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TANGENTIAL LIMITS OF BLASCHKE PRODUCTS AND
FUNCTIONS OF BOUNDED MEAN OSCILLATION

BY

ROBERT D. BERMAN AND WILLIAM S. COHN*

1. Introduction

Let A and C denote the disk {Izl < 1} and its boundary {Izl 1}. For
{ ak} a sequence in A satisfying the Blaschke condition (1 lakl) < oo, let
B(z) B(z, { ak }) denote the Blaschke product

ak ak 7,
2 A,ix lakl 1 kZ’

where we set k/lak] -1 if ak 0. Let H, 0 < p oo, denote the usual
Hardy classes of analytic functions on A, and let BMOA be the space of
analytic functions on A having bounded mean oscillation. Corresponding to
each Blaschke product B(z), let

K,(B) K2(B) N BMOA,

where

H @ SH

is the orthogonal complement in H2 of the invadant subspace BH2. Recall
that every function in He, 0 < p < oo, has finite nontangential limits defined
almost everywhere (a.e.) with respect to linear Lebesgue measure (dO) in C.
Also, every Blaschke product is contained in H and has nontangential limits
of modulus I a.e. [dO], and H BMOA f30<,<ooHp. (See [7] and [9] for
background concerning the spaces of functions defined above.)

In this paper we give conditions on the zero sequence (ak } of the Blaschke
product B(z, (ak}) which insure the existence of certain nontangential and
tangential limits for every one of its subproducts and for the functions in the
class K,(B). The following notation will be used to state our main results and

Received April 18, 1985.
(C) 1987 by the Board of Trustees of the University of Illinois

Manufactured in the United States of America

218



TANGENTIAL LIMITS OF BLASCHKE PRODUCTS 219

in the sequel. The mapping

F’[O, r] -, (Iz < 1)

is a Jordan arc such that Arg F(t) t and

kr(t) l lF(t)

is strictly increasing on [0, r] with tkr(0) 0. Associated with I" is the set

r {z’0 < Argz < r,0 < Izl <lr(Argz)l}.

When it is convenient and there is no chance of confusion, the subscript I’ in
r and fir will be suppressed.

In addition, for any subset E of A and ,/ C, E denotes the closure of E,

if.= (z" z Eor E}

where 2 is the complex conjugate of z, and

When 1 E t3 A and f(z) is a complex-valued function defined on A such
that

rim /(z)
Z--,

exists, we say that f(z) has an ,1E-limit. If fir is c.oncave pward (respectively
satisfies tp.(0)= 0), then we shall call F, fir, F, and ur concave upward
(respectively tangential).
The following result proved in {}2 establishes the fundamental relationship

between B(z) and K,(B) with respect to ,lflr-limits.

THEOREM 1.1. Let 1 C and suppose that r is Cl-smooth. The following
conditions concerning the Blaschke product B(z) are equivalent"

(1) Every subproduct f(z) of B(z) has an O-limit (of modulus 1).
(2) Every function f K.(B) has an -limit.
The proof of Theorem 1.1 utilizes a characterization of condition (1) by

Leung and Linden [12] stated as Theorem B in {}2, along with a second
characterization provided by Theorem 2.1. Theorems 1.1 and 2.1 generalize
results of the second author in [6].

In {}3 we consider conditions of the type given by Frostman [8] and Cargo
[4] that insure the existence of nontangential and tangential limits off of small
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exceptional subsets of C. Here, we consider more general regions and improve
their results which give exceptional sets of capacity 0 by showing that they
have Hausdorff measure 0. Recall that if t is a modulus of continuity (for
example, a continuous, increasing, concave-downward function vanishing at 0)
defined on [0, 2r], then to is a determining function for a Hausdorff measure
H, defined on Borel subsets of E of C by

where the infimum is taken over all countable covers d9 of E by open arcs A
having linear measure Ial < t. (See [2] and [13] for background regarding
moduli of continuity and Hausdorff measure.)

THEOIM 1.2. Suppose that k r is Cl-smooth and to 0 is a continuous
modulus of continuity that is C-smooth on (0, 2r] and satisfies

(1.1) liminf t0(t) [k(Mt)]’
t_,o to’(t-----ff (Mt) > 1

for some M (0,1). If B(z) B(z, { ak }) is a Blaschke product such that

(1.2) to * k-:(1 Iakl) < o,

then there exists a Borel subset E of C with H(E)---0 such that every
subproduct f(z) of B(z) has an lfir-limit (of modulus 1) for each 1 C\ E.

It is elementary to check that (1.1) is satisfied when (t) ta, 0 < fl < 1,
for any concave-upward if, or when k(t) eta, c > 0,1 < a < oo, for any
concave-downward to.

Letting k (t) ct where c > 0, we get a sharpened and generalized form of
Frostman’s original result concerning nontangential limits.

COROLLARY 1.1. If

and

liminf
to(t) > 1

t--,O tto’( )

E-x(1- lakl)<

then there exists a Borel subset E of C with H(E)---0 such that every
subproduct of B(z) has nontangential limits (of modulus 1) at each point of
C-E.
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Taking w(t) t, we obtain the next corollary.

COROLLARY 1.2. If

(1.3) lim inf
sV/(s )

-,0 V(s) > 1

and

(1.4) ]V-x(1- lal) < oo,

then every subproduct f(z) of B(z, (ak }) has an f-limit (of modulus 1) for
each in a subset E of C with EI 2

In {}4 we construct Blaschke products which demonstrate the sharpness of
Theorem 1.2 and Corollaries 1.1 and 1.2.

THEOREM 1.3. Assume that is a continuous modulus of continuity and both
w Ito,2,,l and k kr are CLsmooth. IrE c_ C is a Borel set such that H,(E) O,
then there exists a Blaschke product B(z) B(z, (ak )) such that

Y’. * k-(1- lal)< oo and liminflB(z) 0, n E.
z---’ /,z

Moreover, if E is a compact set, then there exists a subproduct f(z) of B(z)
that fails to have an i-limit at each point *1 E.

Theorem 1.3 can be thought of as a converse to Theorem 1.2 (for allowed w
and k). While Theorem 1.2 insures that the exceptional set EB of r where a
Blaschke product B(z, {ak}) satisfying (1.2) does not have an flr-limit of
modulus 1 is of H,o-measure 0, Theorem 1.3 shows that each Borel set E
having H-measure 0 is contained in EB for some Blaschke product B(z, { ak })
satisfying (1.2). This shows that under the assumption (1.2) holds, H-measure
0 is the "correct" description of the size of the exceptional sets.
The next theorem shows that the conclusion of Corollary 1.2 cannot be

drawn if a weaker condition is placed on the sequence {1 akl ).

TH.OP.M 1.4.
such that

If V V r is CX-smooth and (tk} is a sequence in [0,1)

0.5) tk) < O0

and

(1.6) _-1(1 tk)---- 00,
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then there exists a Blaschke product B(z) B(z, { ak }) such that

lakl tk, k 1,2,...,

and

(1.7) liminfIB(z)l O, *1 C.

Moreover, there is a subproduct f(z) of B(z) for which (1.7) holds with f(z)
replacing B(z), and

(1.8) limsup [f(z)[ 1, C.
Z--,

In particular, f(z) fails to have an lf]-limit .for every *l e C.

In connection with the sharpness of Corollary 1.2, we also note that a
construction of Frostman [8; p. 176] shows that hypothesis (1.3) cannot be
omitted. In fact, if q’(0) 0 and lim,_o+[t log(1/t)/+-(t)] oo, then there
exists a Blaschke product B(z, (ak }) with Eq-(1 [ak[ ) < oO, but

(1 la,l)log 1/(1 lakl) oo

and for each /e C, there exists a subproduct f(z) of B(z) that fails to have a
radial hmit at .
At the end of {}4 we give two theorems related to Theorem 1.4 where we

focus specifically on the behavior of the Blaschke products on the rotates of F,
not just the rotates of r. Theorem 4.1 is an analogue of Theorem 1.4 where

is replaced by /F but stronger assumptions are made on qr. In Theorem
4.2 we drop all the assumptions on er except that it is tangential:.We show
that there exists a Blaschke product B such that (1.7) holds with /f] replaced
by F. Theorems 4.1 and 4.2 were motivated by questions posed to the
authors by Pamela Gorkin.

Finally, we state a corollary of the results of this paper for a case that seems
to be of particular interest. Note that Ht-measure is linear measure.

COROLLARY 1.3. Suppose that qr(t) ct% c > O, a > 1, and fl (0,1].
Let E be a Borel subset of C. Then there exists a Blaschke product B(z)
B(z, { ak }) for which E(1 lak[)/ < oo and B(z) fails to have -limits of
modulus I at each point of E if and only if Ht(E) O.

Let { tk} be a sequence in [0,1) satisfying (1.5). Then

(1.9) lak[ tk, k-- 1,2,...,
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implies that B(z, { ak}) has an l-limit (lF-limit) a.e. [dO] if and only if

Y’(1 -tk)l/a < 00.

if

E(1 t,)

then there exists a Blaschke product B(z)= B(z, {ak}) satisfying (1.9) that
fails to have an lF-limit of modulus I at each point rl of C; in fact,

liminflB[nF(t)]l= O, n c.
tO

Throughout this paper we shall use the convention that c (possibly sub-
scripted) denotes a positive constant, independent of certain indicated param-
eters, whose value may change in a sequence of inequalities.
The authors wish to express their gratitude to P.R. Ahem and G. Piranian

for helpful discussions concerning the contents of 3 and Theorems 4.1 and
4.2.

2. Local conditions for tangential limits

In this section we give necessary and sufficient conditions for Blaschke
products and functions in K,(B) to have specified tangential limits at a point
of C. We also give a simple sufficient condition that will be used in 3 to prove
Theorem 1.2. For simplicity, we shall assume that 1 1 and consider only
fir-limits. The modifications necessary to extend our results to flr or r/-limits
will be apparent.
We start by stating a theorem concerning radial (and nontangential) limits

of Blaschke products which includes results from Frostman [8] and Cargo [3;
p. 425].

THV.OmM A. The following conditions on a Blaschke product B(z)=
B(z, { ak }) are equivalent:

(i) E 1- la,I
I1 akl

< oo.

(ii) B(z) and each of its subproducts have radial limits of modulus 1 at 1
( Frostman ).

(iii) f11 lak!dr <Ir-akl

for (0,1) sufficiently close to 1 (Cargo).
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We shall also need the foflowing result of Leung and Linden [12] which
provides the analogue of Frostman’s characterization for more general fr-
limits.

TEOmM B (Leung and Linden). Suppose that r is Ct-smooth. Then
B(z, (a)) satisfies (1) of Theorem 1.1 (with 1) if and only if

(a) y,. 1- lakl
[1 akl

< oO

and

1 la/,I O.(b) lira Y" 1- II’(t)l + It- IArgakllt’*0+ 1/2t< [Arg akl <2t

In order to prove Theorem 1.1, we will show that condition (b) of Theorem
B can be replaced by a condition involving the limiting behavior of certain
integrals. The following notation will be used. For each (0, r/2), let L
denote the line segment with one endpoint on the real axis and the other at
F(t) which subtends an angle of r/4 with the real axis.

THEOKEM 2.1. Suppose that r is CLsmooth. The following conditions on a
Blaschke product B(z) B(z, ( ak )) satisfying (a) of Theorem B are equiv-
alent:

1- lakl ] =0.(b) lim 1- II’(t)l + It- Argak[t’’O+ t<Argak<2

t-,o+ 1 I.12 Idg’l O.

Proof We first show that (b’) implies (b). Let f(z) be any subproduct of
B(z). Then by Theorem A we have

(2.1) limf(r) )
rl

for some h C. By the Schwarz-Pick theorem (see [10; p. 226]), it follows that

1- If(z)l 2 1- IB(z)l 2

If’(z)l 
1- Izl 2 1 Izl 2

z A.
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If z L and r is the endpoint of L on the real axis, then

-/(r,) a

fL 1- IB(ff)l u
<

1- Iffl
We conclude from (2.1), (2.2), and (b’) that f(z) has an f-limit of h.
Condition (b) now follows from Theorem B (stated relative to fr instead of
fir) since f(z) was an arbitrary subproduet of B(z).

Suppose now that (b) holds. It is easy to verify that

1- IB(z)l 1- lal
1- Izl 2

-<
Iz-akl 2’ zA.

(See also [1; p. 80].) Thus

where

/" 1- IB()I 2

1- I12
1 lalIdOl < f I- al

IdOl

=Ix + I2 + I3 + I4,

=’.fzl-lal
2

I akl 2 IdOl

and S is the set of all ak such that

0 < Arg ak < t/2,

t/2 < Arg ak < 2t,

2t < Arg ak <

Im(ak) < 0,

j=l,

j=2,

j=3,

j=4.

We must show that lim t_. 0/Ij 0 for j 1, 2, 3, 4. Consider first 12; this is
the only time (b) will be used. Let Q(t) be the quadrilateral contained in
(Im z > 0) defined by the following properties: two sides are parallel to the
imaginary axis, one side is contained in the real axis, and the remaining side is
contained in the radius passing through I’(t); the side on the real axis has
midpoint r and right-hand endpoint Re[F(t)], while the side parallel to the
imaginary axis with one endpoint Re[F(t)] has as its other endpoint F(t).
By our assumptions and Theorem B (relative to fir), B(z) has an fir-limit

of modulus 1. Since Q(t)_ fir, it follows that for t > 0 sufficiently small,
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there is no ak in Q(t). Also, for in this range, there is a constant c > 0
independent of k or t such that

IF(t) al < cdist[ak, Lt]
when t/2 < Arg ak < 2t. Here and in the sequel, dist denotes Euclidean
distance in the plane. Thus, for t > 0 small, we have

--lakl 2 1- [alId’l < c lr(t )

c
1- lakl

1- Ir(t)l + It- Argakl

Using (b), it follows that lim t_.o/I2 0.
For I, the assumption that 0 < Arg ak < t/2 implies that for > 0 suffi-

ciently small, dist[ak, Lt] >_ ct. Hence, for such we have

1
I c ILtl

s
1- lakl

sl

< cE 1- lakl
Sl

Arg (ak)’

where ILtl denotes the length of Lr Since k-(0) [0, oo), we have

Arg ak > cl 1 akl
for allowed ag, and (a) of Theorem B yields limt_.,0/I 0.
For 13, note first that there is a constant c > 0 independent of and k for

which 2t < Arg ak < r such that dist[a, Lt] >_ C Arg ak. Thus,

13<c
1- la!2

s (Arg a)
.t

since ILtl ct. We conclude that

/3 < c
1 lal
Arg a Arg a

Atg ak

+C E
Arg ak

<c E 1- lal +c
2t<Arga<r

Arg ak
E

2t< Arg ag < i/

1- lal
Arg ak

1- lal
Arg ak

and (a) of Theorem B implies the desired result.
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Finally, consider 14. Let R be the projection of L onto the real axis.
Evidently

dist[ak, Re < dist[ak," ], L,,

if ak satisfies Im(ak) O. Thus

/4 <cfl- lakl 2

s Ir akl 2 dr.

From the assumption (a) of Theorem B and Theorem A, it follows that

lim s fl 1- lakl2
t’*O+ t[r akl 2 dr O,

and the proof is complete.
We turn now to K,(B). The following result was proved by the second

author in [6].

THEOREM C.
equivalent:

The following conditions concerning B(z) B(z, { ak }) are

(i) E 1- lakl
I1 akl

< "
(ii) ]Jmr x-f(r) exists for all f K,(B).

We now prove a generalization.

THEOREM 2.2. Suppose that kr is Ct-smooth. The following conditions
concerning B(z) B(z, (ak)) are equivalent:

(i) Condition (i) of Theorem C holds and

lim /" 1- IB(’)I 2

t-,o+ JL, 1-I’l 2 IdOl =0.

(ii) f(z ) has an f-limit for all f K,(B).

Proof. We first show that (ii) implies (i). By the assumption (ii) and
Theorem C, it follows that (i) of Theorem C holds. By Theorem A, if f is a
subproduct of B, then lirnr_.tf(r) h where IXl 1. This taken together
with the fact that

1 /(a)/(z)
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belongs to K,(B) for all a A, implies that f has an f-limit of . We
conclude from Theorem B (relative to fl) and Theorem 2.1, that (i) must hold.
To show that (i) implies (ii), it suffices to establish an inequality of the form

1- IB(z)l 2

[/’(z)[ <c
1-Izl 2 zA,

for each f K,(B). (Here, c will depend on f.) For then (2.2) holds (with a
constant) for f K, and condition (i) combined with Theorem C gives the
result. We need the integral representation for f K,(B) obtained in [6]; that
is,

1 f[--] df(z)= Jro[B(.) X-z’ zh,

where k H (see [6; Lemma 3.2]) and F0 tg-/,, 3% [am, tim] ----- A is the
(rectifiable) Carleson curve described in [6; [}2] such that

(I)

(II) 0<c1< am- fl <c2<1,

and for ,, (a,, + fl)/2,

(III) (,) is an interpolation sequence and

(IV) 0 < dt <
1 -In(z,

< d2 < oo, for z A.

Thus, for z A,

l/’(z)l < cE 11 zl"
The use of property (II) above and an elementary estimate yields a constant
c > 0 such that

1- I12If’(z)l < cE I1 =
On the other hand, we claim that there exists c > 0 independent of z A,

such that

(2.3) < c(1 -IB(z,
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If e (0,1) and we consider only z in the set (IB(z, {,})1 > e}, then (2.3)
follows (with c depending on e) from the equality

1 -IB(z, (,,,}) 12= El
J

B(z {t,, }{-1)12 (1 I0jl2)(1 Izl 2)
I1 -jzl

However, since ( to,, } is an interpolation sequence, the left-hand side of (2.3) is
bounded above uniformly for all z A. This shows that c may be chosen so
that (2.3) holds for z in the set (IB(z, (to,,))[ < e). The claim follows.
From (2.3), we conclude that

1 =
If’(z)l < c

1 Izl 2
z A,

and the proof is completed by applying property (IV).
Theorem 1.1 is an immediate consequence of Theorems 2.1 and 2.2. We note

that condition (b’) of Theorem 2.1 makes sense if B is replaced by an arbitrary
inner function q, that is, a bounded analytic function having radial limits of
modulus 1 a.e. [dO]. With K,(tp) defined analogously to K,(B), it is easy to
show that a generalized form of Theorem C (see [6; Theorem 3.1]) and
condition (b’) of Theorem 2.1 imply that f(z) has an f-limit for every
f K,(tp). The opposite direction is undoubtedly tree, but in order to use the
same method of proof as above, it would be necessary to generalize Theo-
rem B.
The final theorem of this section provides a simple sufficient condition for

the existence of a tangential limit. Cargo [4; Theorem 1] originally proved this
theorem for tkr(t)---ct, a > 1, c > 0, generalizing a result of Frostman [8]
for a 1.

TaOtEM 2.3. Suppose that tk tkr is Cl-smooth. If B(z) B(z, (ak}) is
a Blaschke product such that

1- lal(2.4) ’. tk(Mi1 akl) < oo

for some M (0,1), then every subproduct f(z) of B(z) has an fr-limit of
modulus 1.

Proof. If F is not tangential, then the theorem follows from Theorem A
and the fact that the existence of a radial limit implies the existence of a
nontangential limit for any function in H.
For the remainder of the proof, we assume that F is tangential. We shall

show (2.4) implies conditions (a) and (b) of Theorem B (with Arg akl
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replaced by Arg ak). Condition (a)is an immediate consequence of (2.4). As
before, this implies that

MI1 akl <_ Arg(ak), 0 < Arg ak < 2t,

for t > 0 sufficiently small. It now follows from (2.4) that

1- ]aglY’ (Arg ak) < "
In addition, since is Cl-smooth with limt_.0’(t) 0, the mean value
theorem implies that

(2.6) Ik(Arg ak) k(t)l < It Arg akl

for 1/2t < Arg ak < 2t and > 0 sufficiently small. Applying (2.5) and (2.6)
yields condition (b). The required conclusion now follows from Theorem B,
and the proof is complete.

3. Global conditions for tangential limits

In this section we prove Theorem 1.2. The proof is based on the local
sufficient condition of Theorem 2.3 and a modification of an argument
appearing in [5].
We shall use the following theorem concerning Hausdorff measure (see [11;

Theor6me III, Chapitre II, p. 27]). We assume throughout this section that
to 0 is a continuous modulus of continuity that is CX-smooth on (0, 2r].

TOM D. The following conditions on a Borel subset E of C are equiv-
alent:

(1) Ho,(E) > O.
(2) E supports a finite positive Borel measure I with %(t) 0 [a(t)].

Recall that every finite positive Borel measure/ on C can be identified with
the monotone nondecreasing function

/2(t) g({e’e’0 < 0 < t}), t [0,2r].

Here and in what follows, % denotes the modulus of continuity of/2.

Proof of Theorem 1.2.
show that

Let O(t)= ff(Mt). By Theorem 2.3, it suffices to

1- lakl }E rl C’_, O(ir akl) oo
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satisfies H(E) 0. For each positive integer m, let

0m . C" E (l akl) 1
k>m

and

Gm { Ore" I*/ a,I < ’b-(1 la,I) for all k rn }.
By Theorem D, it is enough to show that for a finite positive measure g on C
such that %,(t) O [,(t)], we have

lim g(Om) O.
m oo

We shall consider Gm and Om\ Gm separately. First, we have

t.t(Gm) E bl,({ c. Il akl < -x(1 lakl)})
k>m

_< C 60o-1(1- lakl )
k>m

[1 1c , k-x(1- lakl)
k>m

< c E ,. -(1- lakl),
k>m

using the fact that t is a modulus of continuity. Hence (1.2) implies that
tim_.() O.
Next let

rk(t ) g(( C" akl < t}), t > 0,

for each positive integer k. Then

1- lakl dl()I3’( Om Gm) E i)(l\Gmk>m k

k>m -x(1- lakl)

Integrating by parts, we may express the k th term in the last sum as
Tk1) + Tk2), where

T) (1 lakl)
-a(1- lakl)

’(t)vk(t)
dt

(t)2
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and

It follows easily that

lira E T(2)=0
moo k>m

and it remains only to show that

lim E T)-0.

Since %(t) O [o(t)], we have

r2’ c(1- la,I)f: w(t)*)}t) dt
-t(1- la,l) (t

_< c(1 laal)f(2) 0o-X(s) ds
"1-laal S2

using the change of variables (t) s.
We claim that there is a constant r > 1 such that for s > 0 sufficiently

small,

(3.1)

After some algebra, it can be seen that (3.1) is equivalent to

(3.2) o * (I)-l(s) r
$2

>
.,, o a,-l(s)-l(s), ].

Since (t) s, inequality (3.2) is equivalent to

o(t) r
(t) >- r-1 ’(t)

for t > 0 sufficiently small. By (1.1) and the fact that

r
lim r-l =1
r-

we conclude that (3.1) holds for s > 0 sufficiently small and r sufficiently
large.
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To complete the proof, choose so > 0 sufficiently small so that (3.1) holds
for 0 < s < so. Let m be sufficiently large so that 1 [ak[ < so for k > m.
Now by (3.1), we have

ft [ -x(1 la*l)so o. dp-t(s)
ds < c

-lakl $2 1 lak[ So

and

(2),,, -(s) ds < c

Thus

E E
k>m k>m

ooO-t(1 lal) + c E (1 lal).
k>m

Once again using the fact that o is a modulus of continuity and (1.2), we see
that

lim E Tx)=0"
k---, oo k > m

This completes the proof.

4. Construction of Biaschke products

In this section we prove Theorems 1.3 and 1.4 along with two other
theorems in which conditions are placed on the behavior of the Blaschke
products along all the rotates of F instead of
We begin by stating a lemma (without proof) that is quite elementary but

very useful. As before, it is assumed that k Pr is strictly increasing.

LMMA 4.1. Suppose that a A and let

(4.1) Ia {r C" a }.

If 1 al < r(r), then Ia is an open arc centered at alia such that

(4.2) IIal 2k-t(1 lal).

In the remainder of this section, we use the notation In or In, k to denote the
set defined in (4.1) when a is replaced by an or an, k"
We turn now to Theorem 1.3. The construction used to prove this theorem

is a modification of one presented in [5; Theorem 2.5].
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Proof of Theorem 1.3. Let E be a Borel subset of C such that H(E) O.
Then for each positive integer n, we can find a cover of E by open arcs
{ A., k }o_ such that for r., k [A., k l/2, we have

(4.3) , to(r,,k) < 2-".
k=l

Observe that if E is compact, we may assume that the cover is finite. Let /,, k

be the midpoint of A, k and define

It follows immediately from the definition of an, k and (4.3) that

n,k n,k

Also, since k is increasing, we have 1- an, kl < k(r) and Lemma 4.1
implies that An, In, for each k, where In, is as in Lemma 4.1.

Let B(z)= B(z,(an,}n,). Then for each rl E, the set contains
infinitely many zeros an, . Thus

(4.4) liminflB(z)l 0, /e E.
Z--*,z

In case E is compact, the observation that for each n, the sequence (a, k }
may be chosen to be finite makes it clear that there is a subsequence {n }’ of
the positive integers with large gaps such that if

f(z):B(z,{a.,k}y,k),
then for each rl e E we have

lim sup If(z)l 1
Z-,z

while (4.4) still holds with f replacing B. This completes the proof.
We proceed now to Theorem 1.4.

Proof of Theorem 1.4. Let { 1]k} be any sequence of points in C and let
a k tkrlk for each k. It follows from Lemma 4.1 and (1.6) that EIIkl
with { Ik }o as in the lemma. Thus we can dearly choose {k } SO that the Ik
revolve around C infinitely many times and each point C is contained in
infinitely many of them.
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Let B(z) B(z, { ak }’) with { lk } chosen as above. Then for 1 C, the
Blaschke product B has infinitely many zeros in r/O so that (1.7) holds. The
last assertion is easily proved by defining a subproduct f of B using a
subsequence { ak.} whose indices have large gaps for which each C is
still contained m lnfimtely many Ik. The theorem is thereby established.

The remaining two theorems of this section deal with the limiting behavior
of Blaschke products along the rotates of F. We shall need several lemmas.

L.MMA 4.2. For each z A and each positive integerj, the Blaschke product
B(z) B(z, ( ak }) satisfies

[aj- z[
In(z)l-< 1- la l"

Proof

IB(z)l =lB(z,

For the next lemma, let

and

A(a,r) {Iz-a[ <r}

aA(a,r) C" A(a, r) O

when a A and r (0,1 lal).

LEMM 4.3. Suppose that kr is CX-smooth and concave upward. If
(0, r) and 0 < r < k(t)/2, then

r
’(t) < IAa[nr(t)’rll’ rl C.

Proof Without loss of generality assume that rl 1. Let x (0,1). Then
by the assumption ,on r and the concavity of k which implies k(t) < tk’(t),
we have 0 < r/k’(t) < t/2. From the mean value theorem it follows that

[ xr](t) ff
xr ,(to)’(t)
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for some 0 (0, t). The concavity of k implies k’(t0)/k’(t) _< 1 so that

(4.6)

Let

[ xr](t) t ’(t) <r

1 k k’(t)

Then since F(t)= [1- (t)]eit, it follows from (4.6) that z A[I’(t), r].
Since

we conclude that

and hence

z exp i;(t ) F

(exp ,(t) Aa[r(t),r]

xr
’(t) -< IAa[r(t)’

The desired inequality follows since x (0,1) was arbitrary and the proof is
complete.
As a direct consequence of Lemma 4.3 we have the following estimate.

LV.MMA 4.4. Let a A with 1 al < q(r) and suppose that 0 < r <
(1- lal)/2. Then

r

’[-x(1 lal)] -< IAa(a’r)l"

Proof Let 0 Arg a. If -1(1 lal) and rl e i(O-t), then a nF(t),
and we may apply Lemma 4.3.
We are now ready to prove an analogue of Theorem 1.4.

THEOREM 4.1.
satisfies

Suppose that k kr is CLsmooth, concave upward, and

(4.7) liminf
t_.o t’(t) > O.

If { tk} is a sequence in [0,1) such that E(1 tk) < and

(4.8) E-1(1 -tk)= ,
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then there exists a Blaschke product B(z) B(z, ( ak }) such that ak tk,
k 1,2,..., and

(4.9) liminflB[F(t)][=0, C.
t--* 0

Moreover, there is a subproduct f of B for which (4.9) holds with f replacing B
such that

(4.10) limsuplf[nI’(t)ll 1, C.
t-.0

In particular for every *1 C, the function ffails to have an ,1F-limit.

Proof of Theorem 4.1.
rk }o such that

By condition (4.8) it is possible to choose a sequence

rk =0lim 1 kk--, oo

and

rkE 1 tk
-1(1 tk) c.

By the assumption (4.7) it follows that

rkE t,,)]

Thus if (k }o is an arbitrary sequence in C and ak tk’Ok for each k, Lemma
4.4 implies that

laa(ak,rk)l- .
As in the proof of Theorem 1.4, we can now select ( r/k }o SO that each point
/ C lies in an infinite number of the Aa(ak, r). Letting B(z) B(z, (ak}),
it follows from Lemma 4.2 and the choice of the rk that

lim max{lB(z)[’z A(ak, r) } 0.
k--. oo

Since for each r/ C, the curve r/I’(t) intersects infinitely many of the disks
A(ak, rk), we conclude that (4.9) holds. The last assertion is proved as in the
proof of Theorem 1.4. Theorem 4.1 is thereby established.

In the final theorem, we drop the assumption of smoothness on 6 and
assume only that it is tangential.
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TnEOm3M 4.2. If F is tangential, then there exists a Blaschke product
B(z) B(z, ( ak }) such that

(4.11) liminflB[nF(t)][--- 0, n C.
t0

TO prove Theorem 4.2, we establish some notation and state without proof
an elementary lemma. For each 0 (0, r), let l(O) be the line passing through
1 at an angle of 0 with the vertical. Let 0 be the smallest > 0 such that
F(t) 1(0). Such a to must exist because F is tangential. Let a(O) be the
smaller arc of C with endpoints 1 and eire.

L.M 4.5. There exists a constant c > 0 such that

(4.12) 0 >_ cla(O)l

Proof of Theorem 4.2. Select (0j) in (0, r) such that

(4.13)

By Lemma 4.5, this implies

(4.14)

Let mj be the positive integer satisfying

2r 2r(4.15) ,*’J’’’a[) < m < [a(8)[ + 1.

For each positive integer j, let Sj be the set of points in the radial segments

R,k [IF(to)le="i/m’, e2rik/m’], k-- 0,..., m,- 1,

at distances

(4.16) (toj)(1 1/2J) 1= 0,1

from C. Finally, let (a,,, }’ be an enumeration of the points in each of the sets
Sx, S,
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By (4.13)-(4.16) we have

j--1 1=0

E mj2Jl(toj)
j=l

j= j=

Thus (a) B(a, { a=}g) is a wall-defined Blasce product. From (4.15), we
se that for each positive integer j and C, there ests k {0,..., m_ }
such that F R# . From Lemma 4.2, it follows that

2 , a U
for each j. We conclude that (4.11) holds and the proof is complete.
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