SHARP INEQUALITIES FOR HOLOMORPHIC FUNCTIONS

BY

JACOB BURBEA

1. Introduction

In a recent paper, Mateljević and Pavlović [6] gave new proofs for the isoperimetric inequality by using the boundary behaviors of holomorphic functions belonging to certain Hardy classes on the unit disk Δ . These proofs are based on sharp norm inequalities for holomorphic functions which are of interest on their own right. For example, the following sharp inequality is proved in [6]. Let $f \in H^1(\Delta)$, then

$$4\pi \int_{\Delta} |f(z)|^2 \, dA(z) \leq \left\{ \int_{\partial \Delta} |f(z)| \, |dz| \right\}^2,$$

where dA denotes the area Lebesgue measure, and $H^p(\Delta)$ (0denotes Hardy class. Equality holds if and only if <math>f is of the form $f(z) = C(1 - z\overline{\zeta})^{-2}$, $z \in \Delta$, for some constant C and some point $\zeta \in \Delta$. Other sharp inequalities, similar to the one above, were proved by Aronszajn [1], Saitoh [9] and Burbea [3], [4]. The main purpose of this paper is to give an extension of these results to various situations which were not covered in [1], [3], [4], [6], [9]. The method of proof will be based on ingredients taken from a rather general theory expounded in [4] (see also [2], [3]).

2. Preliminaries and notation

For $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$, $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_+^n$ we use the standard multinomial notation

$$\alpha! = \alpha_1! \cdots \alpha_n!, \quad |\alpha| = \alpha_1 + \cdots + \alpha_n, \quad z^{\alpha} = z_1^{\alpha_1} \cdots z_n^{\alpha_n},$$
$$\|z\|_{\infty} = \max_{1 \le i \le n} |z_j| \quad \text{and} \quad \|z\| = (|z_1|^2 + \cdots + |z_n|^2)^{1/2}.$$

Received May 20, 1985.

© 1987 by the Board of Trustees of the University of Illinois Manufactured in the United States of America Moreover, if also $\zeta = (\zeta_1, \ldots, \zeta_n) \in \mathbb{C}^n$, then we let

$$z \cdot \zeta = (z_1\zeta_1, \dots, z_n\zeta_n) \in \mathbb{C}^n$$
 and $\langle z, \zeta \rangle = z_1\overline{\zeta_1} + \dots + z_n\overline{\zeta_n}$.

We also let

$$\Delta = \{\lambda \in \mathbb{C} : |\lambda| < 1\},\$$
$$T = \partial \Delta = \{\lambda \in \mathbb{C} : |\lambda| = 1\}, \quad \Delta^n = \{z \in \mathbb{C}^n : ||z||_{\infty} < 1\}$$

and

$$B = \{ z \in \mathbb{C}^n : ||z|| < 1 \}, \quad S = \partial B = \{ z \in \mathbb{C}^n : ||z|| = 1 \}.$$

For a complex manifold D, H(D) denotes the class of all holomorphic functions on D. An open set Ω in \mathbb{C}^n is said to be a *complete Reinhardt domain* if $z \in \Omega$ implies $z \cdot \zeta \in \Omega$ for every $\zeta \in \overline{\Delta}^n$. In this case Ω is a star shaped domain containing the origin. Moreover, for any $f \in H(\Omega)$ there exists a unique power series

$$f(z) = \sum_{\alpha} a_{\alpha} z^{\alpha} \quad (z \in \Omega)$$

with normal convergence in Ω , i.e., the power series converges absolutely and uniformly on compacta of Ω to f, and with

$$a_{\alpha} = a_{\alpha}(f) = \{ \partial^{\alpha} f \}(0) / \alpha! \quad (\alpha \in \mathbb{Z}^{n}_{+}).$$

Here, for $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ and $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n_+$,

$$\partial^{\alpha} = \partial_n^{\alpha_1} \cdots \partial_n^{\alpha_n}$$
 where $\partial_j = \partial/\partial z_j, 1 \le j \le n$.

For a subset Λ of \mathbb{Z}_{+}^{n} , we let

$$H(\Omega:\Lambda) = \{ f \in H(\Omega) : \{ \partial^{\alpha} f \}(0) = 0, \alpha \in \Lambda \}.$$

We fix a complete Reinhardt domain Ω in \mathbb{C}^n . A function ϕ , holomorphic on a neighborhood of $0 \in \mathbb{C}^n$ with $c_{\alpha} = a_{\alpha}(\phi)$, $\alpha \in \mathbb{Z}^n_+$, i.e.,

$$\phi(z)=\sum_{\alpha}c_{\alpha}z^{\alpha},$$

is said to belong to $\mathscr{P}(\Omega)$ if $c_{\alpha} \geq 0$ for every $\alpha \in \mathbb{Z}_{+}^{n}$ and if $\phi(z \cdot \overline{z}) < \infty$ for every $z \in \Omega$. It is said to belong to $\mathscr{P}_{\infty}(\Omega)$ if $\phi \in \mathscr{P}(\Omega)$ and also $\phi(z \cdot \overline{z}) = \infty$ for every z on the boundary $\partial \Omega$ of Ω . For $\phi \in \mathscr{P}(\Omega)$ we let $\Lambda_{\phi} = \{\alpha \in \mathbb{Z}_{+}^{n} : c_{\alpha} = 0\}$ and $\Gamma_{\phi} = \mathbb{Z}_{+}^{n} \setminus \Lambda_{\phi}$, and define

$$k_{\phi}(z,\zeta) = \phi(z \cdot \overline{\zeta}) \quad (z,\zeta \in \Omega).$$

Evidently, for any $\zeta \in \Omega$, $k_{\phi}(\cdot, \zeta) \in H(\Omega : \Lambda_{\phi})$, and

$$\sum_{k,m=1}^{N} a_k \bar{a}_m k_{\phi}(z_k, z_m) \ge 0$$

for every $z_1, \ldots, z_N \in \Omega$ and every $a_1, \ldots, a_N \in \mathbb{C}$ $(N = 1, 2, \ldots)$. It follows that k_{ϕ} is a sesqui-holomorphic positive-definite kernel on $\Omega \times \Omega$. In particular,

 $\overline{k_{\phi}(z,\zeta)} = k_{\phi}(\zeta,z) \text{ and } |k_{\phi}(z,\zeta)|^2 \le k_{\phi}(z,z)k_{\phi}(\zeta,\zeta)$

for every $z, \zeta \in \Omega$. From the general theory of reproducing kernels (see Aronszajn [1]) follows that there exists a unique functional Hilbert space \mathscr{H}_{ϕ} of functions f in $H(\Omega : \Lambda_{\phi})$ with k_{ϕ} as its reproducing kernel. To identify this Hilbert space we introduce the quadratic norm (see [4])

$$\|f\|_{\phi}^2 = \sum_{\alpha \in \Gamma_{\phi}} c_{\alpha}^{-1} |a_{\alpha}|^2$$

for any $f \in H(\Omega: \Lambda_{\phi})$ with $a_{\alpha} = a_{\alpha}(f)$, $\alpha \in \mathbb{Z}_{+}^{n}$, and denote by \langle , \rangle_{ϕ} the induced inner product. This gives

$$\mathscr{H}_{\phi} = \left\{ f \in H(\Omega : \Lambda_{\phi}) : \|f\|_{\phi} < \infty \right\}$$

and

$$f(\zeta) = \langle f, k_{\phi}(\cdot, \zeta) \rangle_{\phi} \quad (f \in \mathcal{H}_{\phi}, \zeta \in \Omega).$$

We shall need the following theorem. Its proof is found in [4] (see also [3]).

THEOREM 2.1. Let ϕ and ψ be in $\mathscr{P}(\Omega)$. Then $\phi \psi \in \mathscr{P}(\Omega)$ with

$$\Gamma_{\phi\psi} = \big\{ \gamma \in \mathbb{Z}_+^n : \gamma = \alpha + \beta, \, \alpha \in \Gamma_{\phi}, \, \beta \in \Gamma_{\psi} \big\}.$$

Moreover, if $f \in \mathscr{H}_{\phi}$ and $g \in \mathscr{H}_{\psi}$ then $fg \in \mathscr{H}_{\phi\psi}$ with

$$||fg||_{\phi\psi} \leq ||f||_{\phi} ||g||_{\psi}$$

Equality holds if and only if either fg = 0 or f and g are of the form

$$f = C_1 k_{\phi}(\cdot, \zeta), \quad g = C_2 k_{\psi}(\cdot, \zeta)$$

for some nonzero constants C_1 and C_2 and for some point $\zeta \in \mathbb{C}^n$ with $\phi(\zeta \cdot \zeta)$. $< \infty$ and $\psi(\zeta \cdot \overline{\zeta}) < \infty$. In particular, if also either ϕ or ψ is in $\mathscr{P}_{\infty}(\Omega)$ then the point ζ must lie in Ω .

We also note that for $\phi \in \mathscr{P}(\Omega)$ with $c_{\alpha} = a_{\alpha}(\phi), \alpha \in \mathbb{Z}_{+}^{n}$, the monomials $\sqrt{c_{\alpha}} z^{\alpha}, \alpha \in \Gamma_{\phi}$, form an orthonormal basis for \mathscr{H}_{ϕ} . For q > 0 and $m \in \mathbb{Z}_{+}$, $(q)_{m}$ stands for 1 if m = 0 and

$$(q)_m = \Gamma(q+m)/\Gamma(q) = q(q+1)\cdots(q+m-1) \quad (m \ge 1).$$

3. Inequalities in the plane

In the one dimensional case (n = 1) we take the unit disk Δ as our fixed Reinhardt domain Ω . On Δ we consider the function $\phi_q(z) = (1 - z)^{-q}$ where q > 0. Evidently, $\phi_q \in \mathscr{P}_{\infty}(\Delta)$ with $a_m(\phi_q) = (q)_m/m!$ for $m \in \mathbb{Z}_+$ and with $\Gamma_{\phi_q} = \mathbb{Z}_+$. The corresponding Hilbert space \mathscr{H}_{ϕ_q} , norm $\|\cdot\|_{\phi_q}$ and reproducing kernel k_{ϕ_q} are denoted by $\mathscr{H}_q(\Delta)$, $\|\cdot\|_q$ and k_q , respectively. Thus

$$k_q(z,\zeta) = \phi_q(z\overline{\zeta}) = (1 - z\overline{\zeta})^{-q} \quad (z,\zeta \in \Delta)$$

and

$$||f||_q^2 = \sum_{m=0}^{\infty} \frac{m!}{(q)_m} |a_m|^2,$$

where $f \in H(\Delta)$ with $a_m = a_m(f)$, $m \in \mathbb{Z}_+$, and therefore $\mathscr{H}_q(\Delta) = \{f \in H(\Delta) : \|f\|_q < \infty\}$. As an immediate consequence of Theorem 2.1, we have:

THEOREM 3.1. Let $f_j \in \mathscr{H}_{q_j}(\Delta)$ where $q_j > 0$ for $j = 1, ..., m, m \ge 2$. Then

$$\prod_{j=1}^m f_j \in \mathscr{H}_{q_1 + \cdots + q_i}(\Delta)$$

with

$$\left\|\prod_{j=1}^{m} f_{j}\right\|_{q_{1}+\cdots+q_{1}} \leq \prod_{j=1}^{m} \|f_{j}\|_{q_{j}}$$

Equality holds if and only if either $\prod_{j=1}^{m} f_j = 0$ or each f_j is of the form $f_j = C_j k_{q_j}(\cdot, \zeta)$ for some point $\zeta \in \Delta$ and some nonzero constants $C_j(1 \le j \le m)$.

We let $dA_0(z) = |dz|/2\pi$ be the normalized boundary measure on $\partial \Delta$, and we consider the family $\{dA_q\}_{q>0}$ of probability measures on $\overline{\Delta}$ given by

$$da_q(z) = q\pi^{-1}(1-|z|^2)^{q-1} dA(z) \quad (z \in \Delta).$$

As a measure on $\overline{\Delta}$, $dA_q \rightarrow dA_0$ as $q \rightarrow 0^+$. In particular, if f is a continuous

function on $\overline{\Delta}$, then

$$\int f dA_0 = \int_T f dA_0 = \lim_{q \to 0^+} \int_\Delta f dA_q.$$

On the other hand

$$\int f dA_q = \int_{\Delta} f dA_q \quad (q > 0)$$

if f is integrable with respect to dA_q .

For $q \ge 0$ and $0 , we let <math>A_q^p(\Delta)$ stand for the space of all functions $f \in H(\Delta)$ such that $||f||_{p,q} < \infty$, where

$$||f||_{p,q} = \left\{ \int |f|^p \, dA_q \right\}^{1/p},$$

and where for q = 0 the integration is carried over the nontangential boundary values of $f \in A_0^p(\Delta)$. It follows that $A_0^p(\Delta)$ is the Hardy space $H^p(\Delta)$, that $A_q^p(\Delta)$, q > 0, is a weighted Bergman space and that $A_1^p(\Delta)$ is the ordinary Bergman space $A^p(\Delta)$. Moreover, it also follows that the space $A_q^2(\Delta)$ is identical with the space $\mathscr{H}_{1+q}(\Delta)$ and that $\|\cdot\|_{2,q} = \|\cdot\|_{1+q}$ for $q \ge 0$. Note also, that for $0 , the Hardy space <math>H^p(\Delta) = A_0^p(\Delta)$ is a projective limit, as $q \to 0^+$, of the weighted Bergman spaces $A_q^p(\Delta)$, q > 0.

Another functional Hilbert space of interest is the Dirichlet space

$$\mathscr{D}(\Delta) = \left\{ f \in H(\Delta : \{0\}) : \|f'\|_{2,1} < \infty \right\}.$$

This space can be generated by $\phi_0(z) = -\log(1-z)$, and thus its reproducing kernel k_0 is given by

$$k_0(z,\zeta) = \phi_0(z\overline{\zeta}) = -\log(1-z\overline{\zeta}) \quad (z,\zeta \in \Delta).$$

Moreover, for any $f \in H(\Delta; \{0\})$ with $a_m = a_m(f)$, $m \in \mathbb{Z}_+$, the quadratic form $||f||_0$ of $\mathcal{D}(\Delta)$ is given by

$$||f||_0^2 = ||f'||_1^2 = \sum_{m=1}^\infty m |a_m|^2.$$

Note also that $(k_q - 1)/q \to k_0$ and that $q ||f||_q^2 \to ||f||_0^2 (f \in H(\Delta : \{0\}))$ as $q \to 0^+$, and thus $\mathscr{D}(\Delta)$ may be viewed as a projective limit of the space $\sqrt{q} \cdot \{f \in \mathscr{H}_q(\Delta) : f(0) = 0\}$ when $q \to 0^+$.

THEOREM 3.2. Let f and g be in $\mathscr{D}(\Delta)$. Then $fg \in A_0^2(\Delta) = H^2(\Delta)$ with

$$\|fg\|_{2,0} \leq \|f\|_0 \|g\|_0.$$

Equivalently,

$$\pi \int_{\partial \Delta} |fg|^2 \, ds \leq 2 \bigg\{ \int_{\Delta} |f'|^2 \, dA \bigg\} \cdot \bigg\{ \int_{\Delta} |g'|^2 \, dA \bigg\},$$

where ds(z) = |dz|, $z \in \partial \Delta$. Equality holds if and only if either fg = 0 or f and g are of the form $f(z) = C_1 z$, $g(z) = C_2 z$ for some nonzero constants C_1 and C_2 .

Proof. Let $a_m = a_m(f)$, $b_m = a_m(g)$ and $c_m = a_m(fg)$, $m \in \mathbb{Z}_+$. It follows that $a_0 = b_0 = c_0 = 0$, $c_1 = 0$ and

$$c_m = \sum_{k=1}^{m-1} a_k b_{m-k} \quad (m = 2, 3, ...).$$

This and the Cauchy-Schwarz inequality give

$$||fg||_{2,0}^2 = \sum_{m=1}^{\infty} \left| \sum_{k=1}^m a_k b_{m+1-k} \right|^2 \le \sum_{m=1}^{\infty} m \sum_{k=1}^m |a_k|^2 |b_{m+1-k}|^2.$$

On the other hand

$$\|f\|_0^2 \|g\|_0^2 = \left\{ \sum_{m=1}^\infty m |a_m|^2 \right\} \cdot \left\{ \sum_{m=1}^\infty m |b_m|^2 \right\}$$
$$= \sum_{m=1}^\infty \sum_{k=1}^m k |a_k|^2 (m+1-k) |b_{m+1-k}|^2.$$

Since k(m + 1 - k) - m = (m - k)(k - 1) is non-negative for every $1 \le k \le m$, m = 1, 2, ..., the desired inequality follows. If equality holds then for every m = 1, 2, ..., there exists a scalar $\lambda_m \in \mathbb{C}$ so that $\lambda_m = a_k b_{m+1-k}$ and $(m - k)(k - 1)|a_k|^2|b_{m+1-k}|^2 = 0$ for every $1 \le k \le m$. It follows that $\lambda_m = 0$ for every $m \ge 2$ and $\{fg\}(z) = \lambda_1 z^2$. This gives the equality statement of the theorem, and the proof is complete.

THEOREM 3.3. Let $f_j \in H^{p_j}(\Delta)$ with $0 < p_j < \infty$ for $j = 1, 2, ..., m, m \ge 2$. Then

$$\int_{\Delta} |f_1|^{p_1} \cdots |f_m|^{p_m} dA_{m-1} \leq \prod_{j=1}^m \int_{\partial \Delta} |f_j|^{p_j} dA_0.$$

Equality holds if and only if either $\prod_{j=1}^{m} f_j = 0$ or each f_j is of the form

$$f_j = C_j k_{2/p_j}(\cdot, \zeta),$$

i.e.,

$$f_j(z) = C_j (1 - z\overline{\xi})^{-2/p_j},$$

for some point $\zeta \in \Delta$ and some nonzero constants C_j $(1 \le j \le m)$.

Proof. For $1 \le j \le m$ we let \mathscr{B}_j be a Blaschke product formed from the zeros in Δ , if any, of f_j , and define $g_j = (f_j/\mathscr{B}_j)^{p_j/2}$. Then $g_j \in \mathscr{H}_1(\Delta)$ $(=H^2(\Delta))$ for j = 1, ..., m, and, by Theorem 3.1, $\prod_{j=1}^m g_j \in \mathscr{H}_m$ with

(3.1)
$$\left\| \prod_{j=1}^{m} g_{j} \right\|_{m} \leq \left\| \prod_{j=1}^{m} \|g_{j}\|_{1}.$$

Equality holds if and only if each g_j is of the form $g_j = \tilde{C}_j k_1(\cdot, \zeta)$ for some $\zeta \in \Delta$ and some nonzero constants \tilde{C}_j $(1 \le j \le m)$. We are assuming without loss, of course, that $\prod_{j=1}^m f_j \ne 0$ and hence also $\prod_{j=1}^m g_j \ne 0$. Now, inequality (3.1) is, by definition, equivalent to the inequality

$$\int_{\Delta} |\mathscr{B}_{1}|^{-p_{1}} \cdots |\mathscr{B}_{m}|^{-p_{m}} |f_{1}|^{p_{1}} \cdots |f_{m}|^{p_{m}} dA_{m-1} \leq \prod_{j=1}^{m} \int_{\partial \Delta} |f_{j}|^{p_{j}} dA_{0},$$

and hence, since $|\mathscr{B}_j| \leq 1$ $(1 \leq j \leq m)$ on Δ , the desired inequality follows. If equality holds then each \mathscr{B}_j must be a constant λ_j with $|\lambda_j| = 1$ $(1 \leq j \leq m)$ and each g_j is of the above mentioned form. It follows that each f_j is of the form

$$f_j = \lambda_j \tilde{C}_j^{2/p_j} [k_1(\cdot, \zeta)]^{2/p_j} \quad \text{or} \quad f_j = C_j k_{2/p_j}(\cdot, \zeta)$$

where $C_j = \lambda_j \tilde{C}_j^{2/p_j}$ $(1 \le j \le m)$. This concludes the proof

A special case of this theorem, namely when m = 2, was also obtained by Mateljević and Pavlović [6], by using different methods.

COROLLARY 3.4. Let $f \in H^p(\Delta)$ with $0 . Then for any integer <math>m \ge 2, f \in A^{mp}_{m-1}(\Delta)$ with

$$||f||_{mp,m-1} \le ||f||_{p,0}.$$

Equivalently

$$\int_{\Delta} |f|^{mp} \, dA_{m-1} \leq \left\{ \int_{\partial \Delta} |f|^p \, dA_0 \right\}^m.$$

Equality holds if and only if f is of the form $f(z) = C(1 - z\overline{\zeta})^{-2/p}$, $z \in \Delta$, for some constant C and some point $\zeta \in \Delta$.

Putting m = 2 and p = 1 in this corollary we obtain the result, mentioned in the introduction, of Mateljević and Pavlović [6].

Let D be a hyperbolic simply connected plane domain and let λ_D be its Poincaré metric. The latter is defined by

$$\lambda_D(z) = k_1(\phi(z), \phi(z)) |\phi'(z)| \quad (z \in D),$$

where ϕ is a Riemann mapping of D onto Δ , and is independent of the particular choice of ϕ . According to a theorem of Warschawski [10], if ∂D is of class C^1 with a Dini-continuous normal, in particular if $\partial D \in C^{1, e}$ ($0 < \epsilon < 1$), then the conformal mapping $\phi: D \to \Delta$ extends to a C^1 -diffeomorphism of \overline{D} onto $\overline{\Delta}$ and there exist positive constants a and b such that

$$0 < a \le |\phi'(z)| \le b < \infty \quad (z \in \overline{D}).$$

It follows that for any $0 the Hardy space <math>H^p(D)$ coincides with the Smirnov class $E^p(D)$ (see [5, p. 169]), and that the "norm" in $H^p(D)$ may be given by

$$\|f\|_{p,D} = \left\{\frac{1}{2\pi}\int_{\partial D}|f(z)|^{p}|dz|\right\}^{1/p} < \infty,$$

where the integration is carried over the nontangential boundary values of $f \in H^p(D)$. In particular, $\{\phi^m \cdot (\phi')^{1/2}\}_{m \ge 0}$ forms an orthonormal basis for $H^2(D)$ and

$$K_{0,D}(z,\zeta) = k_1(\phi(z),\phi(\zeta)) \left\{ \phi'(z) \overline{\phi'(\zeta)} \right\}^{1/2} \quad (z,\zeta \in D)$$

is the Szegö reproducing kernel of $H^2(D)$.

Let 0 . For <math>q > 0, we let $L_q^p(D)$ be the L^p -space with respect to the measure $(q/\pi)\lambda_D^{1-q} dA$, and we let $A_q^p(D) = H(D) \cap L_q^p(D)$. It follows that $A_q^p(D)$ is a closed subspace of $L_q^p(D)$. It is natural to extend these definitions to q = 0 by letting $L_0^p(D)$ stand for the L^p -space with respect to the boundary measure $|dz|/2\pi$ on ∂D , and by defining $A_0^p(D)$ to be $H^p(D)$ as above. In this case we adopt the usual convention of identifying Hardy classes $A_0^p(D) = H^p(D)$ with closed subspaces of $L_0^p(D)$. We now observe that if ψ is any biholomorphic mapping of D onto another domain D^* such that ∂D^* is of class C^1 with a Dini-continuous normal, then the mapping

$$f \mapsto (f \circ \psi) \cdot (\psi')^{(q+1)/p}$$

constitutes a linear isometry of $L^p_q(D^*)$ and $A^p_q(D^*)$ onto $L^p_q(D)$ and

 $A_q^p(D)$, respectively, for any $q \ge 0$ and 0 . In particular,

$$\left\{\sqrt{(q+1)_m/m!}\,\phi^m\cdot\left(\phi'\right)^{(q+1)/2}\right\}_{m\geq 0}$$

forms an orthonormal basis for $A_q^2(D)$ and $K_{q,D}(z,\zeta) = \{K_{0,D}(z,\zeta)\}^{q+1}$ $(z,\zeta \in D)$ is the reproducing kernel of $A_q^2(D)$ $(q \ge 0)$. Note also that $A_1^p(D)$ is the ordinary Bergman space and that $A_0^p(D)$ is the projective limit of $A_q^p(D)$ as $q \to 0^+$ (0 .

In view of the above discussion, the following theorem may be regarded as a corollary of Theorem 3.3. Once again, a special case of this theorem, namely when m = 2 and D is a simply connected plane domain whose boundary is analytic is due to Mateljević and Pavlović [6]. (Note, however, that the corresponding equality statement in [6] contains a trivial error.)

THEOREM 3.5. Let D be a simply connected plane domain whose boundary ∂D is of class C^1 with a Dini-continuous normal. Let $f_j \in H^{p_j}(D)$ with $0 < p_j < \infty$ for $j = 1, 2, ..., m, m \ge 2$. Then $\prod_{j=1}^m |f_j|^{p_j} \in L^1_{m-1}(D)$ with

$$\frac{m-1}{\pi} \int_D \left(\prod_{j=1}^m |f_j|^{p_j} \right) \cdot \lambda_D^{2-m} \, dA \leq \prod_{j=1}^m \|f_j\|_{p_j, D}^{p_j}$$

Equality holds if and only if either $\prod_{j=1}^{m} f_j = 0$ or each f_j is of the form

 $f_i = C_i \cdot \left(\phi'\right)^{1/p_j}$

where ϕ is a Riemann mapping of D onto Δ and C_j are nonzero constants $(1 \le j \le m)$.

Proof. Let ψ be any biholomorphic mapping of Δ onto D, and define

$$g_{j} = (f_{j} \circ \phi) \cdot (\phi')^{1/p_{j}} \quad (1 \leq j \leq m).$$

Since $g_j \in H^{p_j}(\Delta)$ we may apply Theorem 3.3 with g_j in place of f_j . This gives the present inequality statement. Equality holds if and only if either $\prod_{j=1}^{m} g_j = 0$ or each g_j is of the form $g_j = C_j' k_{2/p_j}(\cdot, \tau)$ for some point $\tau \in \Delta$ and some nonzero constants C'_j $(1 \le j \le m)$. Equivalently, either $\prod_{j=1}^{m} f_j = 0$ or each f_i is of the form

$$f_j = C_j' \Big[\overline{\psi'(\tau)} \Big]^{1/p_j} \Big[K_{1, D}(\cdot, \psi(\tau)) \Big]^{1/p_j}.$$

Letting ϕ be a Riemann mapping of D onto Δ with $\phi[\psi(\tau)] = 0$, and then letting $C_j = C_j / \overline{\{\psi'(\tau)\phi'(\psi(\tau))\}}^{1/p_j}$, we obtain the desired result.

COROLLARY 3.6. Let D be a simply connected plane domain whose boundary ∂D is of class C^1 with a Dini-continuous normal, and let $f \in H^p(D)$ with $0 . Then for any integer <math>m \ge 2$, $f \in A_{m-1}^{mp}(D)$ with

$$\frac{m-1}{\pi} \int_D |f|^{mp} \lambda_D^{2-m} \, dA \le \|f\|_{p,D}^{mp}.$$

Equality holds if and only if f is of the form $f = C(\phi')^{1/p}$ for some Riemann mapping ϕ of D onto Δ and some constant C.

4. Inequalities on the polydisk

We take the unit polydisk Δ^n as our fixed Rienhardt domain Ω . On Δ^n we consider the function

$$\phi_{\mathbf{q}}(z) = \prod_{j=1}^{n} (1-z_j)^{-q_j} \quad (z=(z_1,\ldots,z_n) \in \Delta^n)$$

where $\mathbf{q} = (q_1, \ldots, q_n) \in \mathbf{R}^n_+ \setminus \{0\}$. Obviously, $\phi_{\mathbf{q}} \in \mathscr{P}_{\infty}(\Delta^n)$ with $a_{\alpha}(\phi_{\mathbf{q}}) = (\mathbf{q})_{\alpha}/\alpha!$ for $\alpha \in \mathbf{Z}^n_+$ and with $\Gamma_{\phi_{\mathbf{q}}} = \mathbf{Z}^n_+$, where

$$(\mathbf{q})_{\alpha} = (q_1)_{\alpha_1} \cdots (q_n)_{\alpha_n} \quad (\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbf{Z}_+^n).$$

The corresponding Hilbert space, norm and reproducing kernel are denoted by $\mathscr{H}_{q}(\Delta^{n})$, $\|\cdot\|_{q}$ and k_{q} , respectively. Thus

$$k_{\mathbf{q}}(z,\zeta) = \phi_{\mathbf{q}}(z \cdot \overline{\zeta}) = \prod_{j=1}^{n} \left(1 - z_{j}\overline{\zeta}_{j}\right)^{-q_{j}} \quad (z,\zeta \in \Delta^{n})$$

and

$$||f||_{\mathbf{q}}^2 = \sum_{\alpha} \frac{\alpha!}{(\mathbf{q})_{\alpha}} |a_{\alpha}|^2$$

where $f \in H(\Delta^n)$ with $a_{\alpha} = a_{\alpha}(f)$, $\alpha \in \mathbb{Z}_+^n$, and therefore

$$\mathscr{H}_{\mathbf{q}}(\Delta^n) = \left\{ f \in H(\Delta^n) : \|f\|_{\mathbf{q}} < \infty \right\}.$$

Theorem 2.1 has now the following form:

THEOREM 4.1. Let $f_j \in \mathscr{H}_{\mathbf{q}_j}(\Delta^n)$ where $\mathbf{q}_j \in \mathbf{R}^n_+ \setminus \{0\}$ for j = 1, ..., m, $m \geq 2$. Then

$$\prod_{j=1}^{m} f_j \in \mathscr{H}_{\mathbf{q}_1 + \cdots + \mathbf{q}_m}(\Delta^n)$$

with

$$\left\|\prod_{j=1}^m f_j\right\|_{\mathbf{q}_1+\cdots+\mathbf{q}_m} \leq \prod_{j=1}^m \|f_j\|_{\mathbf{q}_j}.$$

Equality holds if and only if either $\prod_{j=1}^{m} f_j = 0$ or each f_j is of the form

$$f_j = C_j k_{\mathbf{q}}(\cdot, \boldsymbol{\zeta})$$

for some $\zeta \in \Delta^n$ and some nonzero constants C_j $(1 \le j \le m)$.

When $q \ge 1 = (1, ..., 1)$ the quadratic norm $\|\cdot\|_q$ admits an integral representation. To see this we consider the probability measure

$$d\mu_{\mathbf{q}}(z) = dA_{q_1-1}(z_1) \cdots dA_{q_n-1}(z_n) \quad \text{for } z = (z_1, \ldots, z_n) \in \overline{\Delta}^n.$$

As in the unit disk Δ , $d\mu_q \rightarrow d\mu_1$ as $q \rightarrow 1^+$, and

$$\|f\|_{\mathbf{q}}^2 = \int |f|^2 d\mu_{\mathbf{q}} \quad \left(f \in \mathscr{H}_{\mathbf{q}}(\Delta^n), \mathbf{q} \geq \mathbf{1}\right).$$

Here, the integration is carried over Δ^n if $\mathbf{q} > \mathbf{1}$ and over the distinguished boundary T^n if $\mathbf{q} = \mathbf{1}$. In the latter case, f in the integral represents the nontangential (distinguished) boundary values of f. In a similar and obvious manner one may describe the intermediate situation where some, but not all, of the components q_j of $\mathbf{q} = (q_1, \ldots, q_n) \ge \mathbf{1}$ are equal to $\mathbf{1}$. It follows that $\mathscr{H}_1(\Delta^n)$ is the Hardy space $H^2(\Delta^n)$ and that $\mathscr{H}_q(\Delta^n)$ for $\mathbf{q} > \mathbf{1}$ is the weighted Bergman space $A^2_{\mathbf{q}-1}(\Delta^n)$ with $\mathscr{H}_2(\Delta^n) = A^2_1(\Delta^n)$ as the ordinary Bergman space. Moreover, any space $\mathscr{H}_{q_0}(\Delta)$ with $\mathbf{q}_0 \ge \mathbf{1}$ may be viewed as a projective limit of weighted Bergman spaces $A^2_{\mathbf{q}-1}(\Delta^n), \mathbf{q} > \mathbf{1}$, as $\mathbf{q} \to \mathbf{q}_0^+$.

Let $R: H(\Delta^n) \to H(\Delta)$ be the diagonal restriction mapping defined by

$$\{Rf\}(\omega)=f(\omega,\ldots,\omega).$$

Since the diagonal restriction of k_q ($q \in \mathbb{R}_+^n \setminus \{0\}$), the reproducing kernel of $\mathscr{H}_q(\Delta^n)$, is the reproducing kernel $k_{|q|}$ of $\mathscr{H}_{|q|}(\Delta)$, where $|q| = q_1 + \cdots + q_n$, we deduce from the general theory of reproducing kernels [1] (see also [2]) that R is a contractive linear transformation of $\mathscr{H}_q(\Delta^n)$ onto $\mathscr{H}_{|q|}(\Delta)$. Moreover, it also follows that R^* , the adjoint of R, is a linear isometry of $\mathscr{H}_{|q|}(\Delta)$ onto $N(R)^{\perp}$, the orthogonal complement of the null-space $N(R) = \{f \in \mathscr{H}_q(\Delta^n) : Rf = 0\}$ in $\mathscr{H}_q(\Delta^n)$, with RR^* as the identity operator on $\mathscr{H}_{|q|}(\Delta)$ and R^*R as the orthogonal projector of $\mathscr{H}_q(\Delta^n)$ onto $N(R)^{\perp}$, and thus $||R|| = ||R^*|| = 1$. In particular, R maps the Hardy space $H^2(\Delta^n)$ onto the weighted Bergman space $A_{n-1}^2(\Delta)$. For these and related results we refer the reader to Beatrous and Burbea [2].

A somewhat more precise formulation may be given by considering certain power expansions. For $\mathbf{q} \in \mathbf{R}^n$ and $m \in \mathbf{Z}_+$, we consider the homogeneous polynomial of degree m,

(4.1)
$$\phi_{\mathbf{q}, m}(z) = \sum_{|\alpha|=m} \frac{(\mathbf{q})_{\alpha}}{\alpha!} z^{\alpha} \quad (z \in \mathbb{C}^n).$$

Since $\phi_{q,m}$ is the m-th coefficient in the expansion of $\phi_q(\omega \cdot z) = \prod_{j=1}^n (1 - \omega z_j)^{-q_j}$ in powers of ω , where $\omega = (\omega, \dots, \omega)$, we deduce that

(4.2)
$$\phi_{\mathbf{q}, m}(\mathbf{1}) = \sum_{|\alpha| = m} \frac{(\mathbf{q})_{\alpha}}{\alpha!} = \frac{1}{m!} (|\mathbf{q}|)_{m!}$$

and hence

$$\phi_{1,m}(1) = \sum_{|\alpha|=m} 1 = \binom{m+n-1}{m}.$$

Let $f \in H(\Delta^n)$ with $a_{\alpha} = a_{\alpha}(f)$, $\alpha \in \mathbb{Z}_+^n$. Then

(4.3)
$$\{ Rf \}(\omega) = \sum_{m=0}^{\infty} \left(\sum_{|\alpha|=m} a_{\alpha} \right) \omega^m \quad (\omega \in \Delta),$$

and so

$$N(R) = \left\{ f \in H(\Delta^n) \colon \sum_{|\alpha|=m} a_{\alpha}(f) = 0, \ m = 0, 1, \ldots \right\}.$$

THEOREM 4.2. Let $\mathbf{q} \in \mathbf{R}^n_+ \setminus \{0\}$. Then:

(i) R maps $\mathscr{H}_{q}(\Delta^{n})$ into $\mathscr{H}_{|q|}(\Delta)$ and $||Rf||_{|q|} \leq ||f||_{q}$ for every $f \in \mathscr{H}_{q}(\Delta^{n})$, with equality holding if and only if there is a sequence $\{\lambda_{m}\}$ of complex numbers such that

$$\sum_{m=0}^{\infty} \frac{1}{m!} (|\mathbf{q}|)_m |\lambda_m|^2 < \infty$$

and such that $a_{\alpha}(f) = \lambda_{|\alpha|}(\mathbf{q})_{\alpha}/\alpha!$ for every $\alpha \in \mathbb{Z}_{+}^{n}$ or, equivalently

$$f = \sum_{m=0}^{\infty} \lambda_m \phi_{\mathbf{q}, m};$$

(ii) For $g \in \mathscr{H}_{|q|}(\Delta)$ with $b_m = a_m(g), m \in \mathbb{Z}_+$ we have

$$\{R^*g\}(z) = \sum_{m=0}^{\infty} b_m \frac{m!}{(|\mathbf{q}|)_m} \phi_{\mathbf{q},m}(z) \quad (z \in \Delta^n);$$

JACOB BURBEA

(iii) RR^* is the identity operator on $\mathscr{H}_{|q|}(\Delta)$ and R^* is a linear isometry of $\mathscr{H}_{|q|}(\Delta)$ onto $N(R)^{\perp}$. Moreover, $N(R)^{\perp}$ is the closure in $\mathscr{H}_{q}(\Delta^n)$ of the linear span of $\{\phi_{q,m}\}_{m\geq 0}$;

(iv) R is a linear transformation of $\mathscr{H}_{\mathbf{q}}(\Delta^n)$ onto $\mathscr{H}_{|\mathbf{q}|}(\Delta)$ with ||R|| = 1, and R^*R is the orthogonal projector of $\mathscr{H}_{\mathbf{q}}(\Delta^n)$ onto $N(R)^{\perp}$.

Proof. To prove (i) we assume that $f \in \mathscr{H}_{q}(\Delta^{n})$ with $a_{\alpha} = a_{\alpha}(f)$, $\alpha \in \mathbb{Z}_{+}^{n}$ and use (4.3). Then, by the Cauchy-Schwarz inequality and (4.2),

$$\|Rf\|_{|\mathbf{q}|}^{2} = \sum_{m=0}^{\infty} \frac{m!}{(|\mathbf{q}|)_{m}} \left| \sum_{|\alpha|=m} a_{\alpha} \right|^{2}$$
$$\leq \sum_{m=0}^{\infty} \left(\sum_{|\alpha|=m} \frac{\alpha!}{(\mathbf{q})_{\alpha}} |a_{\alpha}|^{2} \right)$$
$$= \|f\|_{\mathbf{q}}^{2},$$

and the desired inequality follows. Equality holds if and only if for every $m \in \mathbb{Z}_+$ there exists a number $\lambda_m \in \mathbb{C}$ so that $a_{\alpha}(\alpha!/(\mathbf{q})_{\alpha})^{1/2} =$ $\lambda_m((\mathbf{q})_{\alpha}/\alpha!)^{1/2}$ for all $\alpha \in \mathbb{Z}_+^n$ with $|\alpha| = m$. This, together with (4.1) and (4.2), concludes the proof of (i). Item (ii) follows from (i) by a direct calculation based on (4.1) and (4.3). We now prove (iii). That RR* is the identity operator on $\mathscr{H}_{|q|}(\Delta)$ is a straightforward consequence of (ii), (4.1) and (4.3). From this it follows easily that R^* is a linear isometry of $\mathscr{H}_{|q|}(\Delta)$ onto $R^*(\mathscr{H}_{|q|}(\Delta))$, and the latter is a closed subspace of $\mathscr{H}_{q}(\Delta^n)$. In particular, $R^*(\mathscr{H}_{|q|}(\Delta)) = N(R)^{\perp}$ and the first part of (iii) follows. The second part follows from this and (ii), and (iii) is proved. To prove (iv), we first observe that by (i), R is a linear transformation of $\mathscr{H}_{q}(\Delta^{n})$ into $\mathscr{H}_{|q|}(\Delta)$ with $||R|| \leq 1$. We then use (iii) to conclude that R is onto $\mathscr{H}_{|q|}(\Delta)$ and that $||R|| = ||R^*|| = 1$. Finally, we let $P = R^*R$, and note that, by the last observation and (iii), P is a linear transformation of $\mathscr{H}_{q}(\Delta^{n})$ onto $N(R)^{\perp}$. Since $P^* = P$ and, by (iii), $P^2 = R^*RR^*R = R^*R = P$, we conclude that P is the orthogonal projector of $\mathscr{H}_{\mathbf{q}}(\Delta^n)$ onto $N(R)^{\perp}$. The proof is now complete.

A special case of part (i) of this theorem, namely when n = 2 and q = 1 = (1, 1) was also observed in Mateljević and Pavlović [6]. In this case, by (4.1),

$$\phi_{1,m}(z_1,z_2) = \sum_{\alpha_1+\alpha_2=m} z_1^{\alpha_1} z_2^{\alpha_2} = \frac{z_1^{m+1} - z_2^{m+1}}{z_1 - z_2} \quad (n=2),$$

and thus, as a corollary, we obtain:

COROLLARY 4.3. Let $f \in H^2(\Delta^2) = \mathscr{H}_1(\Delta^2)$. Then $Rf \in A^2(\Delta)$ and

$$\int_{\Delta} |f(\omega, \omega)|^2 \, dA_1(\omega) \leq \int_{T^2} |f(z_1, z_2)|^2 \, dA_0(z_1) \, dA_0(z_2).$$

Equality holds if and only if f is of the form

$$f(z_1, z_2) = \sum_{m=0}^{\infty} \lambda_m (z_1 - z_2)^{-1} (z_1^{m+1} - z_2^{m+1}),$$

where

$$\sum_{m=0}^{\infty} (m+1) |\lambda_m|^2 < \infty.$$

The last condition on $\{\lambda_m\}$ is implicit, but not mentioned explicitly, in [6]. For other approaches to the problem of diagonal restrictions on polydisks we refer to Rudin [7, p. 53] (see also the references in [2]).

5. Inequalities on the ball

We now take the unit ball B as our fixed Reinhardt domain Ω and consider the function

$$\psi_q(z) = (1 - \langle z, \mathbf{1} \rangle)^{-q} \quad (z \in \mathbf{C}^n)$$

where q > 0. Clearly, $\psi_q \in \mathscr{P}_{\infty}(B)$ with $a_{\alpha}(\psi_q) = (q)_{|\alpha|}/\alpha!$ for $\alpha \in \mathbb{Z}_+^n$ and with $\Gamma_{\psi_q} = \mathbb{Z}_+^n$. The corresponding Hilbert space, norm and reproducing kernel are denoted by $\mathscr{H}_q(B)$, $||| \cdot |||_q$ and K_q , respectively. Thus

$$K_q(z,\zeta) = \psi_q(z \cdot \overline{\zeta}) = (1 - \langle z, \zeta \rangle)^{-q} \quad (z,\zeta B)$$

and

$$|||f|||_q^2 = \sum_{\alpha} \frac{\alpha!}{(q)_{|\alpha|}} |a_{\alpha}|^2$$

where $f \in H(B)$ with $a_{\alpha} = a_{\alpha}(f)$, $\alpha \in \mathbb{Z}_{+}^{n}$, and hence $\mathscr{H}_{q}(B) = \{f \in H(B) : |||f|||_{q} < \infty\}$. Theorem 2.1 has now the following form:

THEOREM 5.1. Let
$$f_j \in \mathscr{H}_{q_j}(B)$$
 where $q_j > 0$ for $j = 1, ..., m, m \ge 2$. Then

$$\prod_{j=1}^m f_j \in \mathscr{H}_{q_1 + \cdots + q_m}(B)$$

with

$$\|\prod_{j=1}^{m} f_{j}\|\|_{q_{1}+\cdots+q_{m}} \leq \prod_{j=1}^{m} \||f_{j}\|\|_{q_{j}}.$$

Equality holds if and only if either $\prod_{j=1}^{m} f_j = 0$ or each f_j is of the form $f_j = C_j K_{q_i}(\cdot, \zeta)$ for some $\zeta \in B$ and some nonzero constants C_j $(1 \le j \le m)$.

When $q \ge n$ the quadratic norm $||| \cdot |||_q$ admits an integral representation. To see this we let dv stand for the Lebesgue measure on \mathbb{C}^n and $d\sigma$ for the surface measure on $S = \partial B$, normalized so that $\sigma(B) = 1$. For $s \ge 0$ we consider the probability measure dv_s on \overline{B} , defined by $dv_0 = d\sigma$ when s = 0 and by

$$dv_s(z) = \pi^{-n}(s)_n (1 - ||z||^2)^{s-1} dv(z)$$

when s > 0. As a measure on \overline{B} , $dv_s \rightarrow dv_0$ as $s \rightarrow 0^+$, and

$$|||f|||_{n+q}^2 = \int |f|^2 dv_q \ (f \in \mathscr{H}_{n+q}(B), q \ge 0).$$

Here, the integration is carried over B when q > 0 and over $S = \partial B$ when q = 0. In the latter case, f in the integral represents the nontangential boundary values of f. It follows that $\mathscr{H}_n(B)$ is the Hardy space $H^2(B)$ and that $\mathscr{H}_{n+q}(B)$ for q > 0 is the weighted Bergman space $A_q^2(B)$ with $\mathscr{H}_{n+1}(B) = A_1^2(B)$ as the ordinary Bergman space. It also follows that $H^2(B)$ is a projective limit of $A_q^2(B)$ as $q \to 0^+$.

Let $R_n: H(B) \to H(\Delta)$ be the *n*-diagonal restriction mapping defined by

$$\{R_nf\}(\omega)=f(n^{-1/2}\omega,\ldots,n^{-1/2}\omega).$$

As in the case of the polydisk, the *n*-diagonal restriction of K_q , the reproducing kernel of $\mathscr{H}_q(B)$, q > 0, is the reproducing kernel k_q of $\mathscr{H}_q(\Delta)$. This observation leads to the following theorem. Its proof follows either from the general theory of reproducing kernels [1], [2] or from arguments similar to those given in the proof of Theorem 4.2.

THEOREM 5.2. Let q > 0. Then: (i) R_n maps $\mathscr{H}_q(B)$ into $\mathscr{H}_q(\Delta)$ with $||R_nf||_q \le |||f|||_q$ for every $f \in \mathscr{H}_q(B)$. Equality holds if and only if f is of the form

$$f = \sum_{m=0}^{\infty} \lambda_m P_m$$

where

$$P_m(z) = (z_1 + \cdots + z_n)^m \quad (z = (z_1, \ldots, z_n) \in \mathbb{C}^n).$$

and $\lambda_m \in \mathbf{C}$ with

$$\sum_{m=0}^{\infty} \frac{m!}{(q)_m} n^m |\lambda_m|^2 < \infty;$$

(ii) For $g \in \mathscr{H}_q(\Delta)$ with $b_m = a_m(g)$, $m \in \mathbb{Z}_+$, we have

$$R_n^*g = \sum_{m=0}^\infty b_m n^{-m/2} P_m$$

(iii) $R_n R_n^*$ is the identity operator on $\mathcal{H}_q(\Delta)$ and R_n^* is a linear isometry of $\mathcal{H}_q(\Delta)$ onto $N(R_n)^{\perp}$. Here $N(R_n)$ is the null-space in $\mathcal{H}_q(B)$ of R_n and $N(R_n)^{\perp}$ is its orthogonal complement in $\mathcal{H}_q(B)$. Moreover, $N(R_n)^{\perp}$ is the closure in $\mathcal{H}_q(B)$ of the linear span of $\{P_m\}_{m>0}$;

closure in $\mathcal{H}_q(B)$ of the linear span of $\{P_m\}_{m\geq 0}$; (iv) R_n is a linear transformation of $\mathcal{H}_q(B)$ onto $\mathcal{H}_q(\Delta)$ with $||R_n|| = 1$, and $R_n^*R_n$ is the orthogonal projector of $\mathcal{H}_q(B)$ onto $N(R_n)^{\perp}$.

The following corollary is a special case of part (i) of Theorem 5.2 (compare Rudin [8, p. 127]).

COROLLARY 5.3. Let $f \in H^2(B)$. Then $R_n f \in A_{n-1}^2(\Delta)$ and

$$\int_{\Delta} |R_n f|^2 \, dA_{n-1} \leq \int_{S} |f|^2 \, d\sigma.$$

Equality holds if and only if f is of the form

$$f = \sum_{m=0}^{\infty} \lambda_m P_m \quad \text{with } \sum_{m=0}^{\infty} m! n^m |\lambda_m|^2 / (n)_m < \infty.$$

REFERENCES

- 1. N. ARONSZAJN, Theory of reproducing kernels, Trans. Amer. Math. Soc., vol. 68 (1950), pp. 337-404.
- F. BEATROUS and J. BURBEA, Positive-definiteness and its applications to interpolation problems for holomorphic functions, Trans. Amer. Math. Soc., vol. 284 (1984), pp. 247-270.
- 3. J. BURBEA, Inequalities for reproducing kernel spaces, Illinois J. Math., vol. 27 (1983), pp. 130–137.
- 4. _____, Inequalities for holomorphic functions of several complex variables, Trans. Amer. Math. Soc., vol. 276 (1983), pp. 247–266.
- 5. P.L. DUREN, Theory of H^p-Spaces, Academic Press, New York, 1970.

JACOB BURBEA

- 6. M. MATELJEVIĆ AND M. PAVLOVIĆ, New proofs of the isoperimetric inequality and some generalizations, J. Math. Anal. Appl., vol. 98 (1984), pp. 25-30.
- 7. W. RUDIN, Function theory in polydisks, Benjamin, New York, 1969.
- 8. _____, Function theory in the unit ball of \mathbb{C}^n , Springer-Verlag, New York, 1980.
- 9. S. SAITOH, The Bergman norm and Szegö norm, Trans. Amer. Math. Soc., vol. 249 (1974), pp. 79-82.
- S.E. WARSCHAWSKI, On the differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc., vol. 12 (1961), pp. 614–620.

UNIVERSITY OF PITTSBURGH PITTSBURGH, PENNSYLVANIA