VERTICES OF IDEALS OF A p-ADIC NUMBER FIELD

BY

YOSHIMASA MIYATA

Let k be a p-adic number field with the ring o of all integers, and K be a finite normal extension with Galois group G. Let Π denote a prime element of the ring $\mathbb O$ of integers in K. Then, an ideal (Π^i) of $\mathbb O$ is an $\mathfrak OG$ -module. Noether [5] showed that if K/k is tamely ramified, \mathfrak{D} is isomorphic to $\mathfrak{o}G$. S. Ullom [10] proved that (Π^i) has a normal basis if and only if $\operatorname{tr}_{K/K}(\Pi^i) =$ $(\Pi^i) \cap K_1$, where K_1 is the ramification subfield of K/k. A. Fröhlich [3] generalized E. Noether's theorem as follows: D is relatively projective with respect to a subgroup S of G if and only if $S \supseteq G_1$, where G_1 denotes the first ramification group of K/k. Now we define the vertex $V(\Pi^i)$ of (Π^i) as the minimal normal subgroup S of G such that (Π^i) is (G, S)-projective. Then, the above generalization by A. Fröhlich implies that $V(\mathfrak{Q}) = G_1$ (cf. [6], Theorem 3). The purpose of this paper is to study the vertex $V(\Pi^i)$ of (Π^i) . In the first section, we shall show that $G_1 \supseteq V(\Pi^i) \supseteq G_2$ for any i (Theorem 5) and that if the second ramification group G_2 is trivial, then $V(\Pi^i)$ is either G_1 or {1} (Theorem 6). The next two sections deal with the restricted case where K/k is a wildly ramified extension of degree p^2 . We shall show that if $i \neq 1$ (p^2) , then $V(\Pi^i) = G_1$ (Theorem 15) and we shall obtain the necessary and sufficient conditions for $V(\Pi^i)$ to be equal to G_2 for the case where $i \equiv 1$ (p^2) (Theorem 21).

Section 1

Let o be the ring of all integers of a p-adic number field k. Let S be a subgroup of a finite group G. We begin this section with recalling the definition of (G, S)-projectivity. An oG-module M is (G, S)-projective if there exists an oS-endomorphism γ such that

(1)
$$\sum_{i=1}^{n} g_{i} \gamma g_{i}^{-1} = 1_{M},$$

where $G = \bigcup g_i S$ (for example, see [2], p. 449, (19.1) Definitions and (19.2)

Received February 28, 1985.

Theorem). Moreover, from [2], p. 452 (19.5) Proposition, there exists a unique minimal normal subgroup S such that M is (G, S)-projective. Now let K/k be a finite Galois extension with Galois group G, and denote by π a prime element of K. Then, applying the above results to an $\circ G$ -module (Π^i) , we can define the vertex $V(\Pi^i)$ of (Π^i) stated in the introduction, i.e., $V(\Pi^i)$ is a unique minimal normal subgroup V of G such that (Π^i) is (G, V)-projective.

Remark. For an indecomposable oG-module M, the vertex of M stated in the above is the minimal normal subgroup containing an ordinary vertex of M defined in the module representation theory of groups.

PROPOSITION 1. Let K/k and Π be as in the above, and denote by G_1 the first ramification group of K/k. Then, $V(\Pi^i) \subseteq G_1$.

Proof. Let \mathfrak{O}_1 be the ring of all integers in K_1 . An element α of \mathfrak{O}_1 defines an $\mathfrak{o}G_1$ -endomorphism of (Π^i) given by multiplication by α . Let $G = \bigcup g_i G_1$. Then, for $\beta \in (\Pi^i)$,

(2)
$$\sum g_i \alpha g_i^{-1}(\beta) = \left(\sum g_i(\alpha)\right) \beta.$$

As K_1/k is tamely ramified, there exists α such that $\sum g_i(\alpha) = 1$. Thus, by (1) and (2), (Π^i) is (G, G_1) -projective, which means $V(\Pi^i) \subseteq G_1$.

We denote by G_i the *i*-th ramification group. From [10] Theorem 3 and its corollary, we immediately have the following lemma.

LEMMA 2. Let K/k be as above and denote by $|G_1|$ the order of G_1 . Then, if (Π^i) is $\circ G$ -projective, $i \equiv 1$ ($|G_1|$) and $G_2 = \{1\}$.

Next, let $\varphi(t)$ be the Herbrand function for the extension K/k, and $\psi(t)$ be the inverse function of $\varphi(t)$. Then, the upper numbering of the ramification groups is given by

$$G^t = G_{\psi(t)}.$$

Let V be $V = V(\Pi^i)$ and $\varphi_2(t)$ be the Herbrand function for K/K_V , where K_V is the subfield of K corresponding to V. Then, we have

$$(G/V)^t = G^t V/V$$

(for example, see [1], p. 38).

LEMMA 3. Let K/k and ψ_2 be as above. Then, $V(\Pi^i) \supseteq G_{\psi_2(2)}$.

Proof. Let $(\Pi^i)_V = K_V \cap (\Pi^i)$. We can easily show that $(\Pi^i)_V$ is $\mathfrak{o}[G/V]$ -projective. Then, it follows from Lemma 2 that $(G/V)_2 = \{1\}$. Let

 φ_1 be the Herbrand function for K_{ν}/k , so by (3),

$$G^{\varphi_1(2)}V/V = (G/V)_2 = \{1\},$$

and hence $V \supseteq G^{\varphi_1(2)}$. From $\psi = \psi_2 \psi_1$, it follows that

$$G^{\varphi_1(2)} = G_{\psi(\varphi_1(2))} = G_{\psi_2(2)},$$

which establishes $V \supseteq G_{\psi_2(2)}$.

COROLLARY 4. Let K/k be as above. If $G_1 = G_2$, then $V(\Pi^i) = G_1$.

Proof. From $G_1 = G_2$, we have $V_2 = V_1$ (= V), so $\psi_2(2) = 2$. Therefore, $G_{\psi_2(2)} = G_2 = G_1,$

and hence $V(\Pi^i) = G_1$ by Lemma 3.

We can now prove one of the main results.

THEOREM 5. Let K/k and Π be as above. Then, $G_1 \supseteq V(\Pi^i) \supseteq G_2$.

Proof. At first we treat the case where $G_1 = G_2$. For this case, the result follows at once from Corollary 4. Next, we treat the case $G_1 \neq G_2$. Suppose $G_2 \nsubseteq V$. Then, $G_2 \cap V \neq G_2$ and there exists a maximal normal subgroup H of G_2 such that $H \supseteq G_2 \cap V$. Therefore,

$$(4) HV \cap G_2 = H.$$

Let $\overline{G} = G/H$ and F be the subfield of K corresponding to H. t_i denotes the i-th ramification number of K/k. From $G_1 \neq G_2$, it follows that $t_1 = 1$. Let $t = t_2$ for brevity. Since H is the maximal subgroup of G_2 , we have $H = H_1 = \cdots = H_t \supset H_{t+1} = G_t$. By (3),

$$(\overline{G})_i = G^{\varphi_{F/k}(i)}H/H.$$

Since $G^{\varphi_{F/k}(i)} = G_{\psi_{K/k}(\varphi_{F/k}(i))}$, $(\overline{G})_i = G_{\psi_{K/F}(i)}H/H$. For $i \le t$, $\psi_{K/F}(i) = i$ and for i > t, $\psi_{K/F}(i) > t$. Therefore, $G_{\psi(i)} = G_2$ for $2 \le i \le t$ and $G_{\psi(i)} \subseteq G_{t+1}$ for i > t. Then, we have

$$(5) \overline{G}_1 = (\overline{G})_1 \supset \overline{G}_2 = (\overline{G})_2 = \cdots = (\overline{G})_t \supset (\overline{G})_{t+1} = \{1\}$$

and

(6)
$$\overline{HV} = (\overline{HV})_1 \supset (\overline{HV})_2 = \{1\},\$$

since $V \subseteq G_1$. Let $\overline{\psi}$ denote the Herbrand function for $K_{HV/F}$ and $|\overline{HV}|$ the order of \overline{HV} . Then, by (6),

(7)
$$\overline{\psi}(2) = 1 + |\overline{HV}|.$$

By (4), \overline{HV} is isomorphic to a subgroup of G_1/G_2 , so \overline{HV} is abelian. Since $H\supseteq [G_2,G_2]$ by the definition of H, \overline{G}_2 is also abelian, and hence by (4), \overline{G}_2 $\cdot \overline{HV}$ is abelian. Let k' be a subfield of F corresponding to $\overline{G}_2 \cdot \overline{HV}$ and denote by r_i the ramification number of F/k'. Then, $r_1=1$ and $r_2=t$ again. Since F/k' is an abelian extension, from [4], p. 171, (V), and by (6), it follows that

$$t \equiv 1 \quad (|\overline{HV}|).$$

Therefore, by (7), $\bar{\psi}(2) \leq t$, and by (5),

$$(8) (\overline{G})_{\overline{\psi}(2)} = \overline{G}_2.$$

Since (Π^i) is (G, V)-projective, $(\Pi^i)_H$ is $(\overline{G}, \overline{HV})$ -projective and hence $\overline{HV} \supseteq (\overline{G})_{\overline{\psi}(2)}$ by Lemma 3. From (8), $\overline{HV} \supseteq \overline{G}_2$. Since $HV \supseteq H$ and $G_2 \supset H$, $HV \supseteq G_2$, which is contrary to (4). This completes the proof of Theorem 5.

We shall conclude this section with the proof of the next theorem.

THEOREM 6. Let K/k be as above, and suppose $G_2 = \{1\}$.

- (a) If $i \neq 1(|G_1|)$, then $V(\Pi^i) = G_1$.
- (b) If $i \equiv 1(|G_1|)$, then $V(\Pi^i) = \{1\}$.

Now, to prove Theorem 6, we need the following lemma.

LEMMA 7. Let V be a normal subgroup of G and $\operatorname{tr}_V = \sum_{v \in V} v$. Let M be an oG-module and suppose M is (G, V)-projective. Then, $\operatorname{tr}_V M$ is (G/V)-projective.

Proof. Since M is (G, V)-projective, there exists an $\circ G$ -module N and an $\circ V$ -module L such that

$$M \oplus N = \mathfrak{o}G \otimes_{\nu} L$$
.

Let $G = \bigcup g_i V$. As is a normal subgroup of G, $g_i V = V g_i$ and $\operatorname{tr}_V g_i = g_i \operatorname{tr}_V$. Therefore,

$$\operatorname{tr}_{V} M \oplus \operatorname{tr}_{V} N = \sum g_{i} \otimes \operatorname{tr}_{V} L.$$

Let $\{x_1, \ldots, x_n\}$ be a basis of $\operatorname{tr}_{\nu} L$ over \mathfrak{o} , and so

$$\sum g_i \oplus \operatorname{tr}_V L = \sum_j \left(\sum_i \circ g_i \right) \otimes x_j.$$

This implies that $\operatorname{tr}_V M \oplus \operatorname{tr}_V N$ is an $\mathfrak{o}[G/V]$ -free module. Hence $\operatorname{tr}_V M$ is (G/V)-projective.

Proof of Theorem 6. (a) Let Π_{V} be a prime element of K_{V} and (Π^{m}) be the different of K/K_{V} . Then, since $G_{2} = \{1\}$ and $V \subseteq G_{1}$, it follows that

(9)
$$m = 2(|V| - 1).$$

Let $(\Pi_{\nu}^{n}) = \operatorname{tr}_{\nu}(\Pi^{i})$. Then, from [9] Proposition 1.1 and by (9),

(10)
$$n = 2 + [(i-2)/|V|].$$

Write $i = i_1 |V| + i_0$ with $0 \le i_0 < |V|$. We distinguish two cases: (i) $1 < i_0 < |V|$ and (ii) $i_0 = 0$. We first treat case (i). By (10), $n = 2 + i_1$. Since (Π^i) is (G, V)-projective, it follows from Lemma 7 and Lemma 2 that $2 + i_1 \equiv 1$ $(|G_1/V|)$, so

$$i_1 \equiv |G_1/V| - 1 \quad (|G_1/V|)$$

and i_1 can be written in the form

(11)
$$i_1 = i_2 |G_1/V| + |G_1/V| - 1.$$

Let $(\Pi^i)_V = K_V \cap (\Pi^i)$ and Π_1 be a prime element of K_1 . Then, $(\Pi^i)_V$ is (G,V)-projective, i.e., $\mathfrak{o}[G/V]$ -projective. Since $G_1/V \subseteq G/V$, $(\Pi^i)_V$ is $\mathfrak{o}[G_1/V]$ -projective. From (11), it follows that

$$\left(\Pi^i\right)_V = \left(\Pi_V^{i_1+1}\right) = \Pi_1^{i_2+1} \mathfrak{D}_V,$$

where Π_1 denotes a prime element of K_1 . Hence \mathfrak{D}_V is $\mathfrak{o}[G_1/V]$ -projective and $\operatorname{tr}_{G_1/V}\mathfrak{D}_V=\mathfrak{D}_1$. Then, from H. Yokoi [12], Theorem 1, K_V/K_1 is tamely ramified. Thus $K_V=K_1$ and $V=G_1$, which is the desired result.

In case (ii), where $i_0 = 0$, we obtain $V = G_1$ in a manner similar to case (i). (b) Applying arguments similar to the above, for $i = i_1 |V| + 1$, we have

$$\operatorname{tr}_{V}(\Pi^{i}) = (\Pi_{V}^{i_{1}+1}) \text{ and } i_{1} \equiv 0 (|G_{1}/V|).$$

Therefore, $i \equiv 1$ ($|G_1|$); let $i = i_2|G_1| + 1$. Then, $(\Pi^i) = \Pi_1^{i_2}(\Pi)$ and so (Π^i) is \mathfrak{D}_1G_1 -isomorphic to (Π) . From [10], Theorem 2 and Proposition 5, (Π^i) is \mathfrak{D}_1G_1 -projective and oG-projective. Hence $V(\Pi^i) = \{1\}$, and Theorem 6 is proved.

Section 2

Throughout the rest of this paper, we assume that K/k is a wildly ramified extension of degree p^2 , and we shall calculate the vertex $V(\Pi^i)$. Then, if

 $G_1 = G_2$ or $G_2 = \{1\}$, $V(\Pi^i)$ is determined by Theorems 5 and 6 in §1. Thus, we treat the case where $G_1 \neq G_2$ and $G_2 \neq \{1\}$ in the following. Since the order |G| of G is p^2 , $G = G_1$ and $|G_2| = p$. Let $i = i_1 p^2 + i_0$ for $0 \le i_0 < p^2$. Then, (Π^i) is $\circ G$ -isomorphic to (Π^{i_0}) , and there is no loss of generality in assuming $0 \le i < p^2$. We distinguish four cases: (i) i = 0,, (ii) i = 1, (iii) $1 < i \le p$ and (iv) $p < i < p^2$. In case (i), it follows from [6], Theorem 3, that $V(\mathfrak{Q}) = G_1$. In the rest of this section, we treat the cases (iii) and (iv). First we consider the case (iv).

PROPOSITION 8. Let K/k be a wildly ramified extension of degree p^2 , and suppose that $G_1 \neq G_2$ and $|G_2| = p$. Then, if $p < i < p^2$, $V(\Pi^i) = G_1$.

Proof. Let $(\Pi^i)_2 = (\Pi^i) \cap K_2$ and denote by Π_2 a prime element of K_2 . Then, from the assumption p < i, $(\Pi^i)_2 = (\Pi^i_2)$ with $j \ge 2$. Hence, Theorem 6 yields $V((\Pi^i)_2) = G_1/G_2$. Since $(\Pi^i)_2$ is (G, V)-projective and $V \supseteq G_2$ by Theorem 5, it follows that $V((\Pi^i)_2) \subseteq V$, which implies $V(\Pi^i) = G_1$. The proof is completed.

Next we consider case (iii), $1 < i \le p$. Let t be the second ramification number of K/k. Then, it is easily shown that $t \equiv 1$ (p) (for example, see [4], p. 172); let $t = pt_1 + 1$.

PROPOSITION 9. Let K/k be as above and suppose $1 < i \le p$. Then, if $t \not\equiv p+1$ (p^2), $V(\Pi^i)=G_1$.

Proof. Since $|G| = p^2$, it follows from Theorem 5 that $V = G_1$ or $V = G_2$. Assume $V = G_2$. We use the same discussion as in the proof of Theorem 6. Let $\operatorname{tr}_V(\Pi^i) = (\Pi^n_V)$, so $n = (p-1)t_1 + 2$ because the different of K/K_2 is $(\Pi^{(p-1)(t+1)})$. Then, from the (G, V)-projectivity of (Π^n_V) , $(p-1)t_1 + 2 \equiv 1$ (p), and $t_1 \equiv 1$ (p). Thus we can write $t_1 = pt' + 1$, and $t \equiv p + 1$ (p^2) . This implies the accomplishment of the proof.

For case (iii) with $t \not\equiv (p+1)$ (p^2) and case (iv), it follows from Propositions 8 and 9 that $V(\Pi^i) = G_1$. From now on we consider the remaining case (iii) with $t \equiv (p+1)$ (p^2). Now, let $t = p^2t' + p + 1$, and let τ be a generator of G_2 and $x = \tau - 1$. Denote by Π_2 and π prime elements of K_2 and k, respectively. Then, we can easily prove the following lemmas.

LEMMA 10. Let val = val_K denote the valuation of K (val(Π) = 1). Then,

$$val(x^m(\Pi_2^n\Pi)) \equiv val(x^r(\Pi_2^s\Pi)) (p^2) \quad \text{for } 0 \le m, n, r, s < p$$

iff m = r and n = s.

LEMMA 11. Let (Π^i) be an ideal of K and suppose $1 < i \le p$. For $0 \le j$, m < p, define $\alpha_{i,m}$ as follows:

- (i) If $j + m \le p 1$, $\alpha_{j, m} = x^{j} (\prod_{1}^{m} \prod_{1} \pi^{-jt'})$. (ii) If j + m = p and i > j + 1, $\alpha_{j, m} = x^{j} (\prod_{1}^{m} \prod_{1} \pi^{-jt'})$.
- (iii) If j + m = p and $i \le j + 1$, $\alpha_{j,m} = x^j (\prod_{j=1}^m \prod_{j=1}^m \pi^{-jt'-1})$. (iv) If j + m > p, $\alpha_{j,m} = x^j (\prod_{j=1}^m \prod_{j=1}^m \pi^{-jt'-1})$. Then, $\{\alpha_{j,m} | 0 \le j, m < p\}$ is a basis of (Π^i) over 0.

LEMMA 12. Let $\alpha_{j,m}$ be as in Lemma 10. Let L_{m+1} be an o-submodule of (Π^i) generated by $\alpha_{j,m}$ for $0 \le j < p$. Then, L_{m+1} is an $\circ G_2$ -submodule of (Π^i) and

$$(\Pi^i)=L_1\oplus\cdots\oplus L_p.$$

Further we need two lemmas, which play the important role of the proof of the main theorem (Theorem 15).

LEMMA 13. Let e be the absolutely ramification index of k and $t = p^2t' + p$ + 1. Then, (p-1)t' + 1 < e.

Proof. As is well known, $1 \le t < p^2 e/(p-1)$. Then, it follows that

$$(p-1)t'+1 \leq e.$$

Suppose (p-1)t'+1=e. Then, from [9], Proposition 1.1,

$$\operatorname{tr}_{G_2} \mathfrak{O} = \Big(\prod_{2}^{p(p-1)t'+p} \Big),$$

and so $\operatorname{tr}_{G_2} \mathfrak{D} = (p)$. This means that \mathfrak{D} is not $\mathfrak{o}G$ -indecomposable. S.V. Vostokov [11] proved that if the ramification index p^m of an abelian p-extension L/k does not divide the different of L/k, then an ideal of L/k is indecomposable. By his results, we have that \mathfrak{D} is indecomposable. This is a contradiction, and the proof of Lemma 13 is completed.

LEMMA 14. Let L_1 and L_2 be as in Lemma 12. Then, L_1 is not $\circ G_2$ -isomorphic to L_2 .

Proof. Let A_i be the matrix representation afforded by the oG-module L_i for i = 1, 2. Then,

$$A_1(x) = \begin{pmatrix} 0 & 0 & \dots & 0 \\ \pi^{t'+1} & & & a_1 \\ & & & 0 \\ & & \pi^{t'} & & \vdots \\ 0 & & \ddots & & \\ & & & \pi^{t'} & a_{p-1} \end{pmatrix}$$

and

$$A_{2}(x) = \begin{pmatrix} 0 & 0 & \dots & 0 \\ \pi^{t'} & & & b_{1} \\ & \pi^{t'} & & 0 & \vdots \\ & 0 & \ddots & & \\ & & \pi^{t'} & b_{p-1}\pi \end{pmatrix}$$

where

$$a_j = -\binom{p}{j} \pi^{-(p-j-1)t'}$$
 and $b_j = -\binom{p}{j} \pi^{-(p-j-1)t'-1}$.

Suppose L_1 is isomorphic to L_2 . Then, there exists an invertible matrix $A = (a_{mn})$ in GL(p, 0) such that

(12)
$$AA_1(x) = A_2(x)A.$$

Then

$$a_{12}\pi^{t'+1} = 0, \ a_{13}\pi^{t'} = 0, \dots, \ a_{1p-1}\pi^{t'} = 0$$

and

$$a_{12}a_1 + \cdots + a_{1p}a_{p-1} = 0.$$

Therefore, $a_{12} = \cdots = a_{1p-1} = a_{1p} = 0$. Also, from the (2, 1) entry of (12),

$$a_{22}\pi^{t'+1}=\pi^{t'}a_{11}+b_1a_{n1}.$$

Lemma 13 gives $b_1 \equiv 0$ ($\pi^{t'+1}$), and hence $\pi^{t'}a_{11} \equiv 0$ ($\pi^{t'+1}$), so $a_{11} \equiv 0$ (π). This implies $A \notin GL(p, 0)$, which is a contradiction. The proof of Lemma 14 is completed.

We are ready to prove one of the main theorems.

THEOREM 15. Let K/k be a wildly ramified extension of degree p^2 , and suppose that $G_1 \neq G_2$ and $|G_2| = p$. Then, if $i \neq 1$ (p^2), $V(\Pi^i) = G_1$.

Proof. From Propositions 8 and 9, it is sufficient to prove Theorem 15 for case (iii) with $t \equiv p + 1$ (p^2), i.e., $1 < i \le p$ and $t = p^2t' + p + 1$. By S.V.

Vostokov's results [11] together with Lemma 13, (Π^i) is an indecomposable $\circ G$ -module. Suppose $V(\Pi^i) = G_2$. Then, from [2], p. 449, (19.2) Theorem, there is an indecomposable $\circ G_2$ -submodule M of (Π^i) such that (Π^i) is a direct summand of $\circ G \otimes_{G_2} M$. Therefore, all indecomposable components of $\circ G_2$ -module (Π^i) are isomorphic to M. Hence L_1 and L_2 are isomorphic because $\dim_{\circ} L_1 = \dim_{\circ} L_2 = p$. This is a contradiction, and Theorem 15 is proved.

Section 3

As in §2, let K/k be a wildly ramified extension of degree p^2 , and assume that $G_1 \neq G_2$ and $|G_2| = p$. In this section, we consider case (ii), i = 1. Let t be the second ramification number of K/k. Using arguments similar to the proof of Proposition 9, we have:

PROPOSITION 16. Let K/k and t be as above. Then, if $t \not\equiv 1$ (p^2), $V(\Pi) = G_1$.

We devote the remainder of this paper to the computation of $V(\Pi)$ with $0 \le e_1 , where <math>e$ denotes the absolutely ramification index of k. Since $1 \le t < p^2 e/(p-1)$, it is easily seen that

(13) if
$$e_1 \neq 0$$
, then $e_0 \leq t'$ and if $e_1 = 0$, then $e_0 - 1 \leq t'$.

Since G is of order p^2 , G is either a cyclic group of order p^2 or an elementary abelian group of type (p, p). First we treat the case where G is cyclic.

LEMMA 17. Let G be a cyclic group of order p^2 with a generator σ , and let θ be a p^2 -th root of 1. σ' denotes the ring of all integers of $k(\theta)$. Then, in $\sigma'G$,

$$\sum_{i=1}^{p^2-1} \theta^{p^2-1-i} \sigma^i \equiv \operatorname{tr} + \sum_{i=1}^{p^2-2} (\theta-1)^{p^2-1-i} (\sigma-1)^i (p(\theta-1)),$$

where $\operatorname{tr} = \sum_{i=0}^{p^2-1} \sigma^i$.

Proof. We have

$$\sum \theta^{p^2-1-i} \sigma^i = \operatorname{tr} + \sum_{i=1}^{p^2-1} (\theta^i - 1) + \sum_{i=1}^{p^2-2} (\theta^{p^2-1-i} - 1) (\sigma^i - 1).$$

Let $y = \theta - 1$ and $x = \sigma - 1$. Then,

$$\sum_{i=1}^{p^{2}-2} (\theta^{p^{2}-1-i} - 1)(\sigma^{i} - 1)$$

$$= \sum_{i=1}^{p^{2}-2} \left(\sum_{j=1}^{p^{2}-1-i} {p^{2}-1-i \choose j} y^{j} \right) \left(\sum_{m=1}^{i} {i \choose m} x^{m} \right)$$

$$= \sum_{j=1}^{p^{2}-2} \left(\sum_{m=1}^{p^{2}-1-j} \left(\sum_{m \leq i \leq p^{2}-1-j} {p^{2}-1-i \choose j} (i \choose m) \right) x^{m} \right) y^{j}.$$

From the formula

$$\sum_{i=m}^{n} \binom{i}{m} \binom{n+s-i-1}{n-i} = \binom{n+s}{m+s}$$

(for example, see [8]), this becomes

$$\sum_{j=1}^{p^2-2} \left(\sum_{m=1}^{p^2-1-j} {p^2 \choose m+j+1} x^m \right) y^j.$$

Therefore,

$$\sum \theta^{p^2-1-i} \sigma^i \equiv \sum_{m=1}^{p^2-2} y^{p^2-1-m} x^m (p(\theta-1)),$$

which completes the proof of Lemma 17.

LEMMA 18. Let K/k be as above, and let M be an o-submodule of (Π) generated by $\sigma^i(\Pi)$ for $0 \le i < p^2$. Denote by $\delta(M)$ the discriminant of M. Then,

$$\operatorname{val}_{k}(b(M)) = 2p^{2}((p-1)t'+1).$$

Proof. From [1], p. 12, Proposition 4, we have

$$\delta(M) = \det(\operatorname{tr} \sigma^{i}(\Pi) \sigma^{j}(\Pi)).$$

Since $\det(\operatorname{tr} \sigma^i(\Pi)\sigma^j(\Pi))$ is a cyclic determinant,

(14)
$$\det(\operatorname{tr} \sigma^{i}(\Pi)\sigma^{j}(\Pi)) = \Pi_{\theta} \left(\sum_{i=0}^{p^{2}-1} \theta^{-i} \operatorname{tr}(\Pi \sigma^{i}(\Pi)) \right),$$

where the product is taken over all p^2 -th roots θ of 1. Then, from Lemma 17, it follows that for some integer α of \mathfrak{D} ,

$$\sum_{i=0}^{p^2-1} \theta^{-i} \operatorname{tr}(\Pi \sigma^i(\Pi))$$

$$= \theta((\operatorname{tr} \Pi)^2 + \sum_{i=1}^{p^2-2} (\theta - 1)^{p^2-1-i} \operatorname{tr}(\Pi (\sigma - 1)^i(\Pi) + \operatorname{tr}(p\alpha)).$$

Let $i = i_1 p + i_0$ with $0 \le i_1$, $i_0 < p$, and so

$$\operatorname{val}_{K}(\sigma-1)^{i}(\Pi) = 1 + i_{0} + i_{1}(p^{2}t'+1)$$

since $\sigma \in G_1$ and $\sigma^p \in G_t (= G_2)$. Then, from [9], Proposition 1.1, it follows

$$\operatorname{val}_{k}(\operatorname{tr}(\Pi(\sigma-1)^{i}(\Pi)) \geq (p-1)t' + i_{1}t' + 2$$

and

$$\operatorname{val}_{k}((\operatorname{tr}\Pi)^{2}) = 2((p-1)t'+1).$$

By (13), we have

$$val((\theta - 1)^{p^{2}-1-i}tr(\Pi(\sigma - 1)^{i}(\Pi)) - val((tr \Pi)^{2})$$

$$= (p^{2} - 1 - i)e/p(p - 1) + i_{1}t' - (p - 1)t'$$

$$= e_{0} + e_{1}(p - i_{1})/(p - 1) - ((1 + i_{1})/p)(e/(p - 1))$$

$$+ (p - i_{1} - 1)(e_{0} - t').$$

We distinguish four cases as follows: (a) $e_1 \neq 0$ and $i_1 \leq p-2$, (b) $e_1 \neq 0$ and $i_1 = p-1$, (c) $e_1 = 0$ and $i_1 \leq p-2$, (d) $e_1 = 0$ and $i_1 = p-1$. In case (a),

$$val((\theta - 1)^{p^{2}-1-i}tr(\Pi(\sigma - 1)^{i}(\Pi))) - val((tr \Pi)^{2})$$

$$\geq e_{0} + 2e_{1}/(p-1) - e/(p-1)$$

$$> 0.$$

In case (b), $i_0 \le p - 2$ because $i < p^2 - 1$. Then,

$$val((\theta - 1)^{p^2 - 1 - i}tr(\Pi(\sigma - 1)^i(\Pi)) - val((tr \Pi)^2)$$

$$\geq e_0 + e_1/(p - 1) - ((p - 1)/p)(e/(p - 1))$$
> 0.

Similarly, for cases (c) and (d), we obtain

$$\operatorname{val}((\theta-1)^{p^2-1-i}\operatorname{tr}(\Pi(\sigma-1)^i(\Pi))-\operatorname{val}((\operatorname{tr}\Pi)^2)>0.$$

Therefore, from (14), we conclude

$$\operatorname{val}\left(\operatorname{det}\left(\operatorname{tr}\sigma^{i}(\Pi)\sigma^{j}(\Pi)\right)\right) = 2p^{2}((p-1)t'+1),$$

which is the desired result.

Next, we consider the case where G is an elementary abelian group of p^2 , and we prove again two lemmas.

LEMMA 19. Let A_i be a matrix of type (p, p) for $1 \le i \le p$, and let a matrix B of type (p^2, p^2) be given by

$$B = \begin{pmatrix} A_1 & A_2 & \dots & A_p \\ A_2 & A_3 & \dots & A_1 \\ & \dots & & \\ A_p & A_1 & \dots & A_{p-1} \end{pmatrix}.$$

Then

$$\det B = (-1)^{(p-1)/2} \Pi_{\theta} \left(\det \left(\sum_{i=0}^{p-1} \theta^{i} A_{i} \right) \right),$$

where the product is taken over all p-th roots θ of 1.

Proof. Using the same procedure as in the proof of the formula of cyclic determinants, we can prove Lemma 19.

LEMMA 20. Let K/k be a non-cyclic extension of degree p^2 , and let σ and τ be generators of Galois group G such that G_2 is generated by τ . M denotes an o-submodule generated by $\sigma^i \tau^j(\Pi)$ for $0 \le i, j < p$. Then

$$\operatorname{val}_k \delta(M) = 2p^2((p-1)t'+1).$$

Proof. Let a matrix A of type (p, p) be defined by

$$A = (\sigma^i \sigma^j(\Pi)) \text{ for } 0 \le i, j < p,$$

and let

$$A_m = \tau^{m-1}(A) \left(= \left(\tau^{m-1} \left(\sigma^i \sigma^j (\Pi) \right) \right) \right) \quad \text{for } 1 \le m \le p.$$

As in Lemma 19, let

$$B = \begin{pmatrix} A_1 & A_2 & \dots & A_p \\ A_2 & A_3 & \dots & A_1 \\ & & \dots & \\ A_p & A_1 & \dots & A_{p-1} \end{pmatrix}.$$

Then we have

$$\delta(M) = (\det{}^t B \cdot \det B).$$

From Lemma 19, it follows that

$$\det B = (-1)^{(p-1)/2} \Pi_{\theta} \left(\det \left(\sum \theta^{i} \tau^{i}(A) \right) \right).$$

By the formula of cyclic determinants and from [7] Lemma 5, we have

$$\det\left(\sum \theta^i \tau^i(A)\right)$$

$$\begin{split} &= \prod_{m=0}^{p-1} \left(\sum_{j=0}^{p-1} \zeta^{jm} \sigma^{j} \Big(\sum \theta^{i} \tau^{i} (\Pi) \Big) \right) \\ &= \prod_{m} \left(\text{tr } \Pi + \sum_{1 \leq i, \ j < p-1} (\zeta^{-m} - 1)^{p-1-j} \right. \\ &\qquad \qquad \times (\theta^{-1} - 1)^{p-1-i} (\sigma - 1)^{j} (\tau - 1)^{i} (\Pi) \\ &+ \sum_{1 \leq j < p-1} (\zeta^{-m} - 1)^{p-1-j} (\sigma - 1)^{j} \left(\sum_{i=0}^{p-1} \tau^{i} \right) (\Pi) + p(\theta^{-1} - 1) \alpha \right), \end{split}$$

where $\alpha \in \mathbb{Q}$ and ζ denotes a primitive p-th root of 1. Similarly as in the proof of Lemma 18, we can obtain

$$\operatorname{val}_k(\det B) = p^2((p-1)t'+1)$$

and

$$\operatorname{val}_k(\mathfrak{d}(M)) = 2p^2((p-1)t'+1),$$

and the proof of Lemma 20 is completed.

We can now prove one of the main results.

THEOREM 21. Let K/k be a wildly ramified extension of degree p^2 , and suppose $G_1 \neq G_2$ and $|G_2| = p$. Let t denote the second ramification number of K/k. Then, $V(\Pi^i) = G_2$ for $i \equiv 1$ (p^2) if and only if $t \equiv 1$ (p^2).

Proof. As pointed out in the beginning of §2, we may set i = 1. Proposition 16 establishes the "only if" part of Theorem 21, so let us prove the converse part. Let $x = \tau - 1$ for a generator τ of G_2 and $t = p^2t' + 1$ as before. For $0 \le j < p$, define an integer α_j of (Π) by

$$\alpha_j = x^j (\Pi \pi^{-jt'}),$$

and set $L_1 = \mathfrak{o}\alpha_0 + \mathfrak{o}\alpha_1 + \cdots + \mathfrak{o}\alpha_{p-1}$. Then L_1 is an $\mathfrak{o}G_2$ -submodule of (Π^i) . We define an \mathfrak{o} -submodule L of K by $L = \sum_{i=0}^{p-1} \sigma^i(L_1)$, where $G = \bigcup \sigma^i G_2$. Let $M = \sum \mathfrak{o}\sigma^i \tau^j(\Pi)$ and $M_1 = \sum \mathfrak{o}\tau^i(\Pi)$. We calculate the module index [L:M] (for the definition, see [1], p. 10). Clearly,

$$[L:M] = ([L_1:M_1])^p$$
.

Since $\sum \sigma x^j = \sigma G_2$, it follows easily that

$$\operatorname{val}_{k}([L_{1}:M_{1}]) = t' + \cdots + (p-1)t' = p(p-1)t'/2$$

and

$$\operatorname{val}_{k}([L:M]) = p^{2}(p-1)t'/2.$$

On the other hand, we have

$$[(\Pi):M] = [\mathfrak{D}:M]/[\mathfrak{D}:(\Pi)],$$

so

$$[(\Pi):M]^2 = \delta(M)\delta(\mathfrak{Q})^{-1}(\pi^{-2}).$$

As is easily shown, $\operatorname{val}_k(\mathfrak{d}(\mathfrak{Q})) = (p-1)(p^2t'+2) + 2p(p-1)$. Then, we obtain

$$\operatorname{val}_{k}([(\Pi):M]) = p^{2}(p-1)t'/2 = \operatorname{val}_{k}([L:M]),$$

and hence $(\Pi) = L$. Since L is isomorphic to $\circ G \otimes_{G_2} L_1$, (Π) is also isomorphic to $\circ G \otimes_{G_2} L_1$. Therefore, from [2], p. 449, (19.2) Theorem, it follows that $V(\Pi) = G_2$. The proof of Theorem 21 is complete.

The author wishes to thank the referee for his advice.

REFERENCES

- 1. J. CASSELS AND A. FRÖHLICH, Algebraic number theory, Academic Press, New York, 1967.
- C.W. Curtis and I. Reiner, Methods of representation theory vol. 1, Interscience, New York, 1981.
- 3. A. FRÖHLICH, Some topics in the theory of module conductors, Oberwolfach Berichte vol. 2 (1966), pp. 59-83.

- H. HASSE, Führer, Discriminant und Verzweigungskörper relativ-Abelscher Zahlkörper, J. Reine Angew. Math., vol. 162 (1930), pp. 169–184.
- 5. E. NOETHER, Normalbasis bei Körpern ohne höhere Verzweigung, J. Reine Angew. Math., vol. 167 (1932), pp. 147-152.
- 6. Y. MIYATA, On a characterization of the first ramification group as the vertex of the ring of integers, Nagoya Math. J., vol. 43 (1971), pp. 151-156.
- 7. _____, On the module structure of the ring of all integers of a p-adic number field, Nagoya Math. J., vol. 54 (1974), pp. 53-59.
- 8. Sūgaku Jiten (Mathematical dictionary), Iwanami, Tokyo, 1968.
- 9. S. ULLOM, Normal bases in Galois extensions of number fields, Nagoya Math. J., vol. 34 (1969), pp. 153-167.
- 10. _____, Integral normal bases in Galois extensions of local fields, Nagoya Math. J., vol. 39 (1970), pp. 141-148.
- 11. S.V. VOSTOKOV, Ideals of an abelian p-extension of a local field as Galois modules, Zap. Naučn. Sem. Lenigrad. Otdel. Mat. Inst. Steklov. (LOMI), vol. 57 (1976), pp. 64-84 (Russian).
- 12. H. YOKOI, On the ring of integers in an algebraic number field as a representation module of Galois group, Nagoya Math. J., vol. 16 (1960), pp. 83-90.

SHIZUOKA UNIVERSITY SHIZUOKA, JAPAN