n) is of the
form

E )tqCq(n).
q/V

On the other hand condition (C) is certainly satisfied if, for every e > 0,
P(n) in (1) can be taken equal to a linear combination of Ramanujan sums
(because, if f is an almost-periodic-B arithmetical function and {f} a
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sequence of almOst-periodic-B arithmetical functions such that

lira limsup - If(n) f(n)l 0,
1--- 00 X... O0 n x

then, for eve real a, C(f, a) limC(L, a)).
Thus the assertion that a lit-pefiodic-B athmetical function f is almost-

even-B if and only if condition (C) is satisfied follows from the following fact:
Let A be the vector space of afitetical functions. The set of even

arithmetical functions is the subspace of A generated by the functions Cq.
More precisely, for each positive integer N, the set E of those atetical
functions wch are even modulo N is the subspace of A generated by the
functions Cq where q/N. Ts may be seen as follows.
Given the positive integer N and a disor d of N, let

1 if(N,n) d,F,d(n)
0 otheise.

If N is fixed, then the functions Fu, d where d ns throu the set of the
divisors of N is obously a basis of the vector space Eu. So ts space has
dimension z(N), the number of difisors of N.
On the other hand, for each q dividing N, the function Cq is even modulo N,

for

d()and (q, n) (q, (N, n)).Cq(n)
d/(q, n)

The functions Cq are linearly independent for

xlim- 1 E Cqx(n) Cq2(n) (0 if qx q2,=
nx (q) if q q2 q.

Therefore the (N) functions Cq where q/N form a basis of Eu.
1.4. The following result, due to A. Wintner, is well known.
Given an arithmetical function f, let f f, (i.e., f ’( n )

Y’.d/nf(d)lx(n/d)). If

then f is almost-eoen-B and

I/’(n)l
n

n--1

f’(nq)
n-1

nq

Here the series is obviously absolutely convergent.

1Eratosthenian averages, Baltimore, Maryland, 1943, Section 33.
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One may raise the question whether the same formula (without absolute
convergence) holds for any almost-even-B arithmetical function.
We will prove here the following theorem which shows that the answer is

yes.

THEOREM. Let f be an arithmetical function, and let f’ f,l. Let q be any
positive integer.

Suppose that
(i) E,xlf(n)l O(x);
(ii) For each positive integer d dividing q,

lim
1 E f( n ) exists.

x X
n<_x

(q,n)--d

Then the series Enlf’(nq)/nq converges and its sum is

1 1
q(q) ?rnoo - E f(n)cq(n).

The hypotheses of this theorem are certainly satisfied for all positive q if f
is almost-periodic-B, not necessarily almost-even-B1.

1.5. We may remark that hypothesis (ii) is equivalent to:
(ii)’ For each positive integer d dividing q,

lim
1 E f(n)cd(n) exists.

x--- ot X n<_x

In fact both condition (ii) and condition (ii)’ are equivalent to:
(ii)" For every arithmetical function g even modulo q,

lim
1 E f(n)g(n) exists.

x--* o X
nx

This follows immediately from the above mentioned fact that the set of the
functions Fq, d where d/q and the set of the functions cd where d/q are bases
of the vector space Eq.

1.6. The original proof of our theorem was rather complicated. The one that
we give here is inspired by a proof which was communicated to us by Dr. A
Hildebrand for the particular case when q 1, namely the following result:

If En If(n)l O(x) and if f has a mean value M(f), then the series
Z,-1 f ’( n )/n converges and its sum is M(f).
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2. A basic lemma

The following lemma is essential for our proof.

LEMMA.
integer.

Let Xq be the principal character modulo q, where q is any positive

(i) E I(n)Xq(n) O(e-"l)n for some a ]0,1[;

(ii) The series

E t(n)Xq(n)log n

n
n-1

conoerges and its sum is -q/q(q).

Proof. A classical proof, using the formula

for Re s > 1

and an estimate of I1/(s)l, shows that there exists a > 0 such that

M(x) , I(n) O(xe-" lx/i*).
nx

A quite similar proof, using the formula

/x(n)Xq(rt) 1 1 1(:)
.-1

nS L(s, Xq) (s) 1---pS (Res > 1),

shows that there exists fl > 0 such that

(3) Mq(x) E I(n)Xq(n) O(xe-#v/i-x)
nNx

This, with the equality- (n)Xq(n)n Mq(y)y Mq(X)x + Mq(t), 2
x<n<y

dt forO< x <y,
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shows that the series

converges and that

E ()x()

E (,)x(,) O(v/10g x e- O(e-,lo%) for 0 < a < ft.

Now it follows from (2) that

so that

E (,)x(,)

E (,)x(,) E ()x()

Similarly, (3) shows that the series

oo (n)log n
E ,()x
n=l

converges, and the formula obtained by differentiation of (2) shows that its
sum is q/p(q).

3. Proof of the theorem

We now suppose that f is an arithmetical function satisfying hypotheses (i)
and (ii) of the theorem.

3.1. By hypothesis (i) there exists K > 0 such that

(4) E If(n)l < Kx for every positive x.
n<x

3.2. We now make the following remark.
For each divisor d of q set

rag= lim 1__ E f(n).
n<x

(q,n)-d
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If o is any real number > 1, then, as x tends to infinity,

E f(,n) tends to mdlOg o.n
x<n<ox
(q,n)=d

Proof Let (t) ’n<t,(q,n)-d f(n). We have [(t)[ < Kt for every > 0,
and (t)ft tends to ma as tends to infinity.
For x >_ (o 1)- we also have

E f(n)n #(ox)ox (X)x b x(t)t2 dt.
x<n<_ox
(q,n)--d

As x tends to infinity, (x)/x and (ox)/ox tend to m d. Furthermore we
have

f;x(t) dt= fo,(XU) du2 xu 2

As

(xu)
xu 2

K
< for every positive x

and (XU)/XU2 tends to md/u as x tends to infinity, this tends to

md du mdlOg o.u

3.3. Now, for x > 1, we have., f’(qn)
qn

n<_x - Ef(d) -d- =- E n -d-"
n x d/qn n < x

d/qn

In the last sum we will group together the terms for which (q, d) has the same
value. The latter must be a divisor of q. Let 3 be any divisor of q and let
q’ q/8. Then (q, d) is equal to 3 if and only if d 8d’ where (q’, d’) 1.
When it is so, d divides qn if and only if d’/n, that is n md’. Now n md’
gives qn/d mq’. Thus we obtain

n<x 8 =q
(q’,d’)-I

E Xq’(d’)t(mq’)q
"q m _x

where X q’ is the principal character modulo q’.



ALMOST-EVEN ARITHMETICAL FUNCTIONS 31

Using the fact that t.t(mq’) p,(q’)p,(m)Xq,(m ) this gives

f(Sd’))
_

f’(qn) 1 E t(q’) -. (m)Xq,(md’) md,
n<_x

qn q q’q md’ <x

We may rewrite this formula in the form

(5) _, f’(qn) 1 .,#(q’)G(x),
n<_x

qn q
/q

where q’= q/8 and

Gs(x) ., p,(m)Xq,(mn) f(Sn)mn
mn<x

Thus, to prove the convergence of the series E,, f’(qn)/qn, it is sufficient to
show that, for each divisor i of q, G(x) tends to a finite limit as x tends to
infinity.

3.4. We now introduce a fixed > e1/4 and in the formula which defines
G(x) we separate the terms for which n < x/h and those for which n > x/X.
We thus obtain, for x > h,

(6) Gs(x) Y"
"n<x/X f(Sn)Xq’(n)(’nm<x/n P’(m)Xq’(m))rn
+

_
p,(m)Xq,(mn) f(n)mn

x/h<n<x
mn<x

E + E, say.
2

So

3.4.1. By the lemma of 2 there exist a ]0,1[ and C > 0 such that

E P,(m)Xq,(m)
m < Ce-’x/x for every X > 1.

< C , [f(Sn)le-’x/lg(x/").
n

n<x/h

Setting xI,s(t) Ent [f(Sn)[ we have

E If(Sn)l
n

n <_x/h
e-’v&’g(’/’) -e
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As 0 _< xI(t) _< 6Kt by (4)and

e- alog(x/t)
2 2log(x/t)

< t: for I < ,
this yields

E
n <_x/X

e-ax/g(x/n) < K( e-alv + fx/X e-a/g(x/t)
"1

UThe change of variable xe gives

whence

X/h e- a/lg(x/t)
dt 2( i-Xue- du,

X/h e- a/lg(x/t)

We finally obtain

(7) < CSKe-’(1 + 2/loga h + 7 gl(x), say.

Note that g(X) tends to zero as , tends to infinity.
3.4.2. Now, since the conditions x/, < n < x and mn < x are equivalent

to m < , and x/X < n < x/m, we have

(8) y, I(m)Xq,(m)( ., Xq,(n)f(Sn)).
2 m<h

m
x/h<n<x/m

n

We remark that

E Xq’(n)f(Fl) E f(t$n) 3 E f(n’)
n $n n’

x/X < n < x/m $x/h < an <x/m 8x/X< n’ 8x/m
(n, q’)--I (n’, q)=,8

for the integers n’ which satisfy (n’, q) i are the integers 8n where (n, q’)
1.
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It follows, by the remark of 3.2, that for each m, as x tends to infinity,

E Xq,(n)f(,n)n tends to m,log.
x/X<,,x/m

Therefore, by (8), as x tends to infinity we have

tends to 8ms
m<h

P,(m)Xq,(m)
m log- g2 (X), say.

Also

g2(h) tends to

as , tends to infinity, for

_. (m)Xq,(m) )log h
m<h

rn -" P’(m)Xq’(m)lgm m )m<h

and, by the lemma of {}2,

., #(m)Xq,(m) O(e_,v/i-x )rn
m<h

where a > 0,

and ., i(m)Xq,(m)log rn
tends tom

m<h

3.5. By (6) and (7) we have

IGn(x) tp(q’) 8mnl < gx(h) +
2

+ g2(h)

As Y"2 tends to g2(h) as x tends to infinity this gives

lim sup lGn ( x ) q’
x--, oo q (q’) 8ms[ < gl(h) + g2(h) q(q,) Sm

This holds for every , e1/4. Since the fight-hand side tends to zero as ,
tends to infinity, this shows that

G(x) tends to q( q,) 8m
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as x tends to infinity. It follows by (5) that the series E,,I f’(qn)/qn
converges and that

f’(qn) 1 q, q’lx(q’)
n-: qn - s =q

P(q’) $ms
8q,=q qg(q’) m"

3.6. To complete the proof of our theorem it remains to show that

(9) lim
1 ., f(n)cq(n) P(q) E I(q’)

rn
oo Xx’- n<x 8q’=q P(q’) 8

(We already know by the remark of {}1.5 that the limit exists).
3.6.1. We have

1 (1X E f(.)Cq(n) nxf(n ) E
n<x d/q, n)

n<x
d/(q, n)

(q,n)=8
a/s

8/q (qn, n)X8

This shows that

x oo n < x 8/q

3.6.2. To obtain (9) it suffices to show that, for each divisor 8 of q,

(10) a/s d/()= cp(q) "(q’)q(q,) where q’ g.
q

We have

88)"(q’)X,(._) ,({/._...f.t) ,( q’ ).
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So

Let h i,(lXq,), where i(n) n for every n. We have

h is multiplicative and, for p prime and r >_ 1,

h(p’) P" P’-IXq’(P) pr 1-

if p/q’,

ifp q’.

It follows that

(1)=aI-I 1-,p/a
p ,q’

so that

(11) d/x (-)
d/a

(1)(q’)a l’-I 1-
p/a
p q’

On the other hand we have

(1)tp(q) ql-I 1
p/q

p/S
p q’

1

p/lq,(1- pl-)}(pI/s(1- pl-)}
p q’

This with (11) gives (10).
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