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THE GROTHENDIECK GROUP OF A CLASSICAL ORDER
OF FINITE LATTICE TYPE

BY

ALFRED WIEDEMANN

Let R be a complete Dedekind domain with quotient field K, and let A be
an R-order in the separable K-algebra A K (R)R A. We assume throughout
that A is offinite lattice type, that is A has up to isomorphism only finitely
many indecomposable lattices. In this note we provide an explicit formula for
the Grothendieck group G0(A) of A and point out some first applications. The
investigations leading to this result were initiated by some discussions with
Sibylle Langkopf and K.W. Roggenkamp on the structure of the Grothendieck
group of a Schurian order [8]. I am especially grateful to S. Langkopf for
computing the Grothendieck groups of many Schurian orders of finite lattice
type and pointing out that they all turned out to be torsionfree; a result which
holds in general, as we shall see in (4.2).

1. Notations and the theorem

(1.1) Firstly, A being separable, we have a decomposition

1-I

of A into simple factors (D.) for s. N and D. a finite dimensional skew
field over K. We denote by . the unique maximal R-order in D. and by YI.
its radical. Moreover, we choose a maximal order F I-[

_
F. in A containing

A. Let L. be the indomposabl F.-lattic, and put V. L,,/II,,L,,, v

(1.2) Secondly, let S,..., S be the non-isomorphic simple A-modules and
let P,..., P be their projective covers. Then let o. be the multiplicity of S
in a composition series of V. viewed as a A-module. With these multiplicities
we form the integral vectors

V (Vlv V2v Vev ) Z(e), v 1,..., o

and define U as subgroup of Z() generated by the vectors v,..., Vo.
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(1.3) THeOReM.
sum Z() z(e)/u.

The Grothendieck group Go(A) is isomorphic to the direct

Remark. In [2], M. Auslander and I. Reiten consider a commutative
diagram of abelian groups involving an exact sequence isomorphic to

Z() ---, Z() ---, Go(A ) --, Z() --, O,

showing that G0(A) -- Z() @ z(e)/H H a subgroup of Z (e) generated by o
elements.

(1.4) Obviously, the formula in the theorem is additive with respect to
taking direct products of R-orders and also holds for a hereditary R-order A
in a simple K-algebra, namely in this case we have o 1 and U Z(1,..., 1)
< Z(), and clearly

Z (Z(O/Z(1,...,1)) Z(O -- Go(A).

Therefore, we assume from now on that A is two sided indecomposable,
non-hereditary and has--up to isomorphism--n indecomposable left lattices
which we number by Mx Px,..., M P, M+x,..., M.

(1.5) We denote by K0(mod A, 0) the quotient of the abelian group freely
generated by all the isomorphism classes [M] for M a A-lattice, modulo the
subgroup generated by all relations of the form [M] + [M’]- [M M’].
Then K0(mod A, 0) is free and may be identified with the free abelian group
having [M], i-- 1,..., n as generators. Recall that the Grothendieck group
Go(A) of A is per definition the quotient of K0(mod A,0) modulo the
subgroup generated by all the relations of the form [M’] + [M"] [M] for
each short exact sequence 0 M’ M M" 0 of A-lattices [5]. Note
that Go(A) K0(mod A) in the notation of [2].

(1.6) For each e + 1,..., n let

be the almost split sequence of M [1] giving rise to the relation

g, [M] + [N] [E] in Xo (mod A,O).

Since A is of finite lattice type, we know by a result due to Auslander and
Butler [2], [4] that G0(A) is the quotient of K0(mod A, 0) modulo the sub-
group generated by all the relations g:

Go(A ) --- Ko(mod
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Additionally for 1,..., e we put

p [P]- [radAP].

2. Review of the Igusa-Todorov algorithm for orders

In this section we recall the procedure and one of the main results of the
integral version [10] of the algorithm invented by Igusa and Todorov for the
computation of the preprojective partition of a representation finite artin
algebra [3], [6].

(2.1) We start with the integral (n + e) n-matrix

(0)GO gji lj<n+e,l<i<n

owhere the integers gji are defined through the following equations in
Ko(mod A, 0):

and

o
gn+k,l

O,= Eg)[M] forl<i<e,
j-1

.,= Eg,[M] fore+li<n,
j-’I

={1 ifk=l
0 ifkl

forl<ke, 1 <l<n.

Then GO has the form

O

Pl

Mee+1
M

rl

n+l

n4-e

M MPl Pe e+l n

1 0
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Since Ko(mod A, 0) is free abelian on the generators [M], i= 1,..., n we
may identify Ko(mOd A, 0) with the space of integral columns of length n by
assigning

0
1
0

Via this identification we consider the columns of the upper n n-part of the
following integral (n + e) x n-matrices G’, 0,1,..., m,. as elements of
K0(mod A, 0).
The following facts will be important for us.
(2.2) Performing column operations with the first e columns, that is adding

to each column multiples of the first e columns, we reach in a first step the
matrix G (gi) of the form

G
1

Pl

n+e

Me+l"’" n

0

If .

Note that we used here the hypothesis that A is indecomposable and non-
hereditary.

(2.3) We now follow the procedure described in [10] and--using column
operations only--finally reach after a suitable permutation of the columns and
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of the first n rows an integral matrix G" of the form

0

0

There is a natural one to one correspondence between the diagonal blocks of
type

] or

0 -Ii

in G" and the simple factors of A induced by the fact that the lattices
labelling the columns corresponding to each one of these blocks are exactly the
indecomposable lattices of a hereditary R-order in the associated simple factor
of A.

(2.4) By further obvious column operations we replace each block of type
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in the diagonal by a block of the form

".

1O"
-1 -1 0

Thus, again after a suitable permutation of the rows and columns we finally
reach the matrix G* (g) of the form

G
L1

n+e

LI Lv
0

Oo 0

where Lx,..., Lo are the indecomposable A-lattices labelling now the last a

columns, and we have put oi g*+i,,-o+,,.
(2.5) Then by [10, Theorem 1] each one of the A-lattices L, g 1,..., is

an indecomposable lattice over a maximal order F in one of the simple
factors of A" say F c (D)s. with the notation of (1.1). Moreover, vi is the
multiplicity of S in a composition series of L/IIL as a A-module.

(2.6) Note that if L’ is another irreducible A-lattice and a lattice over
another maximal order F’ in (D)s,, then the multiplicity of Si in the
composition series both of L/IIL, and L’/IIL’ are the same. This easily
follows from a theorem of Brauer, Swan, Strooker [7, VII 3.4.]. Therefore, the
integral vectors o, v 1,..., a indeed are independent of the particular
choice of F in (1.1).

(2.7) Without loss of generality we assume from now on that the L
M_o+ for v 1,..., t are labelling the last o columns of all the matrices
G’. An analysis of the algorithm in [10] shows that each one of the columns of
G* labelled by L is the sum of the column of Go also labelled by L and
certain multiples of the first n- columns of G. The fact that the first n
entries of each one of these last o columns of G* are zero and the remaining



214 ALFRED WIEDEMANN

ones are vt,..., ve gives rise to the following equation in K0(mod A, 0):

E vivPi + WivPi + Pn-o+v
i--1 i--e+l

=0

for certain integers w and for all v 1,..., o.

3. Proof of the theorem

Let

(p,> (#i; l,...,e), (#i) (#,;i=e+ 1,...,n)

and

be the subgroups of K0(mod A, 0) being generated by the indicated dements
in Ko(mod A, 0).

Since Go(A) = Ko(mod A,0)/(i), we have the following exact sequence
of abelian groups"

0 +
(p’’/x,) Ko(mod A, 0)
<Z,) -,6o(a)- (p,,Z,) -0.

By the shape of G* in (2.4) it is clear that (p, ) is a pure subgroup of
Ko(mod A, 0) of rank n o. Therefore, Ko(mod A, 0)/(pi, #i) -= Z), the
above sequence splits, and we get

Go(A ) =- Z(o)
(p,) n

Secondly, the shape of G in (2.2) shows that (Pi) is free abelian on the
generators p,..., Pe" NOW consider an element x (&) (#). There are
integers ai(x ), fli(x) satisfying

e n

x E-,(x), E
i----1 i---e+l

Therefore, the integral vector (tXl(X),...,ae(X),Pe+l(X),...,Pn(X)) repre-
sents a solution of the linear equation

e

E p, + , 0
i=1 i--e+l
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in the variables Y1,-.., Y,. Since the columns Pi and #i form the upper n n-
part of G, and since this matrix has rank n o the solution space of this
equation is free abelian of rank o.
On the other hand, the formula in (2.7) provides the o linear independent

solutions

which obviously form a Z-basis of the solution space for the above equation.
This shows that x is an integral linear combination of the elements
E_vp, , 1,..., t. If we now identify (p) with Z() by

pi (0, ,0,1,. O, ,0) eZ()

then (p) (/) is generated by the integral vectors

v (v,..., v,) e z().

Together with the observation in (2.6) this finishes the proof of the theorem.

4. Applications and a remark

We keep all the notation of the introduction and Section 1. In particular, A
will always be an R-order offinite lattice type.

(4.1) First we consider the case when A is simple, that is A (D)s for
s N and D is a finite dimensional skew field over K with maximal R-order
fi and II Rad ft. By the theorem we have

Go(A ) --- Z z(e)/ZVl

where v (vxx,..., vx) 0 is defined ,as in (1.2). Hence

Go(A ) -= Z() Z/(gcd(vx,..., ve)).

In particular, the torsion part of G0(A) is cyclic and G0(A) has,rank e. Since
the n e almost split sequences provide the n -e relations /, e +
1,...,n, this shows that the relations ix are linearly independent in
Ko(mod A, 0). This is one of the main results in Chapter 2 of [2].
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(4.2) We keep the hypotheses of (4.1). Let P1,..-, Pe be the non-isomorphic
indecomposable projective A-lattices. We now additionally assume that
EndA(Pi)/Rad EndA(Pi) and fl/II are isomorphic for 1,..., e.

If T denotes the simple A-module and KP -- T(’,), 1,..., e, then

and therefore

In particular, if A is "filed", that is, EndA(P) -- fl for all i, then Go(A) is

free of rank e.
(4.3) Let R be the p-adic completion of the algebraic integers in a number

field. If A is a block of RG, the group ring of a finite group G with coefficients
in R then a result due to Swan [9] says that

a0(a) --- a0(a) --- z().

On the other hand G0(A) --- Z (") z(e)//)l,... l)o). Therefore,

z(’) (o,..., oo);

in particular, o > e, and the greatest common divisor of the determinants of all
regular e e- minors of the matrix

as defined in (1.2) is one.

(4.4) If gldim A < oo, then it is known that G0(A ) -- Z(e); in particular,
this forces o < e. In this case our theorem implies that

z(’)/(vx,..., vo) --- z(’-),

and therefore the v1,..., v. are free generators of a pure subgroup of Z(e).
(4.5) Using the whole information provided by the matrix G*, for each

A-lattice M it is very easy to describe its class [M] in G0(A) explicitly as
element of Z() Z()/U: Assume that M = M. is indecomposable and
labels the j-th column of G*.

If j < n o, then [My] is represented by the element

((g:_o+x g.), ( g:+ ) + v))gn+l,j,"" ,j
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in Z() Z(*)/U. Clearly, [L,] is represented by the element

For j < n , this follows immediately from the fact that the largest F-sub-
lattice trr(M) of M is isomorphic to

LS*-o/,.),

and the numbers g*+x,,..., g*+, are the multiplicities of Sx,..., S as
composition factors of the factor module M/trr(M) [10, Section 4, (6)].
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