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1. Introduction

In a recent paper, Mateljevi6 and Pavlovi6 [6] gave new proofs for the
isoperimetric inequality by using the boundary behaviors of holomorphic
functions belonging to certain Hardy classes on the unit disk A. These proofs
are based on sharp norm inequalities for holomorphic functions which are of
interest on their own fight. For example, the following sharp inequality is
proved in [6]. Let f Hi(A), then

2

where dA denotes the area Lebesgue measure, and HP(A) (0 < p <
denotes _Hardy class. Equality holds if and only if f is of the form f(z)---
C(1 z:) -2, z A, for some constant C and some point A. Other sharp
inequalities, similar to the one above, were proved by Aronszajn [1], Saitoh [9]
and Burbea [3], [4]. The main purpose of this paper is to give an extension of
these results to various situations which were not covered in [1], [3], [4], [6], [9].
The method of proof will be based on ingredients taken from a rather general
theory expounded in [4] (see also [2], [3]).

2. Preliminaries and notation

For z (z1, Zn) - Cn, o (of1, an) Zn
/ we use the standard

multinomial notation

Ilzlloo max Izll <jn

lal=al+’"+a, z=zP... zZ-,

and ilzll (Iz.[ 2 4- 4-Iz,,12) ’/2.
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Moreover, if also ’ (’t,.-., ’,) C", then we let

We also let

A-- (h C" Ihl < 1},
T OA { 2 C’lXl 1}, A= { z C. Ilzlloo <1}

and

n { z c, Ilzll < 1}, S OB { z cn" Ilzll 1}.

For a complex manifold D, H(D) denotes the class of all holomorphic
functions on D. An open set in C is said to be a complete Reinhardt
domain if z implies z. ’ for every " A". In this case is a star
shaped domain containing the origin. Moreover, for any f H() there exists
a unique power series

f(z) Eaz (z )

with normal convergence in , i.e., the power series converges absolutely and
uniformly on compacta of to f, and with

a, a,(f ) ( Of }(O)/a! (a Z_).

Here, for z (zx,..., z) Cn and a (a,..., a) Z,

O"=B:’ 0’- where 8g=O/Ozg, l<j<n.

For a subset A of Zn
+, we let

H(’A) {re H()’{07}(0) O, a e h}.

We fix a complete Reinhardt domain in C". A function q, holomorphic
on a neighborhood of 0 C with c, a,(), a Z, i.e.,

,() Ec:,
is said to belong to () if c. > 0 for every a e Z. and if (z ) < oo for
every z . It is said to belong to 0o() if () and also gi(z ) oo
for every z on the boundary 0 of . For () we let A, (a
Z

_
c 0} and F, Z$ \ A,, and define

k,t,(z, ) q(z f) (z, -
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Evidently, for any ’ f, k,(., ’) H(f]" A,), and

N

akmkq,(Zk, Zm) 0

for every z1,..., zN f] and every ax,..., av C (N 1, 2,...). It follows
that k, is a sesqui-holomorphic positive-definite kernel on f ft. In particu-
lax,

k,(z, ) k,(, z) and Ik,(z, ’)l 2 _< k,(z, z)k,(, )

for every z, f]. From the general theory of reproducing kernels (see
Aronszajn [1]) follows that there exists a unique functional Hilbert space
of functions f in H(" A,) with k/ as its reproducing kernel. To identify this
Hilbert space we introduce the quadratic norm (see [4])

II/11 E c=Xlal 2

for any f H(f" A,) with a aa(f), a Z$, and denote by (
induced inner product. This gives

and

f(’) <f, k,(’, ’)), (f ,, ’

the

We shall need the following theorem. Its proof is found in [4] (see also [3]).

THEOREM 2.1. Let b and b be in (). Then ep () with

Moreover, iff and g , then fg ,/ with

Ilfgll, < Ilfll,llgll.

Equality holds if and only if either fg 0 or f and g are of the form

f= Cxk,(., ), g C2k(., )

for some nonzero constants Cx and C2 and for some point C with tk( )
< oo and ( ) < oo. In particular, if also either ep or is in (f) then
the point must lie in .
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We also note that for (f) with ca aa(), a Z, the monomials
cfz, a r,, form an orthonormal basis for .
For q > 0 and m Z/, (q)m stands for I if rn 0 and

(q)m F(q + m)/r(q) q(q + 1)... (q + m 1) (m 1).

3. Inequalities in the plane

In the one dimensional case (n 1) we take the unit disk A as our fixed
Reinhardt domain ft. On A we consider the function bq(Z) (1 z)-q where
q > O. Evidently, qq oo(A) with am(qq) (q)m/m! for m Z+ and with

F,q Z +. The corresponding Hilbert space o,W, norm II II ,_ and reproduc-
ing kernel k,q are denoted by q(A), II II q al kq, respectively. Thus

kq(z, ) q(Zg) (1 zg) -q (z, A)

and

oo m!
[[f[[q (q)mm----O

where f H(A)With am am(f) rn Z+, and therefore q(A)= (f
H(A)" Ilfll q < OO }.As an immediate consequence of Theorem 2.1, we have:

THEOREM 3.1. Let fy qj(A) where qj > 0 forj 1,..., m, m > 2. Then

m

I-I fj ,ql+ +ql(A)
j-1

with

Equality holds if and only if either I-Ijm=tfj 0 or each fy is of the form
fj. Cjkqj(., ) for somepoint A andsome nonzero constants Cj.(1 < j < m).

We let dAo(z) Idzl/2r be the normalized boundary measure on OA, and
we consider the family (dAq)q > o of probability measures on A given by

daq(z) qr-X(1 [z[2) q-1 da(z) (z ).

As a measure on A, daq -- dA0 as q 0 +. In particular, if f is a continuous
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function on A, then

On the other hand

ffdAo-f/dAo lim fAfdAqO+ q"

ffdaq fAfdaq ( q > O)

if f is integrable with respect to daq.
For q > 0 and 0 < p < oo, we let A(A) stand for the space of all functions

f H(A) such that Ilfll, q < oo, where

llflt, q Ifl daq

and where for q 0 the integration is carried over the nontangential boundary
values of f A(A). It follows that A(A) is the Hardy space H’(A), that
Aq(A), q > 0, is a weighted Bergman space and that Ai(A) is the ordinary
Bergman space A(A). Moreover, it also follows that the space A2q(A) is
identical with the space ’x +q(A) and that II II 2, q It llx +q for q > 0.
Note also, that for 0 < p < oo, the Hardy space H’(A) A(A) is a projec-
tive limit, as q --, 0 +, of the weighted Bergman spaces Aq(A), q > 0.
Another functional Hilbert space of interest is the Dirichlet space

This space can be generated by 0(z) -log(1 z), and thus its reproduc-
ing kernel ko is given by

ko(z, ’) Oo(Z) -log(1 z) (z, " h).

Moreover, for any f H(A" {0}) with am am(f), rn Z+, the quadratic
form Ilfll 0 of (A) is given by

Ilfll- IIf’llx2 E miami.
m=l

2 Ilfll(f H(A" {0))) asNote also that (kq 1)/q ko and that qllfllq
q---, 0 /, and thus (A) may be viewed as a projective limit of the space

{ f 0) when q --, 0 +.
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TmORIM 3.2. Let f and g be in (A). Then fg A(A) H2(A) with

Equivalently,

Ilfgll2,o II/llollgllo.

rLAIfglE ds 2( fAIf’lE dA) { fAIg’lE dA)
where ds(z) Idzl, z OA. Equality holds if and only if either fg 0 or f and
g are oftheformf(z) Clz, g(z) C2zfor some nonzero constants CI and C2.

Proof. Let am=am(f), bm= am(g) and cm= am(fg),m Z+. It fol-
lows that ao=bo=co=0,c1=0and

m-1

Cm= E akb-k (m=2,3,...).
k-1

This and the Cauchy-Schwarz inequality give

Ilfgl122,o
m-1

E akbm+-kt < E rn E [akl21bm+-kl 2

k-1 ml k-1

On the other hand

Ilfllo2llglto2 E miami 2 E mlbml 2

m-1 m-1

oo m

E E klakl2(m + 1 k)lbm+x_kl 2

m-1 k.=l

Since k(m + 1 k) rn (m k)(k 1) is non-negative for every 1 <
k < m, rn 1, 2,..., the desired inequality follows. If equality holds then for
every m 1, 2,..., there exists a scalar hm C so that ’m akbm+-k and
(m k)(k 1) ak121b+ x- k

2 0 for every 1 < k < m. It follows that hm
0 for every rn > 2 and { fg }(z) hz 2. This gives the equality statement of

the theorem, and the proof is complete.

TnOPM 3.3.
Then

Letfy HPJ(A) with 0 < pj < o forj 1, 2,..., m, rn > 2.

m
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Equality holds if and only if either I-ljm= fj 0 or each fj is of the form

fy Cjk2/pj(., ),

cj(1

for some point A and some nonzero constants Cj (1 < j < m).

Proof. For 1 . j m we let ’j be a Blaschke product formed from the
zeros in A, if any, of fj, and define gy (fj/y)/2. Then
(= HZ(A)) for j 1,..., m, and, by Theorem 3.1, i-l’__g aftm with

j----1
j I-I Ilgjllx,

m ./--1

Equality holds if and only if each gj.is of the form gj Cjkx(., ) for some

" A and some nonzero constants C (1 < j < m). We are assuming without
loss, of course, that I-IT_tfj * 0 and hence also I-Ijm__tgj * 0. Now, inequality
(3.1) is, by definition, equivalent to the inequality

m

and hence, since Il 1 (1 < j < m) on A, the desired inequality follows. If
equality holds then each must be a constant h with [h[ 1 (1 < j < m)
and each g is of the above mentioned form. It follows that each fj is of the
form

fj Xj.2/pJ[kl(., )]2/p or fj Ck2/(.,
where Cy hj.2/p.i (1 < j < m). This concludes the proof

A special case of this theorem, namely when m 2, was also obtained by
Mateljevi6 and Pavlovi6 [6], by using different methods.

COROLLARY 3.4. Let f H(A) with 0 < p < oo. Then for any integer
m 2, f AmPm-l(A) with

Equivalently

Ilfll mp, m-- 1 Ilfll,, o.

fA I/Imp dAm-x { fOA IflP dA}
m
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Equality holds if and only if/is of the form f(z) C(1 zg) -2/p, z A, for
some constant C and some point A.

Putting rn 2 and p 1 in this corollary we obtain the result, mentioned
in the introduction, of Mateljevi6 and Pavlovi6 [6].

Let D be a hyperbolic simply connected plane domain and let )to be its
Poincar metric. The latter is defined by

xo( )

where is a Riemann mapping of D onto A, and is independent of the
particular choice of q. According to a theorem of Warschawski [10], if OD is
of class C with a Dini-continuous normal, in particular if OD C1, (0 <
e < 1), then the conformal mapping q" D --, A extends to a Ct-diffeomor
phism of D onto A and there exist positive constants a and b such that

0<a Iq,’(z){ <b< oo (ze).

It follows that for any 0 < p < oo the Hardy space H’(D) coincides with the
Smirnov class E’(D) (see [5, p. 169]), and that the "norm" in H’(D) may be
given by

II/11, o--" If( z )lldzl <
D

where the integration is carried over the nontangential boundary values of
f H(D). In particular, {g}m. (,)/2}m>0 forms an orthonormal basis for
H2(D) and

KO, D(Z, ’) kl((z), (’)){ ’(z)k’()}1/2 (z, " D)

is the Szeg5 reproducing kernel of H2(D).
Let 0 < p < o. For q > 0, we let L(D) be the Lr-space with respect to

the measure (q/qr)hlD-q da, and we let A(D) H(D) 3 Lq(D). It follows
that Aq(D) is a closed subspace of Lq(D). It is natural to extend these
definitions to q 0 by letting L(D) stand for the L’-space with respect to
the boundary measure dzl/2r on 0D, and by defining A(D) to be H’(D)
as above. In this case we adopt the usual convention of identifying Hardy
classes A(D)= HP(D) with closed subspaces of L(D). We now observe
that if tk is any biholomorphic mapping of D onto another domain D* such
that OD* is of class C with a Dini-continuous normal, then the mapping

f (fo ). (,)(q+l)/p

constitutes a linear isometry of L(D*) and A(D*) onto Lq(D) and
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AqV(D), respectively, for any q > 0 and 0 < p < oo. In particular,

((q + 1)m/m[ m" (t)(q+l)/2)m>O
forms an orthonormal basis for Aq(D) and Kq, D(Z,) -----{Ko, D(Z,)}q+l
(z, " D) is the reproducing kernel of Aq(D) (q > 0). Note also that A(D)
is the ordinary Bergman space and that A(D) is the projective limit of
A(D) as q 0 + (0 < p <

In view of the above discussion, the following theorem may be regarded as a
corollary of Theorem 3.3. Once again, a special case of this theorem, namely
when m 2 and D is a simply connected plane domain whose boundary is
analytic is due to Mateljevi6 and Pavlovi6 [6]. (Note, however, that the
corresponding equality statement in [6] contains a trivial error.)

TaOEM 3.5. Let D be a simply connected plane domain whose boundary
rrpj DOD is of class C with a Dini-continuous normal. Let .fj ,, ( ) with

0 <t < o0 forj 1,2,..., m, m > 2. Then I-I"_l/.l L_(D) with

qr .__ j-1

Equality holds if and only if either FI"__ fj 0 or each fj is of the form

where q is a Riemann mapping of D onto A and Cj are nonzero constants
(1 <j<m).

Proof. Let tk be any biholomorphic mapping of A onto D, and define

gJ (fj,). (q,)l/,j (1 j m).

Since gy He(A) we may apply Theorem 3.3 with gj in place of f.. This
gives the present inequality statement. Equality holds if and only if either
I-l_xgy 0 or each gy is of the form gy C.’k2- (., ) for some point AJ /Pj
and some nonzero constants Cj’ (1 < j < m). Equivalently, either 1-l. lfj--" 0
or each fj is of the form

Letting 0 be a Riemann mapping of D onto A with q,[tk()] 0, and then

letting C C/{ tk’() 0’( tk ()) } /’, we obtain the desired result.
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COROLLARY 3.6. Let D be a simply connected plane domain whose boundary
OD is of class C with a Dini-continuous normal, and let f HP(D) with
0 < p < oo Then for any integer m > 2, f Am’ (D) withm--

/I dA < II/I

Equality holds if and only if f is of the form f C(’)/ for some Riemann
mapping of D onto A and some constant C.

4. Inequalities on the polydisk

We take the unit polydisk A" as our fixed Rienhardt domain ft. On A" we
consider the function

n

H (:
./-1

where q (qx,..., q,) R% \{0}. Obviously, bq oo(A") with a,(q)
(q)/a! foraZn and with n

+ I’/, Z+, where

(q). (q:)., (q.)a. (a (ax,...,a.) Z).

The corresponding Hilbert space, norm and reproducing kernel are denoted by
9q(A=), II I1 and k, respectively. Thus

n

kq(z,’) O(z f) I-I(1-zjj) -q (z, . A)
j---1

and

Ilfllq-- . (q).la.I 2

where f H(A) with a. a.(f), a Z, and therefore

.q(An) { f n(An)" [[f[[q <

Theorem 2.1 has now the following form:

TI-I.ORM 4.1.
m > 2. Then

Let fj OWq,(An) where qj Rn+ \{0) for j 1,..., m,



with

< IIfjll.
ql + +qm j=l

Equality holds if and only if either I-Jim__ fj 0 or each fj is of the form

f Cjk,(., )

for some An and some nonzero constants Cj (1 < j < m).

When q > 1--(1,...,1) the quadratic norm II II admits an integral
representation. To see this we consider the probability measure

dlxq(z) daql_l(z1) dAqn_l(Zn) for z (zl,..., zn) An.

As in the unit disk A, d/xq --, d/x as q --, 1 +, and

Here, the integration is carried over An if q > 1 and over the distinguished
boundary T if q 1. In the latter case, f in the integral represents the
nontangential (distinguished) boundary values of f. In a similar and obvious
manner one may describe the intermediate situation where some, but not all,
of the components qy of q (q,..., qn) > 1 are equal to 1. It follows that
o’1(An) is the Hardy space H2(An) and that ,,(An) for q > 1 is the weighted
Bergman space A_(An) with sct"2(An) A(An) as the ordinary Bergman
space. Moreover, any space "0(A) with qo > I may be viewed as a projective
limit of weighted Bergman spaces A2q_l(An), q > 1, as q --, q.

Let R: H(An) --, H(A) be the diagonal restriction mapping defined by

Since the diagonal restriction of kq (q R% \(0}), the reproducing kernel of
(A), is the reproducing kernel kll of A’II(A), where Iql qt + + qn,
we deduce from the general theory of reproducing kernels [1] (see also [2]) that
R is a contractive linear transformation of (A) onto A%I(A). Moreover, it
also follows that R*, the adjoint of R, is a linear isometry of o,l(A) onto
N(R) +/- the orthogonal complement of the null-space N(R)= {f
,(An):Rf 0} in .,(An), with RR* as the identity operator on
and R*R as the orthogonal projector of A(An) onto N(R) and thus
IIRII IIR*II 1. In particular, R maps the Hardy space Hg-(A) onto the
weighted Bergman space A_(A). For these and related results we refer the
reader to Beatrous and Burbea [2].
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A somewhat more precise formulation may be given by considering certain
power expansions. For q Rn and m Z+, we consider the homogeneous
polynomial of degree m,

(4.1) Cq, m(z) E (qa)t. aza (z Cn).

Since Cq, m is the m-th coefficient in the expansion of Cq(t0. z) 1-I_1(1
tozj)-qJ in powers of to, where o: (to,..., to), we deduce that

(4.2) ,q, (1)= E (q’ 1
,. .. (Iql) ,

and hence

l,m(l) 2 l=(m+n-1)"m
lal -m

Let f H(A) with aa a(f), a z.. Then

(4.3) {Rf}(to) E ’. a, tom (to A),
m=0 lal=m

and so

E aa(f) fO, m=O, 1,...}.
THEOREM 4.2. Let q R\(0}. Then:
(i) R maps q(An) into "lql(A) and IIRfll Iql < Ilfllq for eoeryf q(A),

with equality holding if and only if there is a sequence { hm } of complex numbers
such that

oo 1
-T. (Iql),.l,,.I z <

m--O

and such that a,,(f) hl,l(q)/a! for every a Z or, equivalently

f=
m--0

(ii) For g ,lq[(A) with bm am(g), m Z+ we have

oo m!(R*g)(z) E b,,,(lql ) #’q,m(Z) (Z N’);
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(iii) RR* is the identity operator on ,J[ql(m) and R* is a linear isometry
of ’lql(A) onto N(R)+/-. Moreover, N(R) +/- is the closure in Wq(A) of the
linear span of ( q, ,, },, 0;

(iv) R is a linear transformation of fq(A) onto YYlqI(A) with IIRII 1,
and R*R is the orthogonal projector of ,,Wq(A) onto N(R) +/-.

Proof. To prove (i) we assume that f OWq(A) with a a(f), a Z
and use (4.3). Then, by the Cauchy-Schwarz inequality and (4.2),

IIRflllq, (Iql),m--0

2

E (q) lal
m-0 [a =.m a

and the desired inequality follows. Equality holds if and only if for every
rn Z+ there exists a number h,, C so that a(a!/(q))1/2=
h,,((q),/a!)x/2 for all a Z with lal--m. This, together with (4.1) and
(4.2), concludes the proof of (i). Item (ii) follows from (i) by a direct
calculation based on (4.1) and (4.3). We now prove (iii). That RR* is the
identity operator on Y’IqI(A) is a straightforward consequence of (ii), (4.1)
and (4.3). From this it follows easily that R* is a linear isometry of
onto R*(o,f’lql(A)), and the latter is a dosed subspace of Wq(A). In particu-
lar, R *(1ql(A)) N(R) +/- and the first part of (iii) follows. The second part
follows from this and (ii), and (iii) is proved. To prove (iv), we first observe
that by (i), R is a linear transformation of Wq(A) into dlql(A) with
IIRII < 1. We then use (iii) to conclude that R is onto YYlqI(A) and that
IIRll--IIR*II--1. Finally, we let P R’R, and note that, by the last
observation and (iii), P is a linear transformation of Wq(A) onto N(R)+/-.
Since P * P and, by (iii), p2 R*RR*R R*R P, we conclude that P
is the orthogonal projector of Wq(A) onto N(R) " The proof is now
complete.

A special case of part (i) of this theorem, namely when n 2 and q 1
(1,1) was also observed in Mateljevi6 and Pavlovi6 [6]. In this case, by (4.1),

,,,,(zx, z2) E zxz z’+zx _-
z2
z’+x (n 2),

a + a2 m

and thus, as a corollary, we obtain:
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COROLLARY 4.3. Let f H2(A2) ,;tf’I(A2 ). Then Rf A2(A) and

Equality holds if and only iff is of the form

where

E (m + 1)lA.ml 2 <
m--O

The last condition on (Am } is implicit, but not mentioned explicitly, in [6].
For other approaches to the problem of diagonal restrictions on polydisks

we refer to Rudin [7, p. 53] (see also the references in [2]).

5. Inequalities on the ball

We now take the unit ball B as our fixed Reinhardt domain fi and consider
the function

Cq(Z) (1 <z, ))-q (Z Cn)

where q > 0. Clearly, q oo(n) with aa(q) (q)lal/a! for a Z and
with I’,. Z.. The corresponding Hilbert space, norm and reproducing
kernelae denoted by q(B), III III q and Kq, respectively. Thus

Kq(z, ) q(Z ) (1 (z, ’))-q (Z, ’B)

and

lal 2IIIflll q . (q)l,,,

where fH(B) with a,=a(f), aZ_, and hence q(B)= {f
H(B)" Illfill q < 0:)). Theorem 2.1 has now the following form:

THEOREM 5.1. Let fj qj(B) where qj > 0 forj 1,..., m, rn > 2. Then

m

jrXlfJ " ql+ + qm( B
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with

m m

Ill f .lll ql + + qm
j-----

lilY, Ill

Equality holds if and only if either I-Ijm=lfj 0 or each fj is of the form
fj CjKq;(., ) for some B and some nonzero constants Cj (1 < j < m).

When q > n the quadratic norm Ill Ill q admits an integral representation.
To see this we let dv stand for the Lebesgue measure on C" and do for the
surface measure on S OB, normalized so that (B)= 1. For s > 0 we
consider the probability measure dos on B, defined by dvo do when s 0
and by

dvs(z ) ,r-"(s)(1 11zl12) s-1 dr(z)

when s > 0. As a measure on B, dv doo as s 0 +, and

lllflll f[flZdvq ( f - :/:+q(B ) q > O)n+q

Here, the integration is carried over B when q > 0 and over S OB when
q 0. In the latter case, f in the integral represents the nontangential
boundary values of f. It follows that ,,:(B) is the Hardy space HZ(B) and
that ,fan+q(B) for q > 0 is the weighted Bergman space A2q(B) with +1(B)

A2x(B) as the ordinary Bergman space. It also follows that H2(B) is a
projective limit of A2q(B) as q --. 0 /.

Let R" H(B) H(A) be the n-diagonal restriction mapping defined by

As in the case of the polydisk, the n-diagonal restriction of Kq, the reproduc-
ing kernel of q(B), q > 0, is the reproducing kernel kq of q(m). This
observation leads to the following theorem. Its proof follows either from the
general theory of reproducing kernels [1], [2] or from arguments similar to
those given in the proof of Theorem 4.2.

THEOREM 5.2. Let q > O. Then:
(i) R, maps M’q(B) into d/q(A) with II R.fll q

Equality holds if and only iff is of the form
-< IIIflll q for every f q(B).

f= E)kmem
m--O
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where

Pro(Z) (Z "" -["Zn) m (Z (Z1,... Zn) cn).

and )m - C with

o m! nmlXm[9. <E (qlm 0

m--O

For g q(A) with bm am(g), m Z+, we have

R*ng bmn-ml2em;
m--’O

(iii) RnR* is the identity operator on (A) and R*n is a linear isometry of
q(A) onto N(Rn) +/-. Here N(R,) is the null-space in q(B) of R, and
N(R) +/- is its orthogonal complement in ,(B). Moreover, N(R,) +/- is the
closure in q(B) of the linear span of ( Pm },,, > 0;

(iv) Rn is a linear transformation of q(B) onto q(A) with IIll 1,
*and RR is the orthogonal projector of q(B) onto N(R) +/-.

The following corollary is a special case of part (i) of Theorem 5.2 (compare
Rudin [8, p. 127]).

COROLLARY 5.3. Let f H2(B). Then R,f AE_I(A) and

fIR=fl2 dan-1 fs Ill2 do.

Equality holds if and only iff is of the form

f-- E )kmem with
rn--O
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