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1. Introduction

Apart from its intrinsic interest, the question of when a submersion is a
fibration is an important one in foliation theory. Frequently one encounters a
complicated foliation " of a manifold M which has the property that the lift

" of " to the universal cover M of M is defined by a submersion f: M ---, N
where N is some smooth manifold (which we may assume is simply connected).
If one knows that f is a fibration, then there is an action of q(M) on N such
that the leaf space M/;" is identified with the orbit space of this action. From
this one can obtain significant global information concerning the influence of
the topology of M upon the structure of ’.

In Section 2 we address the question of when a submersion is a fibration.
W. Ambrose [1] showed that a local isometry defined on a complete Rieman-
nian manifold is a covering and N. Hicks [13] proved a similar result for local
afline isomorphisms. The present author has obtained analogous results for
local projective and conformal isomorphisms [4]. R. Hermann [12] showed that
a Riemarmian submersion defined on a complete Riemannian manifold is a
locally trivial fiber bundle (thus generalizing the classical result of
C. Ehresmann [9] that a submersion defined on a compact manifold is a locally
trivial fiber bundle) and the present author has shown that an affine submer-
sion defined on a complete affinely connected manifold is a Serre fibration [6].
All of the geometric structures occurring in the results quoted above (Rieman-
nian, affine, conformal, and projective geometries) can be treated in a uniform
fashion under the rubric of Cartan connections. We consider submersions
between manifolds with Cartan connections and we give sufficient conditions
for such maps to be fibrations.

Let M be a smooth manifold. Let G be a Lie group and H G a closed
subgroup such that dimG/H dim M, and let rr: P---, M be a smooth
principal H-bundle. Let ,f and , be the Lie algebras of G and H, respectively
and for each A f let A* be the corresponding fundamental vertical vector
field on P. A Cartan connection in P is a y-valued one-form 0 on P
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satisfying:
(i) 0(A*) A for all A ,,
(ii) (R,)*to ad(a-t)to for all a H where Ra denotes the fight trans-

lation by a acting on P and ad(a -x) is the adjoint action of a-x on , and
(iii) t%: T(P) y is an isomorphism for all u P.

The Cartan connection to is complete if each vector field X on P such that
to(X) is constant is complete.
For example, in Riemannian geometry G Rn. O(n) is the group of

isometries of G/H Rn, r: P M is the orthonormal frame bundle of M,
and to 0 + where is the Riemannian connection in P and 0 is the
canonical R"-valued one-form on P. In aftine geometry G R. GL(n, R) is
the group of affine transformations of G/H R, r: P M is the frame
bundle of M, and to 0 + where is the attine (linear) connection in
question. In projective geometry G--PSL(n,R) is the group of projective
transformations of G/H RP, r: P--, M is a reduction of the bundle
p2(M) of 2-frames of M to H c G2(n) where G2(n) is the group of 2-frames
at 0 R, and 0 is the unique normal projective connection. In conformal
geometry G O(n + 1,1) is the group of conformal transformations of
G/H S, r: P M is a reduction of p2(M) to H c G2(n), and to is the
unique normal conformal connection.

Let M and M’ be manifolds. Let G, G’ be Lie groups and let H, H’ be
closed subgroups with dim G/H dim M, dim G’/H’= dim M’. Let
r: P M be a principal H-bundle and let r" P’ --, M’ be a principal
H’-bundle. Let to and to’ be Cartan connections in P and P’ respectively.

DEFINITION. A Cartan map is a bundle homomorphism f: M M’,
F: P --) P’, q: H --) H’ and a homomorphism : G G’ satisfying F’to’. o where ." y ’ is the induced homomorphism between Lie algebras.
If G G’, H H’, and Id, we say f is a local Cartan isomorphism.

TaEOIEM 1. Let (f, F, ) be a Cartan map with 9," y y’ onto. If to is
complete then f is a Serre fibration, F is a locally trivial fiber bundle, and to’ is
complete.

COROLLARY 1. Let M and M’ be connected manifolds of the same dimension
each with a Cartan connection and let f: M --, M’ be a local Cartan isomor-
phism. IfM is compete then f is a covering map.

We remark that the results quoted above concerning local isometrics and
local affine, projective, and conformal isomorphisms are special cases of
Corollary 1.

Suppose M and M’ are manifolds with affine connections V and
respectively. A map f: M M’ is affine if whenever X, Y X(M) are
f-related to X’, Y’ X(M’) then rxY is f-related to XT.,Y’. As we shall see,
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any aftine submersion is part of a Cartan map and so we obtain:

COROLLARY 2. Let M and M’ be affinely connected manifolds and let
f: M --, M’ be an aflfine submersion. IfM is complete then f is a Serre fibration.

Recall that a homogeneous space G/H is weakly reductive if there is a
subspace n c,,a such that ,q n / and ad(H)cn c on. Suppose G/H is
weakly reductive and let a be a Cartan connection in the principal H-bundle
r: P M. A curve a: (a, b) M is a geodesic of to if a r 3’ where 3’ is
an integral curve of a vector field X and P such that to(X) n is constant.
In [17] it is shown that is complete if and only if each geodesic is infinitely
extendable. We remark that Riemannian and affine geometries are weakly
reductive. Assume now that G/H and G’/H’ are weakly reductive.

TrIEOM 2. Let f: M -, M’ be a submersion such that for each geodesic
of to, the curve f o o is a geodesic of to’. If to is complete then f is a Serre
fibration

DElirn:ior. A subbundle Q T(M) is totally geodesic if whenever a
geodesic of t is tangent to Q at one point, it is tangent to Q at all its points. A
geodesic tangent to Q will be called a horizontal geodesic and we say that to is
horizontally complete if each horizontal geodesic is infinitely extendable.

THEOrdM 3. Let f: M --* M’ be a submersion. Let E T(M) be the kernel
off, and let Q c T(M) be a complementary totally geodesic subbundle such that
for each horizontal geodesic t of to, the curve f o o is a geodesic of to’. If to is
horizontally complete (e.g., if to is complete), then f is a locally trivial fiber
bundle.

CO.OLt.A.V 3. Let M and M’ be affinely connected manifolds such that the
holonomy group of M is completely reducible and let f: M --, M’ be an affine
submersion. IfM is complete then f is a locally trivial fiber bundle.

We remark that R. Hermann’s result on Riemannian submersions follows
from Theorem 3 by taking Q E .L and N. Hicks’ result on local aftine
isomorphisms is immediate by taking Q T(M).

In Section 3 we consider foliations whose transverse structure is modeled on
a Cartan geometry. More precisely, any codimension q foliation " of a
manifold M can be defined by an N-cocycle ((U, f, g)},, , where N is
some q-dimensional manifold (not necessarily connected) and

(i) { U,,}, is an open cover of M,
(ii) f: U,, N is a submersion whose level sets are the leaves of
(iii) g,a: fa(U,, t3 Ua) f,(U, t3 Ua) is a diffeomorphism satisfying f
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Let G be a Lie group and let H be a closed subgroup of G such that
dim G/H dim N q. Let r: P N be a principal H-bundle and let to be
a Cartan connection in P. A diffeomorphism f: U V between open subsets
of N is a Cartan isomorphism if f is induced by a bundle automorphism
F: r-l(U) --, r-l(V) satisfying F’to to.

DEFINITION.
isomorphism.

We say " is a Cartan foliation if each ga is a Cartan

Among the examples of Cartan foliations are Riemannian foliation [27],
foliations with transversely projectable connection [191, [201, [211, [221 (basic
connection in the sense of [141), projective foliations [24], [251, conformal
foliations [241, [251, [281, Lie foliations [101, [11], and homogeneous foliations
[31.

Using the concept of foliated bundle developed by Kamber and Tondeur
[14], we define a notion of completeness of a Cartan foliation which gener-
alizes the notion of completeness in the sense of B. Reinhart [27] of a
Riemannian foliation (that is, there exists a complete bundle-like metric) and
the notion of completeness in the sense of P. Molino [22] of a foliation with
transversely projectable connection.

B. Reinhart [27] showed that if #" is a complete Riemannian foliation then
all the leaves of #" have the same universal covering space and P. Molino [22]
extended this result to foliations admitting a complete transversely projectable
connection. A similar result holds for complete conformal foliations [5].

THEOREM 4. Let be a complete Cartan foliation. Then all the leaves of
have the same universal covering space.

THEOREM 5. Let : be a complete Cartan foliation ofM modeled on (N, to)
where N is a connected~ .analytic manifold and to is a complete analytic Caftan
connection. Let M and N denote the universal covers ofM andN respective.ly and
let " be the lift of " to M. Then there is a locally trivial fiber bundle M --. N
whose fibers are the leaves of ’.

COROLLARY 4. Let : be a complete, homeous G/H-foliation of M.
Then there is a locally trivial fiber bundle M G/H whose fibers are the leaves
of .

As a corollary to Theorem 5 we will obtain the structure theorem of
G. Reeb [26] for codimension one foliations defined by a nonsingular closed
one-form and, more generally, E. Fedida’s structure theorem [11] for Lie
foliations.
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Finally, we consider structure equations for flat Riemannian, affine, confor-
mal, and projective foliations. These are homogeneous G/H-foliations where:

(1) Flat Riemannianfoliation: G Rq. O(q) is the group of isometries of
G/H Rq.

(2) Flat affin foliation: G R. GL(q, R) is the group, of affine transfor-
mations of G/H Rq.

(3) Flat conformal foliation: G = O(q + 1,1) is the group of conformal
transformations of G/H S.

(4) Flat projective foliation" G PSL(q,R) is the group of projective
transformations of G/H RPq.

In [3] it is shown that a codimension one foliation of a manifold M is
projective (homogeneous PSL(2,R)/H RP) if and only if it is defined by
a smooth nowhere zero one-form co on M satisfying dto= to A c0, dto
1/2 o_ A to, dto. to A to where to and to are one-forms on M. A similar
result holds for fiat Riemannian and affine foliations of arbitrary codimension.
We extend these results to fiat projective and conformal foliations of arbitrary
codimension.

Specifically, let m dim G, k dim H, q m k. Let

be a basis of the space of left-invariant one-forms on G such that ( Oq/ 1,..., Om }
is a basis of the left-invariant one-forms on H. Then

l <j<l<m

for 1,..., rn where Cj. R.

THEOREM 6. Let :" be a codimension q foliation of M with trivial normal
bundle. Then is aftat Riemannian, affine, conformal, or projective foliation if
and only if there exist q linearly independent one-forms tot,..., toq on M defining

" and one-forms toq+ t,..., tOm on M satisfying

dtO E Cjtoj A to 1,..., m
l <j<lAm

2. Mappings between manifolds with Cartan connections

We now prove Theorem 1. Let M and M’ be manifolds. Let G and G’ be
Lie groups with closed subgroups H and H’ respectively such that dimG/H

dim M and dim G’/H’ dim M’. Let r: P --+ M be a principal H-bun-
dle, let r’: P’ + M’ be a principal H’-bundle, and let to and to’ be Cartan
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connections in P and P’ respectively with to complete. Let f: M M’,
F: P P’, : G G’ be a Cartan map with ,: ,q ,,’ onto. Let u P
and Z’ Tr)(P’). Let Y t’(Z’) y’ and choose X y such that
,(X) Y. Letting Z be the unique vector in T(P) satisfying t0(Z) X we

have that to’(F,(Z)) (F*to’)(Z) t,to(Z) Y and so F,(Z) Z’ thus
showing that F (and hence also f) is a submersion. Let ,- be the foliation of
P defined by F and let E kernel(F,) c T(P). Let At,..., A,, Bt,..., B be
a basis of 2 such that At,...,A is a basis of kernel (,). Let
Xt,..., Xr, Y1,..., Y be smooth vector fields on P satisfying to(Xi) Ai,

to(Y) Bi. Then X1,..., X span E. Let Q c T(P)be the subbundle spanned
by YI,..., Y. We may regard Q as the normal bundle of ’. Let Z1 be the
unique vector field on P satisfying 0’(Z)= ,(B). Then to’(F,(Y/))---
,0(Y/) 0’(Z) and so Y is F-related to Z thus showing that Yt,..., Y are
parallel along the leaves of ’. Since to is complete we have that Yt,..-, Y are
complete and so " is a transversely complete foliation of P. Since the leaves
of " are closed, the space of leaves P/, is a smooth Hausdorff manifold and
the natural projection q: P P/, is a locally trivial fiber bundle [23]. Now
F induces a local diffeomorphism h: P/.: P’ such that F--h, q and
Yx,-.-Y project to complete vector fields on P/,: which are h-related to
Z,..., Z. Hence by Theorem 2.1 below, h is a coveting map and so F is a
locally trivial fiber bundle. Since f or is a Serre fibration and r is a fiber
bundle, it follows that f is a Serre fibration [6]. Clearly to’ is complete and so
Theorem 1 is proved.
To obtain Corollary 1 note that , is the identity and so f is a Serre

fibration by Theorem 1. Hence given any path o in M’ and Po f-t{ o(0)),
there is a unique lift of o to M starting at P0 whence f is a coveting
projection. Corollary 2 is a consequence of Theorem 1 and the following
example.

Example. Let M and M’ be manifolds with linear connections X7 and X7 ’,
respectively and let f: M M’ be an attine submersion. Let or: F(M) --, M
be the bundle of frames of M, a principal GL(n, R)-bundle where n dim M.
Let

E kernel(f,) c T(M).

We say that a frame u at p M is adapted if u (ut,... uk, vt,..., Uq)
where (ut,..., uk ) is a basis of E (k + q n). Let r: P M be the bundle
of adapted frames, a reduction of F(M) to the group

Let u (Ul,... Uk, Vl, Uq) P. and let p r(u). Since
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{(f.(v),... f.(vq)) is a basis of T(p)(M’), we obtain a map F: P P’ such
that f o ,r ,r’ F where r’: P’ ---, M’ is the frame bundle of M’, a principal
H’ GL(q,R)-bundle. Then (f, F, 0) is a homomorphism of principal bun-
dles where : H H’ is given by

0( A0 B*)=B"
The connection in F(M) corresponding to V reduces to P. Let be the
associated connection form, an ,q-valued one-form on P. Let ’ be the
connection form on P’ associated to V ’, an/’-valued one-form on P’. Let/9
(respectively,//’) be the canonical Rn (respectively, Rq)-valued one-form on P
(respectively, P’). Let

A

G=Rn.H
0

B

G’ 11q. H’

* c

B cn
0 1

dl

dq
0 1

Then to 0 + (respectively, to’ 0’ + ’) is a ,e (respectively, ,e’)-valued
one-form on P (respectively, P’)defining a Cartan connection in P (respec-
tively, P’). Define " G G’ by

A * c

ck

d

0 1

0

dl

dq
1

then extends . Let O" R" Rq be projection onto the last q-coordinates.
An elementary argument shows that F *’ ,, and F */9’ , 9. Since
," #’ e’ is just (, ,), we have F’to’ ** to and so (f, F, ) is a
Cartan map. Note that , is onto. Also, to is complete if and only if V is
complete [17].
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Let M and M’ be manifolds and let G/H and G’/H’ be weakly reductive
homogeneous spaces with dimG/H dim M and dimG’/H’ dim M’. Let
or: P M (respectively, or’: P’ M’) be a principal H (respectively, H’)-
bundle and let to and to’ be Caftan connections in P and P’ respectively with
to complete. Let f: M M’ be a submersion which sends geodesics of to to
geodesics of to’. The geodesics of to and 0’ determine sprays X and X’ on
T(M) and T(M’) [17] relative to which f is spray-preserving (that is, X and
X’ are f.-related). There exist linear connections V and V’ on M and M’
giving rise to the sprays X and X’ [2] and with respect to these linear
connections f is affine. Since to is complete, X is complete (in fact, to is
complete if and only if X is complete [17]) and so V is complete. Hence by
Corollary 2, f is a Serre fibration which proves Theorem 2.

Let M be a smooth manifold and let or: T(M) -o M be the tangent bundle
of M. Let X be a vector field on T(M). Then X is a spray if

and Xo=c#c.(Xv) foro T(M),cR

where/c: T(M) .o T(M) is multiplication by c. For v T(M), let ov be the
integral curve of X through v and let ao r o o. Then X is a spray if and
only if a =o and a(t)= ao(ct) in which case the curves ao are the
geodesics of X and the exponential map at a point p M given by exp(v)
ao(1) maps a neighborhood of 0 in Tv(M) diffeomorphically onto a neighbor-
hood of p in M. We say that a subbundle Q of T(M) is totally geodesic if Q
is a union of integral curves of x.

THEOREM 2.1. Let M and M’ be connected manifolds with sprays X and X’
respectively and let f: M -o M’ be a submersion. Let E T(M) be the kernel
off, and let Q T(M) be a complementary totally geodesic subbundle such that
XI Q is f,-related to X’. If XI Q is complete then f is onto, f: M-o M’ is a
locally trivial fiber bundle, and X’ is complete.

Proof. Since f is a submersion, f(M) is open in M’. To show f is onto it

suffices to show that f(M) is also dosed. Let q f(M). Let V be a
neighborhood of q in M’ and U a neighborhood of 0 in Tq(M’) such that
exp: U V is a diffeomorphism. Let z V t3 f(M). Let u U be such that
exp(u) z. Then a(0) q, d(0) u and a(1) z. Let p f-X(z } and
let v Qv be the unique vector satisfying f,(v)=-d(1). Let p(t)=
a(1 t). Then p is a geodesic in M’ satisfying p(0) z, ti(0) -d(1) and
so p a/,o f, ao since XIQ and X’ are f,-related. Now ao(l) is defined
(since XI Q is complete) and f(ao(1)) q. Then q f(M) and so f(M) is
dosed. Clearly X’ is complete.

Let q M’. Let V be a neighborhood of q in M’ and U a neighborhood of
0 in Tq(M’) such that exp" U-o V is a diffeomorphism. Let L f-x{ q).
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Define : VxL-M as follows. Let (z,p) VXL. Let u U be the
unique vector satisfying exp(u) z, let Q, be the unique vector satisfying
f.(o) u, and set (z, p) exp(o). Clearly : V x L --, f-t(V) and f o d#
is projection ontothe first factor. Define xI,: f-t(V) --, V L as follows. Let
x f-t(V). Let y f(x) V. Then y exp(u) where u U. Let be the
unique geodesic in M’ satisfying (0) q, (0) u. Then (1) y. Let
o Q, be the unique vector satisfying f.(o)= -:(1). Let o be the unique
geodesic in M satisfying o(0) x, 6(0) . Then o(1) L. Indeed, if we let
o(t) (1- t), then f oo and are geodesics in M’ satisfying the same
initial condition whence # f oo and so f(o(1))= (1)= q. Set 9(x)--
(f(x), o(1)). Then is inverse to (this uses that Q is totally geodesic) and
so is a diffeomorphism which completes the proof.
Theorem 3 now follows from Theorem 2.1. To obtain Corollary 3, let

E c T(M) be the kernel of f.. Then E is a holonomy-invariant distribution
on M. Since the holonomy group of V is completely reducible, there exists a
complementary holonomy-invadant distribution Q c T(M). Since Q is totally
geodesic, Corollary 3 now follows from Theorem 3.

COROLLARY 2.2 (R. Hermann [12]). Let M and M’ be connected Rie-
mannian manifolds and let f: M --, M’ be a Riemannian submersion. If M is
complete, then f is a locally trivial fiber bundle.

Proof. Let 0 and to’ be the Cartan connections in the orthonormal frame
bundles of M and M’ respectively arising from the Riemannian connections
in these bundles. Let Q E +/-. Then Q is totally geodesic with respect to to

and for each geodesic , of to which is tangent to Q, the curve f, t is a
geodesic of to’ [27]. If M is complete, then to is horizontally complete and so
by Theorem 3 f is a locally trivial fiber bundle.

3. Cartan foliations

Let N be a q-dimensional manifold. Let G be a Lie group and let H be a
closed subgroup of G such that dimG/H q. Let r: P --, N be a principal
H-bundle and let t0 be a Cartan connection in P. Let " be a codimension q
foliation of the manifold M. We say " is a Cartan foliation modeled on
(N, to) if there is an N-cocycle ((U, f, g)} defining " such that each g
is a Cartan isomorphism.

Examples. (1) Riemannian foliation [27]. Here N is a Riemannian mani-
fold, each g,# is an isometry, G Rq. O(q), H O(q), G/H= Rq,
r: P ---, N is the orthonormal frame bundle of N, and to 0 + where 0 is
the canonical Rq-valued one-form on P and is the connection form
(o(q)-valued) of the Riemannian connection in P.
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(2) Foliation with transversely projectable connection [19], [20], [21], [22]
(basic connection in the sense of [14]). Here N is a manifold with a linear
connection V, each g# is an affine transformation, G Rq. GL(q,R), H
GL(q, R), G/H Rq, r: P --, N is the frame bundle of N, and to 0 +
where 0 is the canonical Rq-valued one-form on P and is the connection
form (gl(q, R)-valued) corresponding to V.

(3) Projective foliation [24], [25]. Here N is a manifold with a torsion-free
linear connection V, each g# is a projective transformation (i.e., g# sends
geodesics of V to geodesics of V disregarding parameterizations), G
PSL(q,R), and G/H RPq. The projective equivalence class of V de-
termines a projective structure on N, i.e., a reduction of the bundle p2(N) N
of 2-frames over N (a principal G2(q)-bundle where G2(q) is the group of
2-frames at 0 R) to H c G2(q). Then r" P -, N is this reduced bundle
and to is the normal projective connection in P [18].

(4) Conformal foliation [24], [25], [28]. Here N is a Riemannian manifold,
each g# is a conformal transformation, G O(q + 1,1), and G/H Sq.

The conformal equivalence class of the metric on N determines a conformal
structure on N, i.e., a reduction of p2(N) to H c G2(q). Then r: P N is
this reduced bundle and 0 is the normal conformal connection in P [18].

(5) Lie foliation [10], [11]. Here N is a Lie group, each g# is the
restriction of a left translation, G N, H (e), P G, r" P --, N is the
identity map, and 0 is the Maurer-Cartan form on G.

(6) Homogeneous foliations [3]. Here N is a homogeneous space G/H,
and g# is the restriction of a G-translation of G/H, r: P--, N is the
principal H-bundle G --, G/H, and to is the Maurer-Cartan form on G.

Let us recall briefly the notion of foliated bundle [7], [14], [15], [20], [21]. Let
(M, ’) be a foliated manifold and let E T(M)_be the tangent bundle of
’. Let H be a Lie group. A principal H-bundle : P --, M is called a foliated
bundle if there is an H-invariant foliation of satisfying

for all u P where/ is the tangent bundle of ,, and V kernel (,).

PROPOSITION 3.1. Let (M, ’) be a Cartan foliation modeled on (N, o).
There is a canonically defined foliated principal H-bundle : P--, M and a

-valued one-form on P satisfying:
(i) (A* ) A for all A
(ii) (R* ) t3 ad(a- t) t5 for all a H;
(iii) u: Tu(P) -* is onto and u(Eu) O. for all u P;
(iv) Lx 0 for all X F(E) where F(E) denotes the smooth sections of

E and Lx is the Lie derivative.
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Proofi Let {(U,, f, g,a)} be an N-cocycle defining ’. Define P so that
P U f*(PIf(U)). This is well-defined since each ga is a local automor-_
phism of r" P N. Then 3 is defined by locally pulling back to to P. These
local pull-backs agree on overlaps since the lifts of the ga’s to P preserve to.

For example, in the case of a Riemannian foliation the metric on N induces
a metric on the normal bundle Q of ’, the bundle : P M is the
orthonormal frame bundle of Q, and t3---0 + where 0 is the canonical
Rq-valued one-form on P and is the unique torsion-free basic connection in
P. In the case of a foliation with a transversely projectable connection , the
bundle : P --, M is the frame bundle of Q and t3 0 + . In the case of a
projective (respectively, conformal) foliation : P--, M is the projective
(respectively, conformal) normal bundle of " and is the "pull-back" of to.

In the case of a Lie or homogeneous foliation : P M is the principal
H-bundle constructed in the proof of Theorem 2 of [.3].

Let _Q T(P)/E be the normal bundle of ’. Then for all u P,
t3: T(P) y induces an isomorphism 3: Q y.

DEFINITION. A section Y of Q is said to be complete if there exists a
complete vector field Y on such that (Y) l7 where : ~T().-* is the
natural projection. We say is complete if each section Y of Q such that
(Y) is constant is complete in which case we say that " is a complete
Cartan foliation.

Example. If M and H are compact, then " is complete. In particular, a
Lie foliation of a compact manifold is a complete Cartan foliation.

Example. Let be a transversely projectable connection for " and let
3 0 + . Then " is a complete Cartan foliation (i.e., t3 is complete) if and
only if is complete in the sense of [22].

Example. Let " be a complete Riemannian foliation in the sense of
B. Reinhart [27]. The following proposition shows that " is a complete
Cartan foliation.

PROPOSITION 3.2. Let be a foliation of a manifold M and let g be a
Riemannian metric on M which is bundle-like with respect to . If g is
horizontally complete (e.g., if g is complete), then is a complete Caftan
foliation.

Proof. We already know that " is a Cartan foliation. We must show that
t3 0 + G defined on the orthonormal frame bundle : O(Q) M of Q is
complete where 0 is the canonical Rq-valued one-form on O(Q) and is the
Riemannian Bott connection in O(Q). Let {(U, f,, ga)} be an N-cocycle
defining " where N is a Riemannian manifold and each f is a Riemannian
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submersion. Let H’ c T(O(N)) be the horizontal distribution corresponding
to the Rimannian connection on N and for each h Rq let B’(h) be the
corresponding standard horizontal vector field on O(N).
Now { (U.), f.., g..)} is a.n O(N)-cocycl on O(Q) and hence defines a

foliation " of O(Q) with dim ’-- dim ’. Let~ H T(O(Q) be the horizon-
tal distribution corresponding to . Then E c H where E is the tangent
bundle of ’. We may regard each u O(Q) as the vector space isomorphism
u: Rq Q(.) which sends the standard basis { et,..., eq} of Rq to the frame
u of Q(.). Let Q’= H/E, a q-plane bundle over O(Q). Note that
: O(Q) M induces ." Q’ Q, an isomorphism on fibers. Let h Rq.
For u O(Q), let B(h) u Q be the unique element such that ,u(B(h),)

u(h). Then B(h)~ is a section of Q’. Note that Q’ Q-- T(O(Q))/E
normal bundle of ’.
To prove the proposition we must show that B(h) is complete for all

h Rq. Let h Rq. We must produce a complete.vector field C(h) on O(Q)
such that .r(C(h)) B(h) where z: T(O(Q)) Q is the natural projection.
Note, necessarily C(h) F(H). For each u O(Q), ,u" Hu T<u)(M) is
an isomorphism. Let.+/-)(Ec// be the subspace corresponding to Ee(. c

T(,,)(M). Then (E is a q-plane bundle over O(Q) which is isomorphic to
Q’. Let C(h)u be the unique vector in (EuX) corresponding to B(h)u Q,.
Then C(h) is a vector field on O(Q) satisfying "r(C(h)) = B(h). An elemen-
tary argument shows that C(h) is f,,-related to B’(h). Let o be an integral
curve of C(h). Then , o is an E - -curve in M which projects under f to a
geodesic in N. Hence , o is a (horizontal) geodesic in M and so is infinitely
extendable. Hence o is infinitely extendable and so C(h) is complete.
We now prove Theorem 4. Since the leaves of " are coverings of the leaves

of ’, it suffices to show that all the leaves of are diffmorphic. Let Y be
any smooth vector field on P such that 3(Y) is constant. Then for any
X F(E) we have

-1/2c,[x, Y] ac,(x, Y) 0

and so iX, Y] r(g). Let X,..., X be a basis of ,. Let 17,..., I F(O)
be the unique sections sat_isfying t3(Y)= X, i= 1,..., r. Let Y,..., Yr be
complete vector fields on P satisfying (Y) I,., 1,..., r. For 1,..., r
let q, t R, be the flow generated by. . Since IX, Y] F(/) for all
X F(/), it follows that q preserves " and the group generated by the
ditfeomorphism_s acts transitively on the set of leaves of _each connected
component of P [23]. Finally, we get from one component of P to another by
a suitable element of H.

COROLLARY 3.3 (B. Reinhaxt [27]). Let be a Riemannian foliation of a
manifoldM with a complete bundle-like metric. Then all the leaves of have the
same universal covering space.
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Proof By Proposition 3.2, " is a complete Cartan foliation and so the
result follows from Theorem 4.

COIOILAtY 3.4 (P. Molino [22]). Let r be a foliation admitting a complete
transversely projectable connection. Then all the leaves of " have the same
universal covering space.

Proof " is a complete Cartan foliation.

To prove Theorem 5 we will need the following two lemmas. The proof of
the first is an elementary argument which we omit.

LMMA 3.5. Let 3 be a Cartan foliation of M. Let M be the universal cover
of M and let ;" be the Caftan foliation of M obtained by lifting ’. If ." is
complete, then so is :.
LEMa 3.6. Let N be a connected manifold with dim N dim G/H, let

r: P N be a principal H-bundle, and let to be a Cartan connection in P. Let
M be a connected manifold and let f: M N be a submersion. Let : P --, M
be the pull-back of P under f and let F: P P be the map such that
r F f o . Let F *a. If is complete, then f is a locally trivial fiber
bundle.

Proof Let " and " be the foliations of M and P respectively defined by
the submersions f and F respectively. Let X,..., Xq, Xq+,..., X be a
basis of , such that Xq/ ,..., Xr is a basis of/L For each 1,..., q let Y
be the section of the normal_bundle of satisfy’.mg t3() X and let be
a complete vector field on P which projects__to Y. For each q + 1,..., r
let be the fundamental vector field on P corresponding to X. For each

1,..., r let , t R, be the flow generated by Y. Since_ t3(Y)~is constant,
the diffeomorphisms send leaves to leaves. Let Y0 P and let L be the leaf
of " through Y0. Define " R X L P by

(tq+ 1, tr, tx, tq, y) Vtq+dq+l """ ttr, 1 ’’’ tqq(Y)-

Since the leaves of " are closed, there is a neighborhood V of 0 in R such
that " V L U is a diffeomorphism where U is an open saturated set in
P [23]. We may assume V is of the form Vx x V2 where V is a neigh,borhood
of 0 in R"-q and V2 is a neighborhood of 0 in Rq. Let L (L). Since
Yq+ t,..., Y, are vertical, induces a smooth map xI,: V2 L M such that, ,I, 0(0 x ) where : V . V2 is projection onto the second factor. By
shrinking V: if necessary, we may assume that ’ is a ditfeomorphism. Thus
(U) is .an open saturated set in M and I, maps the foliation of V2 L by
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leaves of the form { } x L, t V2, diffeomorphically to ’. Let C be a
compact neighborhood of 0 in Rq, C c V2. Then xI,(C x L) is a closed
saturated neighborhood of L in M and so the leaf space M/" is regular.
Since the leaves of " are closed, M/ is Hausdorff. Thus M/ is a smooth
Hausdorff manifold and the natural projection M M/ is a locally trivial
fiber bundle. The principal H-bundle : P --, M induces a principal H-bun-
dle r’: /--, M/: and 3 induces a complete Cartan connection t’ in this
bundle such that the map f: _M/’--, N induced by f is a local Cartan
isomorphism. By Corollary 1, f is a covering map and hence f is a locally
trivial fiber bundle.
Now assume the hypotheses of Theorem 5. We may assume that " is

defined by an N-cocycle ((.U,, f, ga)} where each ga is a Cartan isomor-
phism of the lift of t to N. Without loss of generality, we may assume that
U Ua is connected whenever it is nonempty. Since the lift of t to N is a
complete analytic Cartan connection on a simply connected analxtic manifold,
ga can be uniquely extended to a Cartan isom.orphis.m of N [8], [16]. A
monodromy, argument yields a submersion f: M--, N constant along the
leaves of ’. By Lemma 3.5 is a complete Cartan foliation and hence by
Lemma 3.6 f is a locally trivial fiber bundle.

DEFINITION. A homogeneous foliation is said to be complete if it is
complete as a Caftan foliation.

To prove Corollary 4 note that a complete homogeneous foliation is a
complete Cartan foliation modeled on (N, ) where N G/H and is the
Maurer-Cartan form on G. Since G/H is an analytic manifold and is a
complete analytic Cartan connection, the result follows from Theorem 5.
From Corollary 4 we obtain Reeb’s structure theorem for codimension one

foliations defined by a dosed one-form.

COROLLARY 3.7 (G. Reeb [26]). Let " be a codimension one foliation of a
compact manifold M defined by a nonsingular closed one-form. Then the univer-
sal cooer ofM is a product L x R and the liftedfoliation is the product foliation.

Proof. " is a complete homogeneous foliation modeled on G/H where
G R, H 0. By Corollary 4, the leaves of the lifted foliation are the fibers
of a locally trivially fiber bundle M--, R. Since R is contractible, we have
M--LXR.
More generally, since a Lie foliation of a compact manifold is a complete

homogeneous foliation, from Corollary 4 we obtain Fedida’s structure theorem
for Lie foliations.

COROLLARY 3.8 (E. F6dida [11]). Let G be a Lie group and let ar be a Lie
G-foliation of a compact manifold M. Then the universal cooer ofMfibers over
the universal cooer of G, the fibers being the leaves of the lifted foliation.
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We now prove Theorem 6. The proof for the flat Riemannian and affine
cases is found in [3]. To prove the result in the flat conformal and projective
cases we first remark that the "if" part of the theorem is established by an
elementary argument which we omit. To prove the "only if" part, assume " is
a codimension q flat conformal or projective foliation with trivial normal
bundle. We first handle the conformal case. Thus G O(q + 1,1), G/H Sq,
and

H= v A 0 eO(q+l,1)
b a

where A O(q), a R, is a row q-vector. Let ,r2: p2(G/H) G/H be
the bundle of 2-frames of G/H, a principal G2(q)-bundle where G2(q) is the
group of 2-frames at 0 11q. There are maps G --, p2(G/H) and H G2(q)
such that the principal H-bundle p: G ---, G/H is a reduction of the principal
G2(q)"bundle q/’2: p2(G/H) G/H to H [18]. If g G then g: G/H --,

G/H induces

g(2). P2(G/H) P2(G/H)
which preserves G and g(2)l G L, left translation by g. Let

" P2(M, :) M

be the bundle of transverse 2-frames over M, a principal G2(q)-bundle. Let
{(U, f, g)) be a G/H-cocycle defining #’. Since each

ua) --, Ua)
preserves the subbundle G, it follows that P2(M, #’) admits a reduction to a
foliated principal H-bundle_ c P2(M, #’) such that {-(U), f(2), g
Lea)} is. a G-cocycle on P. Let #’0 be the foliation of G defined by the
suomersxon p: G G/H. Then #’0 is defined by 9,..., 9 satisfying

dO, E CjOj A Or, i= 1,..., m
l <j<l<m

For each a, f(2): 1U --, G satisfies ,r20 f(2) f** , f(2) #’0, and

’( l/2 ( ( uo)) )
Hence :-:(’)]:-:(U) is defined by ,..., satisfying

where 7 f(2)’8 for 1,..., m. Since f(2) L,a o f2) and 8,..., 8,, are
left-invariant, it follows that 7 for 1,..., m whenever U,f’lU .



342 ROBERT A. BLUMNTHAL

Thus if-l(#’) is defined by one-forms t,..., q On satisfying

We claim that the bundle : P M is trivial. Assuming the claim, let
s: M T be a section. Then s q ,-(’) and s-l(ff-(’))=’. Let
to s*t3, 1,..., m. Then " is defined by tot,..., % satisfying

doi= Cjt*oJ A ol, l m

as desired. To prove the claim, let

K= ’li, lq 0 O(q+ l,1)" (Rq)*

b 1

Then o /K is a foliated reduction of Pt(M, :)= F(Q) (the frame
bundle of Q_) to_H/K CO(q). (Note that K is the first prolongation of
_CO(q) and P - Po is the first prolongation of the transverse CO(q) structure_
Po "-’ M). Since K --- (Rq)* is contractible, it follows that the bundle P ---, Po
is trivial. Since CO(q)/O(q) is contractible, Po M admits a reduction
P’ --, M to_O(q). Since F(Q) .--, M is t_rivial, it follows that P’ M is trivial
and hence Po M is trivial. Thus if: P M is trivial proving the claim.

In the projective case G PSL(q,R) SL(q + 1, R)/center, G/H RPq,
and

H=(( O . SL ( q + l, R)}/center
where A GL(q, R), and is a row q-vector. The proof is identical to the
argument used in the conformal case except that to establish the claim that the
bundle : P --, M is trivial, we let

0)1 "(Rq)* c:H.

Then P/K F(Q) the frame bundle of Q, a_principal H/K GL(q, R)-
bundle. Since K is contractible, the bundle P F(Q) is trivial and so
: P M is trivial.
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