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EXISTENCE OF OPTIMAL TRANSITION KERNELS

BY

KEVIN J. HASTINGS

1. Introduction

Suppose a controller watches a continuous-time stochastic process up to a
fixed time to. The probability law P0 of the uncontrolled process may not be
completely known. Based on his knowledge of the process up to o the
controller must choose a new probability law on the future of the process after
to from a set of admissible measures dependent on the past history. The goal is
to minimize the expected value of a random variable that represents total cost.
It might be the case that both the expected cost under his chosen law, and the
set of admissible measures depend upon his statistical estimates of some
unknown parameters. For instance, in Section 3, a problem is stated in which
the process is a semi-Markov jump process with uncontrollable, unknown
holding parameters. The controller may choose the state transition probabili-
ties subject to some restrictions. His choice of an "optimal" law is only as
good as his statistical estimates of the holding parameters. Returning to the
general case, we will answer the following question. Under what conditions
does there exist a measurable function Q* from the past history to the set of
probability measures on the future (i.e., a transition probability kernel) such
that for every history, the image measure is both admissible and optimal
(according to the current statistical information)?
Some ways in which this work differs from much of the stochastic control

literature are the implicit inclusion of statistical estimation, the lack of Markov
assumptions, the idea of treating past histories as states and probability
measures as actions, and the general nature of the cost variable. Of course,
spaces of probability measures are hard to deal with computationally, but their
topological properties are well-suited to existence theory. The paper of Kertz
and Nachman (11), inspired the problem formulation. In the context of
discrete-time non-stationary dynamic programming, they employed histories
as states, general cost variables, and multifunctions into spaces of measures to
prove existence of discrete-time "persistently optimal plans" which are opti-
mal for the future after every fixed time t0. Similar models using ideas of
measurable selection from spaces of probability measures appeared earlier in
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the work of Sudderth [20], who was concerned with a discrete-time stopping
rule problem, and Blackwell, Freedman, and Orldn ([3], see also the compa-
nion paper by Freedman [8]), who applied the ideas to discrete-time dynamic
programming. In the problem studied here, only one intervention is made,
though choice of a law on the future may be thought of as a choice of an
action at each future time. So, we essentially have a single-stage measurable
selection problem. An interesting, and much more difficult, problem to study
is the existence of a consistent family of measures on the future, one for each
time to which would be the direct continuous-time analog of the discrete-time
Kertz and Nachman problem. As for the measurable selection problem, the
most appropriate among many useful results in this area is in Wagner [21,
Theorem 9.1], which leads to the main theorem.

Schil [12] seems to be the first to build statistical estimation directly into a
discrete-time problem, connecting dynamic programming to statistical deci-
sion theory. Here the estimates are implicit in the constraints and the value
function. The notion of optimality simply changes; we do not attempt, as
Schil does, to minimize maximum risk.
Some interesting references on control of jump processes are Pliska [15] and

Stone [19] in which holding times are controllable as well as transition
probabilities, Wan and Davis [22] and Boel and Varaiya [5], who use the idea
of the past history as a state, but are more interested in martingale characteri-
zation of the optimal control. In all these works, controls are functions into an
action space that give rise to probability measures. This paper takes the
measures as the fundamental objects.

In the remainder of this section, we introduce notation and terminology. In
Section 2, we formulate the problem rigorously and prove the main existence
theorem. The theorem is applied to the jump process example alluded to above
in the final section.

Let E be a Polish space (i.e., complete separable metric space). The symbols
(E), (E), and (E) respectively denote the Borel o-algebra on E, the
collection of compact subsets of E, and the set of all probability measures on
(E, M(E)). In particular 6 e ’(E) is the measure with unit mass at x E.
Let F be a topological space, let # (E), and let D be a multifunction D:
E ’(F). Then D is called measurable if

{xeE:D(x)B= D} (E) for all closedB_cF; (1.1)

Let a, b be a sub-interval of R+ (possibly unbounded) that is dosed at the
left. Define

[a,bl ( to: [a, b E: 0 is right-continuous
and has left limits at all a, b }

Xt(to ) =0(t); t=o(X:s<t); ’=o(X,:s [a, bl).
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We call r___ ([a, bl, ’, "t, gt)t[a, bl the canonical process on (E, (E))
with time domain [a, bl. In the sequel, we write f fto, oo and H [O,/o],
where o is a fixed positive number. If E is a Polish space, then [a, bl can be
given the Skorohod topology as follows. Denote by II II the supremum norm
for functions whose domain is a compact interval [c, d l, and let A Arc al be
the set of all strictly increasing homeomorphisms on [c, d]. Write e for the
identity, e A. Then the following defines a metric that is consistent with the
Skorohod topology on [c,d]:

d(to, o’) inf (IXl V II,0o X ,o’11) (1.4)

where

I,1 sup
r,s[c,d]

log h(s)-h(r) + I1,- ell. (1.5)

The Skorohod topology on flta, bl is the natural extension of this; (0n) --, o if
for each compact [c, d] such that c and d are either endpoints of [a, b[ or
points of continuity of to, the restrictions of % converge to the restriction of to

in the Skorohod topology on [c, d]. Then [a, bl is a Polish space (Whitt [23,
Theorem 2.6], see also Maisonneuve [12]), and (fta, bl) ’" The latter is an
important fact that enables us to appeal to Borel measurable selection results.
For to, o’ f], define to to’ f by

to)

For h H, define h by

if s < to; (1.6)
ifs > o.

h(s) if s < to; (1.7)(s) h(to ) if s> o

2. Problem statement and existence theorem

Once again, let r be the canonical process on (E, (E)) with time domain
R+. Let there be given Z #’/(R), called the cost variable. Define Y(0, o’)
=- Z(to- to’). Clearly, for each to the mapping to’ --. Y(o, to’) #’/(R),
and also Y (o #’)/(R). We let D be a multifunction from f into
#(fl) such that for all to fl,

Y-(o, o’)P(dto’) < oo)
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and

o’(s) o(s) for all s < to D(o) D(o’).

This will be called the admissibility function. Define the cost criterion

by

U: graph D R

u(,o, ?)

(2.1)

Then U(0, P) is the expected total cost if 0 is observed up to time o, and the
controller chooses P as the law of the future after o. Denote the optimal cost
variable by

C(o) inf U(o,P). (2.3)
PD()

An optimal transition kernel Q* is a transition probability kernel from
(f, to) to (f, #’) such that

Q*(o, do’) D(0) and U(o, Q*(o)) C(0) for every 0. (2.4)

We will show the following existence theorem.

(2.5) THEOREM. Suppose that E is a Polish space, Z is lower-semi-continuous
in the Skorohod topology and is bounded below, and D is a non-empty,
compact-valued, measurable multifunction with the property that if o(s)
for all s < o then D(o) D(o’). Then there exists an optimal transition kernel.

The proof of Theorem (2.5) requires the following lemma. We will use --,

to indicate convergence in the Skorohod topology.

(2.6) LEMMA. Suppose that (h,) h in H and (o,) o in . Then
(i) (,) in ,
(ii) (h,, o,,) o in .
Proof (i) It must be shown that (rtc dlhn) "> rtc d]h for points of continu-

ity c, d of , where rt,,a is the restriction mapping. If d < to, this follows
immediately from die fact that (h,) h. Suppose that o < c. Then

rtc, dlh.(s ) f.(to) for each n and all s,

and

rtc, dl(S ) h(to) for all s.
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Since to is a fixed point for every h Ato, to], it is clear from (1.4) that
h (to) h (to), hence the restrictions converge (in fact, uniformly) in the case
to < c. The remaining case is c < o < d. Since c is a continuity point of h, we
may choose a sequence ()

_
A to to such that

l=l v I[h, o/= hll 0 as n oo, 3,(c) c for all n. (2.7)

For each n define

-/(s) ifc<s<to;/x(s)---
s if o<s_<d.

Using (1.5) and the inequality

lgz + w < max log- log for x, y, z, w > 0

it is relatively easy to show that I/,l 0. Also, , o/,(s) is equal to
h,, o ,,(s) for s [c, to], and is equal to h,(to) for s (to, d]. From this and
(1.4), it follows that (h,) .

(ii) Again, if d < o or if o c, then the hypotheses immediately imply
that

(rt,dl( to,,)) --* rt,d}(- to) in ft,dl,

SO we consider the case c < to < d. Choose (,) as in (2.7), and choose a
similar sequence (,) Ato, a_to for (to) (note that since d is a point of
continuity for h to, d o is a point of continuity for to). Define for each n,

(’)n to+hn(s_ to )
if c < s to;

ifto<s<d.

It is tedious, but straightforward to show that I/,[ 0 as n o0. Now for
s[C, to), ,- to,(s)=h, o3,,(s), and for s[to,d], ,-- t%(s)=
o, h,(s to). Then (1.4) implies that d(rt,dl( to,), rt,dl(h o)) 0
as n oo, and (ii) follows.

Proof of Theorem 2.5.
Define

Denote by r the restriction mapping from f to H.

b(h) D(),
I(h, to) Y(, to) Z( to),

O(h, e) f to)P(dto) for (h, P) graph
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We show that D is measurable. Let B be a dosed subset of (fi), and let q
denote the mapping from H to fl defined by (h) . Then q is 1-1, and by
Lemma 2.6(i), it is also continuous, hence measurable. It is easy to check that

hence the measurability of D iplies that of/3.
By Part (ii) of Lemma 2.6, Y is continuous (resp. 1.s.c.) if Z is continuous

(resp. 1.s.c.). As in [16, Lemma 3.4], U is 1.s.c. and bounded below. Also, it is
well known that () is metrizable as a complete, separable metric space. By
[21, Theorem 9.1], there is an optimal measurable selector j: for U and D.
Define Q*(to;. )=for(to). By the equality of g(H) with the canonical
history and the measurability of r, Q* is a transition kernel from (f, r,o ) to
(f, ’). Also,

We have used the second hypothesis on D in the last euality. The optimality
of Q * follows easily from the relation U(to, Q *(t)) U(r(to), f o r(to)). This
finishes the proof of the theorem.

3. Control of a semi-Markov step process

Let E be a discrete state space endowed with the discrete topology, and
suppose that there is a minimum distance p between all points of E. As usual,
c is the canonical process on E with time domain R+. Let F(t; ) be a
distribution function dependent on a parameter 0 that takes values in a set
0 Rq. We will suppose that for x E, F(t; 0") is the distribution of any
sojourn time in state x, where F is considered to be known, but O is not. For
each x E, we have a random variable x to/(O) that serves as an
estimate of O x. Let

ffx(t; to) F(t; tx(to)),

which is, of course, the estimate of the sojourn time distribution for x.
Let f (E [0, oo)). A typical element of fi is written

For in the subspace Ko of fi such that Esi diverges, define q() fi to be
the step function that moves through states xo, x, x2,.., with jumps at times
so, so + s, so + s + s2, Given t fi and a transition matrix p on E,
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there is a unique probability measure P P,, , on f whose projections are

( aXo, ax ,

,(,o)(dxo)ffX(dso; to) I-Ip(x,_ x, dx,)ffX,(dsi, to). (3.1)
i-1

This induces a measure P--P,,p on f by P--ff -1. If M is a set of
admissible transition matrices, define

D(to) { P,,, ,o,, * ,-1. ff is as in (3.1) and p M }.
Let L be a bounded, measurable function on E, and let a > 0. Define

Z(o) foe-’L(X,(o)) ds. (3.3)

We will show that, under some conditions, Z is Skorohod 1.s.c. and D is
compact-valued and measurable, hence by Theorem (2.5) there is an optimal
kernel for the problem expressed by (3.1)--(3.3).

(3.4) Remark. By the definition of the Skorohod topology and the fact that
the points of E are isolated, it is easy to see that if (con) ---, to then for any
TO > 0 such that TO is a point of continuity of t, there is N N(/, To) > 0
and there is a sequence (h)

___
At0 oo) such that for all n > N,

and ,=0oX, on[0, To].

In fact, the condition above is also sufficient for Skorohod convergence.

(3.5) LEMMA. Z is bounded and Skorohod continuous.

Proof. Since the proof is straightforward, we merely give a sketch. Let
(t%) --, a. Take TO large enough that

frie-*tL ( Xt ( o ) ) dt

is small, uniformly in , and that . h. on [0, To] for n large enough, as
in Remark (3.4). If the jump times of to are Tx, T2, T3,... then the sojourn
intervals for a are hX(Tk)- hX(Tk_x), k 1,2,3 For IX,I--1,1
small, these intervals are dose to Tk Tk_ 1, k 1, 2, 3 Thus, in [0, To],
a moves through the same states as , and spends nearly the same time in
those states, which makes the [0, Tol-discounted reward for to dose to
that of .
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The following lemma allows us to transfer our attention from D(o) to

(o) { ,,, as in (3.1) such that p M }.

(3.6) LEMMA. is a_continuous (relative to the product topology) function
from Ko to . Thus, if D(o) is both tight and closed, D() is compact.

Proof Let (__x, s, x’, s’,...) (x0, So, xx, sx,...) in the
product topology on Ko. Denote t% () and to g,() and let TO be a
continuity point of to. Denote the jump times of t% by t Y’.k_.oS and the
jump times of to by t Fki__oSi. Suppose that < TO < tt+ . Given e > 0 we
can find N large enough that for all n > N,

max d(xk,xk) v max Is skl < P A e,
O<k<l O<k<l

(3.7)

which implies that for all n >_ N, x, Xk, k 0,..., I. We lose no generality
in supposing that N is large enough that t:’ < TO < t:’+ x for all n >_ N. Then
we can define , to be the continuous, piecewise linear function such that
),(t/) tk for k 0,..., 1, ),(T0) To, and , e after T0. Then t%
to o X, on [0, To]. Some tedious arguments, whose details we omit, can be given
to show that for any /> 0, e > 0 and N can be found so that the condition
I1 < is satisfied. By Remark (3.4), to, to and q is continuous.
Now a standard result (for ex_ample see [(13) Cor. 1, p. 191]) implies that if

(if,o, ,,) converges_weakly to P,o, , then (P,o, ,,) (P,o, . -) converges
weakly to P,o, P,o,, -x. To show D(to) is closed, let () (,o,.o -x)
be a sequence in D(to) converging to some P (f). If D(o) is both tight
and closed, then it is c__ompact a__nd hence (P, ,,) has a convergent subsequence
converging to some P,o,, in D(to). By the observation above, (P,o,,.) has a
subsequence converging to P,o, , therefore P P,o, D(to). So,__D(to) is
closed. The fact that D(to) is tight follows from the tightness of D(to) [13,
Theorem A, p. 195]. This completes the proof.

In light of Lemma (3.6), the following lemma shows the compactness of
D(to) under some regularity conditions on M and F. Earlier, we had assumed
that E is a countable set of isolated states, and in this case, any compact
subset of E is actually finite. Thus, the tightness condition on M in (3.8) is
weaker than it first appears, and the regularity of F in (3.9) represents no real
restriction. There is value, perhaps, in stating, the conditions this way for the
purpose of avoiding direct reference in the proof to the structure of E.

(3.7) LEMMA. (a) Suppose that for all iS < 1 and all compact K E, there
exists compact L

_
E such that

p(x,L) >8 for all x K, p M, (3.8)
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and for all t f, / < 1, compact K c_. E, there exists [c, d] c_ R+ such that

F([c, d],tx()) > for all x K. (3.9)

Then D(o) is tight.
(b) Suppose, in addition, the following condition holds" If (Pn) c_ M is a

sequence of transition matrices such that for all x in a set K c_ E, pn(x, y)
converges for all y E, then there is p M such that for all x K,

lira p,(x, y) p(x, y) for all y E. (3.10)

Then D(o) is closed.

Proof (a) Fix tf, and let l>e>0. By (3.8) and (3.9), we may
construct a sequence of compact sets of states and compact time intervals
Ko {a(to)}, [cod0], K,[c, d],.., satisfying the following:

F0 F([co, do] t(to)(td)) ) 1 e,

Po -= inf p(o(to), K) > FopM

Fx inf F([c, d], t=()) > FoPoxK

P inf p (x, K2) > FoPoFIpM,xK

Then the set K, l-IT=o(K x [cd]) is compact in the product topology, and
the sequence of finite cylinders

A-o -= ro x [Co, do] x , , ro x [Co,.do]X K x [c, d] ,...
decrease to Ke. It is then a straightforward matter to use the fact that

m

I’-[FP > 1 for all m

to show that for all p M and all m, Po,,p(Am) > 1 e. Therefore,

L,,(/’) > 1 -e for all p M,

and hence D() is tight.
(b) Fix fl, and let P_ P, be a sequence in D() that converges

weakly to some probability P. Then the finite-dimensional distributions of the
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P,’s converge weakly. Because E is discrete, indicator functions ly, y E are
continuous, hence we can define

p((to), y) =- nlirnoo fly(x)p(O(to), dx),

lim p.(o(to) y), yE.

Let At (y E\ (0(t0)}" p(o(to), y) > 0}. If A is empty, then let
K {0(to)} in (3.10) and_let p M be the associated transition matrix.
Then it is clear that P, ---, P,o,p, hence we now consider the case where At is
not empty. For each y At, n can be taken large enough that p(O(to), y) >
0. Now the following limit exists"

lim ffly(xx)l(x)p.(o(to), dxx)p.(x, dx2)

lim p.(o(to), y)p.(y, z),

and for y A and z E, we can define

p(y,z)
limp.(a(t0), y)p.(y, z)
n

P(a(to), Y)

In a similar fashion, we can define p(z, w) for all w E and all z in the set

A2= (zE\A\(o(to)}" p(y,z)>O forsome yA}.

This procedure defines p(x, y) for all x A { 0(t0)) tO At tO A2 tO and
all y E, and clearly for such (x, y), lim,_.oop,(x, y)=p(x, y). By hy-
pothesis (3.10), p can be extended to a transition matrix in M. (It is not hard
to-show that (3.10) implies that for x A, Y’.y ep(x, y) 1.)
Now we have already seen that D(0) is tight, therefore since every P, is in

D(0),_the convergence of finite-dimensional distributions is sufficient to prove
that P, --, P,. T_his is straig_tforward, and the details will be omitted. It
follows that P P,o, ,, hence D(o) is dosed and the proof is finished.

It remains to find conditions under which D is measurable. Once again we
may easily reduce to studying D. Suppose D is measurable. Now the mapping

It. -.-o-1

is continuous, so that if B is a closed subset of P(f), then -I(B) is a closed
subset of P(f). Thus,

Therefore, measurability of D implies measurability of D.
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By a theorem of Castaing and Rockefellar (Theorem 4.2 of (21)), it suffices
to show that there is a countable family of measurable selectors a:f P(fl)
such that

(ta) el U{a,(to)) forall to. (3.11)

For this we make the assumption that M has a separant M (q:, q2,--- } in
the sense that for all p M and 8 > 0, there is q Ms such that

sup Elp(x, Y) q(x, y)l< . (3.12)
x y

Defining a(ta) =eta, qi, it then remains to show that for any o f, e > 0,
p M, there exists q -M such that

d(ta,p,ta,q) < 8,,

where

d(,o, p, ,o, q) min (1/2)k,
k-1

(3.13)-

for some countable dense subset (Y:, Y2,..-} of the bounded, uniformly
continuous functions on ft. (We put the usual bounded metric on the product
space fl). Since the tail of the above sum can be made arbitrarily small, it
clearly suffices to find q such that

fYd,- fYa,q < (3.14)

for each of finitely many bounded, uniformly continuous Y’s. Furthermore, by
setting

Y’(xo, So,..., x,, s,) Y(xo, So,..., Xm, Sin, "0)

for some fixed ta0 and large enough m, we may assume without loss of
generalit.__y that Y is a function of only finitely many coordinates.

Let M be a bound for Y. Choose q as in (3.12) for 8 e/mM. Let

y(Xo,..., ff PX-(dsm, to)Y(xo,$o,...Xm, Sm)

<M
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Then, writing x0 ta(t0) we have

Ep(xo, x) EP(Xm_, Xm)f(Xo,..., Xm)
Xl Xm

Eq(xoX)... Eq(xm_l, Xm)f(Xo,... Xm)
Xl Xm

NOW,

E (P(Xm-1, Xm) q(Xm-1, Xm))f(Xo,’’’, Xm)
Xm

and an easy backward induction argument shows that for k 0,1,..., rn 1,

E P(Xm-k-, Xm-k)’’" EP(Xm-, Xm)f(Xo,..., Xm)
Xm k Xm

E q(Xm-k-1, Xm-k) .,q(x
Xm k Xm

<_ (k,+ 1)/8.

m-l, Xm)f(Xo,...,Xm)

In particular for k m I we obtain (3.14). The result depended only on the
bound M and on m, hence the same q will yield (3.14) for finitely many such
Y, as needed. Thus, under (3.12), D is measurable.
We close by summarizing the results of the section.

(3.15) THEOREM. Suppose that E is discrete; F(t; 0) is a distribution func-
tion dependent on a parameter 0 19 c_ Rq; D and Z are defined respectively by
(3.2) and (3.3), where L is bounded and a > 0; and conditions (3.8), (3.9),
(3.10), and (3.12) hold. Then there exists a transition kernel Q* from (f, to)
to (f, o’) such that for all 6o,

Q*(,o, doY) D(o:) and U(o:, Q*(o)) inf U(o, P).
P-D()
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