VERTICES OF IDEALS OF A p-ADIC NUMBER FIELD

BY
Yoshimasa Miyata

Let k be a \mathfrak{p}-adic number field with the ring \mathfrak{o} of all integers, and K be a finite normal extension with Galois group G. Let Π denote a prime element of the ring \mathfrak{D} of integers in K. Then, an ideal $\left(\Pi^{i}\right)$ of \mathscr{D} is an \mathfrak{o}-module. E. Noether [5] showed that if K / k is tamely ramified, \mathscr{D} is isomorphic to $o G$. S. Ullom [10] proved that (Π^{i}) has a normal basis if and only if $\operatorname{tr}_{K / K_{1}}\left(\Pi^{i}\right)=$ $\left(\Pi^{i}\right) \cap K_{1}$, where K_{1} is the ramification subfield of K / k. A. Fröhlich [3] generalized E . Noether's theorem as follows: \mathcal{D} is relatively projective with respect to a subgroup S of G if and only if $S \supseteq G_{1}$, where G_{1} denotes the first ramification group of K / k. Now we define the vertex $V\left(\Pi^{i}\right)$ of $\left(\Pi^{i}\right)$ as the minimal normal subgroup S of G such that $\left(\Pi^{i}\right)$ is (G, S)-projective. Then, the above generalization by A. Fröhlich implies that $V(\mathfrak{D})=G_{1}$ (cf. [6], Theorem 3). The purpose of this paper is to study the vertex $V\left(\Pi^{i}\right)$ of $\left(\Pi^{i}\right)$. In the first section, we shall show that $G_{1} \supseteq V\left(\Pi^{i}\right) \supseteq G_{2}$ for any i (Theorem 5) and that if the second ramification group G_{2} is trivial, then $V\left(\Pi^{i}\right)$ is either G_{1} or $\{1\}$ (Theorem 6). The next two sections deal with the restricted case where K / k is a wildly ramified extension of degree p^{2}. We shall show that if $i \not \equiv 1$ $\left(\dot{p}^{2}\right)$, then $V\left(\Pi^{i}\right)=G_{1}$ (Theorem 15) and we shall obtain the necessary and sufficient conditions for $V\left(\Pi^{i}\right)$ to be equal to G_{2} for the case where $i \equiv 1\left(p^{2}\right)$ (Theorem 21).

Section 1

Let \mathfrak{o} be the ring of all integers of a \mathfrak{p}-adic number field k. Let S be a subgroup of a finite group G. We begin this section with recalling the definition of (G, S)-projectivity. An $o G$-module M is (G, S)-projective if there exists an $\mathfrak{o S}$-endomorphism γ such that

$$
\begin{equation*}
\sum_{i=1}^{n} g_{i} \gamma g_{i}^{-1}=1_{M} \tag{1}
\end{equation*}
$$

where $G=\cup g_{i} S$ (for example, see [2], p. 449, (19.1) Definitions and (19.2)

Received February 28, 1985.

[^0]Theorem). Moreover, from [2], p. 452 (19.5) Proposition, there exists a unique minimal normal subgroup S such that M is (G, S)-projective. Now let K / k be a finite Galois extension with Galois group G, and denote by π a prime element of K. Then, applying the above results to an $o G$-module (Π^{i}), we can define the vertex $V\left(\Pi^{i}\right)$ of $\left(\Pi^{i}\right)$ stated in the introduction, i.e., $V\left(\Pi^{i}\right)$ is a unique minimal normal subgroup V of G such that $\left(\Pi^{i}\right)$ is (G, V)-projective.

Remark. For an indecomposable o G-module M, the vertex of M stated in the above is the minimal normal subgroup containing an ordinary vertex of M defined in the module representation theory of groups.

Proposition 1. Let K / k and Π be as in the above, and denote by G_{1} the first ramification group of K / k. Then, $V\left(\Pi^{i}\right) \subseteq G_{1}$.

Proof. Let \mathcal{S}_{1} be the ring of all integers in K_{1}. An element α of \mathfrak{S}_{1} defines an $\mathfrak{o} G_{1}$-endomorphism of $\left(\Pi^{i}\right)$ given by multiplication by α. Let $G=\cup g_{i} G_{1}$. Then, for $\beta \in\left(\Pi^{i}\right)$,

$$
\begin{equation*}
\sum g_{i} \alpha g_{i}^{-1}(\beta)=\left(\sum g_{i}(\alpha)\right) \beta \tag{2}
\end{equation*}
$$

As K_{1} / k is tamely ramified, there exists α such that $\sum g_{i}(\alpha)=1$. Thus, by (1) and (2), $\left(\Pi^{i}\right)$ is (G, G_{1})-projective, which means $V\left(\Pi^{i}\right) \subseteq G_{1}$.

We denote by G_{i} the i-th ramification group. From [10] Theorem 3 and its corollary, we immediately have the following lemma.

Lemma 2. Let K / k be as above and denote by $\left|G_{1}\right|$ the order of G_{1}. Then, if $\left(\Pi^{i}\right)$ is $\mathfrak{o} G$-projective, $i \equiv 1\left(\left|G_{1}\right|\right)$ and $G_{2}=\{1\}$.

Next, let $\varphi(t)$ be the Herbrand function for the extension K / k, and $\psi(t)$ be the inverse function of $\varphi(t)$. Then, the upper numbering of the ramification groups is given by

$$
G^{t}=G_{\psi(t)}
$$

Let V be $V=V\left(\Pi^{i}\right)$ and $\varphi_{2}(t)$ be the Herbrand function for K / K_{V}, where K_{V} is the subfield of K corresponding to V. Then, we have

$$
\begin{equation*}
(G / V)^{t}=G^{t} V / V \tag{3}
\end{equation*}
$$

(for example, see [1], p. 38).
Lemma 3. Let K / k and ψ_{2} be as above. Then, $V\left(\Pi^{i}\right) \supseteq G_{\psi_{2}(2)}$.
Proof. Let $\left(\Pi^{i}\right)_{V}=K_{V} \cap\left(\Pi^{i}\right)$. We can easily show that $\left(\Pi^{i}\right)_{V}$ is $\circ[G / V]$-projective. Then, it follows from Lemma 2 that $(G / V)_{2}=\{1\}$. Let
φ_{1} be the Herbrand function for K_{V} / k, so by (3),

$$
G^{\varphi_{1}(2)} V / V=(G / V)_{2}=\{1\},
$$

and hence $V \supseteq G^{\varphi_{1}(2)}$. From $\psi=\psi_{2} \psi_{1}$, it follows that

$$
G^{\varphi_{1}(2)}=G_{\psi\left(\varphi_{1}(2)\right)}=G_{\psi_{2}(2)},
$$

which establishes $V \supseteq G_{\psi_{2}(2)}$.
Corollary 4. Let K / k be as above. If $G_{1}=G_{2}$, then $V\left(\Pi^{i}\right)=G_{1}$.
Proof. From $G_{1}=G_{2}$, we have $V_{2}=V_{1}(=V)$, so $\psi_{2}(2)=2$. Therefore,

$$
G_{\psi_{2}(2)}=G_{2}=G_{1},
$$

and hence $V\left(\Pi^{i}\right)=G_{1}$ by Lemma 3 .
We can now prove one of the main results.
Theorem 5. Let K / k and Π be as above. Then, $G_{1} \supseteq V\left(\Pi^{i}\right) \supseteq G_{2}$.
Proof. At first we treat the case where $G_{1}=G_{2}$. For this case, the result follows at once from Corollary 4. Next, we treat the case $G_{1} \neq G_{2}$. Suppose $G_{2} \nsubseteq V$. Then, $G_{2} \cap V \neq G_{2}$ and there exists a maximal normal subgroup H of G_{2} such that $H \supseteq G_{2} \cap V$. Therefore,

$$
\begin{equation*}
H V \cap G_{2}=H . \tag{4}
\end{equation*}
$$

Let $\bar{G}=G / H$ and F be the subfield of K corresponding to $H . \quad t_{i}$ denotes the i-th ramification number of K / k. From $G_{1} \neq G_{2}$, it follows that $t_{1}=1$. Let $t=t_{2}$ for brevity. Since H is the maximal subgroup of G_{2}, we have $H=H_{1}=\cdots=H_{t} \supset H_{t+1}=G_{t_{3}} . \mathrm{By}(3)$,

$$
(\bar{G})_{i}=G^{\varphi_{F / k}(i)} H / H .
$$

Since $G^{\varphi_{F / k}(i)}=G_{\psi_{K / k}\left(\varphi_{F / K}(i)\right)},(\bar{G})_{i}=G_{\psi_{K / F}(i)} H / H$. For $i \leqq t, \psi_{K / F}(i)=i$ and for $i>t, \psi_{K / F}(i)>t$. Therefore, $G_{\psi(i)}=G_{2}$ for $2 \leqq i \leqq t$ and $G_{\psi(i)} \subseteq$ G_{t+1} for $i>t$. Then, we have

$$
\begin{equation*}
\bar{G}_{1}=(\bar{G})_{1} \supset \bar{G}_{2}=(\bar{G})_{2}=\cdots=(\bar{G})_{t} \supset(\bar{G})_{t+1}=\{1\} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{H V}=(\overline{H V})_{1} \supset(\overline{H V})_{2}=\{1\}, \tag{6}
\end{equation*}
$$

since $V \subseteq G_{1}$. Let $\bar{\psi}$ denote the Herbrand function for $K_{H V / F}$ and $|\overline{H V}|$ the order of $\overline{H V}$. Then, by (6),

$$
\begin{equation*}
\bar{\psi}(2)=1+|\overline{H V}| . \tag{7}
\end{equation*}
$$

By (4), $\overline{H V}$ is isomorphic to a subgroup of G_{1} / G_{2}, so $\overline{H V}$ is abelian. Since $H \supseteq\left[G_{2}, G_{2}\right]$ by the definition of H, \bar{G}_{2} is also abelian, and hence by (4), \bar{G}_{2} $\cdot \overline{H V}$ is abelian. Let k^{\prime} be a subfield of F corresponding to $\bar{G}_{2} \cdot \overline{H V}$ and denote by r_{i} the ramification number of F / k^{\prime}. Then, $r_{1}=1$ and $r_{2}=t$ again. Since F / k^{\prime} is an abelian extension, from [4], p. 171, (V), and by (6), it follows that

$$
t \equiv 1 \quad(|\overline{H V}|)
$$

Therefore, by (7), $\bar{\psi}(2) \leqq t$, and by (5),

$$
\begin{equation*}
(\bar{G})_{\bar{\psi}(2)}=\bar{G}_{2} . \tag{8}
\end{equation*}
$$

Since $\left(\Pi^{i}\right)$ is (G, V)-projective, $\left(\Pi^{i}\right)_{H}$ is $(\bar{G}, \overline{H V})$-projective and hence $\overline{H V} \supseteq$ $(\bar{G})_{\bar{\psi}(2)}$ by Lemma 3. From (8), $\overline{H V} \supseteq \bar{G}_{2}$. Since $H V \supseteq H$ and $G_{2} \supset H, H V \supseteq$ G_{2}, which is contrary to (4). This completes the proof of Theorem 5.

We shall conclude this section with the proof of the next theorem.
Theorem 6. Let K / k be as above, and suppose $G_{2}=\{1\}$.
(a) If $i \not \equiv 1\left(\left|G_{1}\right|\right)$, then $V\left(\Pi^{i}\right)=G_{1}$.
(b) If $i \equiv 1\left(\left|G_{1}\right|\right)$, then $V\left(\Pi^{i}\right)=\{1\}$.

Now, to prove Theorem 6, we need the following lemma.
Lemma 7. Let V be a normal subgroup of G and $\operatorname{tr}_{V}=\sum_{v \in V} v$. Let M be an ${ }^{\circ} G$-module and suppose M is (G, V)-projective. Then, $\operatorname{tr}_{V} M$ is (G / V)-projective.

Proof. Since M is (G, V)-projective, there exists an $o G$-module N and an ${ }_{\mathrm{o}} V$-module L such that

$$
M \oplus N=o G \otimes_{V} L
$$

Let $G=\cup g_{i} V$. As is a normal subgroup of $G, g_{i} V=V g_{i}$ and $\operatorname{tr}_{V} g_{i}=g_{i} \operatorname{tr}_{V}$. Therefore,

$$
\operatorname{tr}_{V} M \oplus \operatorname{tr}_{V} N=\sum g_{i} \otimes \operatorname{tr}_{V} L
$$

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis of $\operatorname{tr}_{V} L$ over \mathfrak{o}, and so

$$
\sum g_{i} \oplus \operatorname{tr}_{V} L=\sum_{j}\left(\sum_{i} \mathfrak{o} g_{i}\right) \otimes x_{j}
$$

This implies that $\operatorname{tr}_{V} M \oplus \operatorname{tr}_{V} N$ is an $\mathrm{o}[G / V]$-free module. Hence $\operatorname{tr}_{V} M$ is (G / V)-projective.

Proof of Theorem 6. (a) Let Π_{V} be a prime element of K_{V} and $\left(\Pi^{m}\right)$ be the different of K / K_{V}. Then, since $G_{2}=\{1\}$ and $V \subseteq G_{1}$, it follows that

$$
\begin{equation*}
m=2(|V|-1) \tag{9}
\end{equation*}
$$

Let $\left(\Pi_{V}^{n}\right)=\operatorname{tr}_{V}\left(\Pi^{i}\right)$. Then, from [9] Proposition 1.1 and by (9),

$$
\begin{equation*}
n=2+[(i-2) /|V|] \tag{10}
\end{equation*}
$$

Write $i=i_{1}|V|+i_{0}$ with $0 \leqq i_{0}<|V|$. We distinguish two cases: (i) $1<i_{0}$ $<|V|$ and (ii) $i_{0}=0$. We first treat case (i). By (10), $n=2+i_{1}$. Since (Π^{i}) is (G, V)-projective, it follows from Lemma 7 and Lemma 2 that $2+i_{1} \equiv 1$ (| $\left.G_{1} / V \mid\right)$, so

$$
i_{1} \equiv\left|G_{1} / V\right|-1 \quad\left(\left|G_{1} / V\right|\right)
$$

and i_{1} can be written in the form

$$
\begin{equation*}
i_{1}=i_{2}\left|G_{1} / V\right|+\left|G_{1} / V\right|-1 \tag{11}
\end{equation*}
$$

Let $\left(\Pi^{i}\right)_{V}=K_{V} \cap\left(\Pi^{i}\right)$ and Π_{1} be a prime element of K_{1}. Then, $\left(\Pi^{i}\right)_{V}$ is (G, V)-projective, i.e., $\quad \circ[G / V]$-projective. Since $G_{1} / V \subseteq G / V,\left(\Pi^{i}\right)_{V}$ is $\mathfrak{o}\left[G_{1} / V\right]$-projective. From (11), it follows that

$$
\left(\Pi^{i}\right)_{V}=\left(\Pi_{V}^{i_{1}+1}\right)=\Pi_{1}^{i_{2}+1} \mathfrak{D}_{V}
$$

where Π_{1} denotes a prime element of K_{1}. Hence \mathfrak{S}_{V} is $\mathrm{o}\left[G_{1} / V\right]$-projective and $\operatorname{tr}_{G_{1} / V} \mathfrak{D}_{V}=\mathfrak{D}_{1}$. Then, from H. Yokoi [12], Theorem $1, K_{V} / K_{1}$ is tamely ramified. Thus $K_{V}=K_{1}$ and $V=G_{1}$, which is the desired result.

In case (ii), where $i_{0}=0$, we obtain $V=G_{1}$ in a manner similar to case (i).
(b) Applying arguments similar to the above, for $i=i_{1}|V|+1$, we have

$$
\operatorname{tr}_{V}\left(\Pi^{i}\right)=\left(\Pi_{V}^{i_{1}+1}\right) \quad \text { and } \quad i_{1} \equiv 0\left(\left|G_{1} / V\right|\right)
$$

Therefore, $i \equiv 1\left(\left|G_{1}\right|\right)$; let $i=i_{2}\left|G_{1}\right|+1$. Then, $\left(\Pi^{i}\right)=\Pi_{1}^{i_{2}}(\Pi)$ and so $\left(\Pi^{i}\right)$ is $\mathfrak{D}_{1} G_{1}$-isomorphic to (Π). From [10], Theorem 2 and Proposition 5, ($\left.\Pi^{i}\right)$ is $\mathcal{D}_{1} G_{1}$-projective and $\circ G$-projective. Hence $V\left(\Pi^{i}\right)=\{1\}$, and Theorem 6 is proved.

Section 2

Throughout the rest of this paper, we assume that K / k is a wildly ramified extension of degree p^{2}, and we shall calculate the vertex $V\left(\Pi^{i}\right)$. Then, if
$G_{1}=G_{2}$ or $G_{2}=\{1\}, V\left(\Pi^{i}\right)$ is determined by Theorems 5 and 6 in $\S 1$. Thus, we treat the case where $G_{1} \neq G_{2}$ and $G_{2} \neq\{1\}$ in the following. Since the order $|G|$ of G is $p^{2}, G=G_{1}$ and $\left|G_{2}\right|=p$. Let $i=i_{1} p^{2}+i_{0}$ for $0 \leqq i_{0}<p^{2}$. Then, $\left(\Pi^{i}\right)$ is $\mathfrak{o G}$-isomorphic to ($\Pi^{i_{0}}$), and there is no loss of generality in assuming $0 \leqq i<p^{2}$. We distinguish four cases: (i) $i=0$, (ii) $i=1$, (iii) $1<i \leqq p$ and (iv) $p<i<p^{2}$. In case (i), it follows from [6], Theorem 3, that $V(\mathscr{D})=G_{1}$. In the rest of this section, we treat the cases (iii) and (iv). First we consider the case (iv).

Proposition 8. Let K / k be a wildly ramified extension of degree p^{2}, and suppose that $G_{1} \neq G_{2}$ and $\left|G_{2}\right|=p$. Then, if $p<i<p^{2}, V\left(\Pi^{i}\right)=G_{1}$.

Proof. Let $\left(\Pi^{i}\right)_{2}=\left(\Pi^{i}\right) \cap K_{2}$ and denote by Π_{2} a prime element of K_{2}. Then, from the assumption $p<i,\left(\Pi^{i}\right)_{2}=\left(\Pi_{2}^{j}\right)$ with $j \geqq 2$. Hence, Theorem 6 yields $V\left(\left(\Pi^{i}\right)_{2}\right)=G_{1} / G_{2}$. Since $\left(\Pi^{i}\right)_{2}$ is (G, V)-projective and $V \supseteq G_{2}$ by Theorem 5 , it follows that $V\left(\left(\Pi^{i}\right)_{2}\right) \subseteq V$, which implies $V\left(\Pi^{i}\right)=G_{1}$. The proof is completed.

Next we consider case (iii), $1<i \leqq p$. Let t be the second ramification number of K / k. Then, it is easily shown that $t \equiv 1(p)$ (for example, see [4], p. 172); let $t=p t_{1}+1$.

Proposition 9. Let K / k be as above and suppose $1<i \leqq p$. Then, if $t \not \equiv p+1\left(p^{2}\right), V\left(\Pi^{i}\right)=G_{1}$.

Proof. Since $|G|=p^{2}$, it follows from Theorem 5 that $V=G_{1}$ or $V=G_{2}$. Assume $V=G_{2}$. We use the same discussion as in the proof of Theorem 6. Let $\operatorname{tr}_{V}\left(\Pi^{i}\right)=\left(\Pi_{V}^{n}\right)$, so $n=(p-1) t_{1}+2$ because the different of K / K_{2} is $\left(\Pi^{(p-1)(t+1)}\right)$. Then, from the ($\left.G, V\right)$-projectivity of $\left(\Pi_{V}^{n}\right),(p-1) t_{1}+2 \equiv 1$ (p), and $t_{1} \equiv 1(p)$. Thus we can write $t_{1}=p t^{\prime}+1$, and $t \equiv p+1\left(p^{2}\right)$. This implies the accomplishment of the proof.

For case (iii) with $t \not \equiv(p+1)\left(p^{2}\right)$ and case (iv), it follows from Propositions 8 and 9 that $V\left(\Pi^{i}\right)=G_{1}$. From now on we consider the remaining case (iii) with $t \equiv(p+1)\left(p^{2}\right)$. Now, let $t=p^{2} t^{\prime}+p+1$, and let τ be a generator of G_{2} and $x=\tau-1$. Denote by Π_{2} and π prime elements of K_{2} and k, respectively. Then, we can easily prove the following lemmas.

Lemma 10. Let $\operatorname{val}=\operatorname{val}_{K}$ denote the valuation of $K(\operatorname{val}(\Pi)=1)$. Then,

$$
\operatorname{val}\left(x^{m}\left(\Pi_{2}^{n} \Pi\right)\right) \equiv \operatorname{val}\left(x^{r}\left(\Pi_{2}^{s} \Pi\right)\right)\left(p^{2}\right) \text { for } 0 \leqq m, n, r, s<p
$$

iff $m=r$ and $n=s$.

Lemma 11. Let $\left(\Pi^{i}\right)$ be an ideal of K and suppose $1<i \leqq p$. For $0 \leqq j, m$ $<p$, define $\alpha_{j, m}$ as follows:
(i) If $j+m \leqq p-1, \alpha_{j, m}=x^{j}\left(\Pi_{2}^{m} \Pi \pi^{-j t^{\prime}}\right)$.
(ii) If $j+m=p$ and $i>j+1, \alpha_{j, m}=x^{j}\left(\Pi_{2}^{m} \Pi \pi^{-j t^{\prime}}\right)$.
(iii) If $j+m=p$ and $i \leqq j+1, \alpha_{j, m}=x^{j}\left(\Pi_{2}^{m} \Pi \pi^{-j t^{\prime}-1}\right)$.
(iv) If $j+m>p, \alpha_{j, m}=x^{j}\left(\Pi_{2}^{m} \Pi \pi^{-j t^{\prime}-1}\right)$.

Then, $\left\{\alpha_{j, m} \mid 0 \leqq j, m<p\right\}$ is a basis of $\left(\Pi^{i}\right)$ over 0 .
Lemma 12. Let $\alpha_{j, m}$ be as in Lemma 10. Let L_{m+1} be an o-submodule of $\left(\Pi^{i}\right)$ generated by $\alpha_{j, m}$ for $0 \leqq j<p$. Then, L_{m+1} is an ${ }_{o} G_{2}$-submodule of (Π^{i}) and

$$
\left(\Pi^{i}\right)=L_{1} \oplus \cdots \oplus L_{p}
$$

Further we need two lemmas, which play the important role of the proof of the main theorem (Theorem 15).

Lemma 13. Let e be the absolutely ramification index of k and $t=p^{2} t^{\prime}+p$ +1 . Then, $(p-1) t^{\prime}+1<e$.

Proof. As is well known, $1 \leqq t<p^{2} e /(p-1)$. Then, it follows that

$$
(p-1) t^{\prime}+1 \leqq e
$$

Suppose $(p-1) t^{\prime}+1=e$. Then, from [9], Proposition 1.1,

$$
\operatorname{tr}_{G_{2}} \mathscr{D}=\left(\Pi_{2}^{p(p-1) t^{\prime}+p}\right)
$$

and so $\operatorname{tr}_{G_{2}} \mathfrak{D}=(p)$. This means that \mathfrak{D} is not $o G$-indecomposable. S.V. Vostokov [11] proved that if the ramification index p^{m} of an abelian p-extension L / k does not divide the different of L / k, then an ideal of L / k is indecomposable. By his results, we have that \mathfrak{D} is indecomposable. This is a contradiction, and the proof of Lemma 13 is completed.

Lemma 14. Let L_{1} and L_{2} be as in Lemma 12. Then, L_{1} is not $0 G_{2}$-isomorphic to L_{2}.

Proof. Let A_{i} be the matrix representation afforded by the $o G$-module L_{i} for $i=1,2$. Then,

$$
A_{1}(x)=\left(\begin{array}{ccccc}
0 & 0 & & \cdots & 0 \\
\pi^{t^{\prime}+1} & & & & \\
& & & & 0 \\
\pi_{1} \\
& 0 & & \ddots & \\
& & & & \pi^{t^{\prime}} \\
& a_{p-1}
\end{array}\right)
$$

and

$$
A_{2}(x)=\left(\begin{array}{ccccc}
0 & 0 & & \cdots & 0 \\
\pi^{t^{\prime}} & & & & \\
& & \pi^{t^{\prime}} & & 0 \\
& 0 & & \ddots & \\
& & & & \pi^{t^{\prime}} \\
& b_{p-1} \pi
\end{array}\right)
$$

where

$$
a_{j}=-\binom{p}{j} \pi^{-(p-j-1) t^{\prime}} \quad \text { and } \quad b_{j}=-\binom{p}{j} \pi^{-(p-j-1) t^{\prime}-1}
$$

Suppose L_{1} is isomorphic to L_{2}. Then, there exists an invertible matrix $A=\left(a_{m n}\right)$ in $G L(p, 0)$ such that

$$
\begin{equation*}
A A_{1}(x)=A_{2}(x) A \tag{12}
\end{equation*}
$$

Then

$$
a_{12} \pi^{t^{\prime+1}}=0, a_{13} \pi^{t^{\prime}}=0, \ldots, a_{1 p-1} \pi^{t^{\prime}}=0
$$

and

$$
a_{12} a_{1}+\cdots+a_{1 p} a_{p-1}=0
$$

Therefore, $a_{12}=\cdots=a_{1 p-1}=a_{1 p}=0$. Also, from the $(2,1)$ entry of (12),

$$
a_{22} \pi^{t^{\prime}+1}=\pi^{t^{\prime}} a_{11}+b_{1} a_{p 1}
$$

Lemma 13 gives $b_{1} \equiv 0\left(\pi^{t^{\prime}+1}\right)$, and hence $\pi^{t^{\prime}} a_{11} \equiv 0\left(\pi^{t^{\prime}+1}\right)$, so $a_{11} \equiv 0(\pi)$. This implies $A \notin G L(p, 0)$, which is a contradiction. The proof of Lemma 14 is completed.

We are ready to prove one of the main theorems.
Theorem 15. Let K / k be a wildly ramified extension of degree p^{2}, and suppose that $G_{1} \neq G_{2}$ and $\left|G_{2}\right|=p$. Then, if $i \not \equiv 1\left(p^{2}\right), V\left(\Pi^{i}\right)=G_{1}$.

Proof. From Propositions 8 and 9, it is sufficient to prove Theorem 15 for case (iii) with $t \equiv p+1\left(p^{2}\right)$, i.e., $1<i \leqq p$ and $t=p^{2} t^{\prime}+p+1$. By S.V.

Vostokov's results [11] together with Lemma 13, (Π^{i}) is an indecomposable $\mathfrak{o} G$-module. Suppose $V\left(\Pi^{i}\right)=G_{2}$. Then, from [2], p. 449, (19.2) Theorem, there is an indecomposable $o G_{2}$-submodule M of (Π^{i}) such that (Π^{i}) is a direct summand of $\mathfrak{o} G \otimes_{G_{2}} M$. Therefore, all indecomposable components of ${ }^{\circ} G_{2}$-module $\left(\Pi^{i}\right)$ are isomorphic to M. Hence L_{1} and L_{2} are isomorphic because $\operatorname{dim}_{0} L_{1}=\operatorname{dim}_{0} L_{2}=p$. This is a contradiction, and Theorem 15 is proved.

Section 3

As in $\S 2$, let K / k be a wildly ramified extension of degree p^{2}, and assume that $G_{1} \neq G_{2}$ and $\left|G_{2}\right|=p$. In this section, we consider case (ii), $i=1$. Let t be the second ramification number of K / k. Using arguments similar to the proof of Proposition 9, we have:

Proposition 16. Let K / k and t be as above. Then, if $t \not \equiv 1\left(p^{2}\right), V(\Pi)=$ G_{1}.

We devote the remainder of this paper to the computation of $V(\Pi)$ with $0 \leqq e_{1}<p-1$, where e denotes the absolutely ramification index of k. Since $1 \leqq t<p^{2} e /(p-1)$, it is easily seen that

$$
\begin{equation*}
\text { if } e_{1} \neq 0 \text {, then } e_{0} \leqq t^{\prime} \text { and if } e_{1}=0 \text {, then } e_{0}-1 \leqq t^{\prime} \tag{13}
\end{equation*}
$$

Since G is of order p^{2}, G is either a cyclic group of order p^{2} or an elementary abelian group of type (p, p). First we treat the case where G is cyclic.

Lemma 17. Let G be a cyclic group of order p^{2} with a generator σ, and let θ be a p^{2}-th root of 1 . o^{\prime} denotes the ring of all integers of $k(\theta)$. Then, in $\mathrm{o}^{\prime} G$,

$$
\sum_{i=1}^{p^{2}-1} \theta^{p^{2}-1-i} \sigma^{i} \equiv \operatorname{tr}+\sum_{i=1}^{p^{2}-2}(\theta-1)^{p^{2}-1-i}(\sigma-1)^{i}(p(\theta-1))
$$

where $\operatorname{tr}=\sum_{i=0}^{p^{2}-1} \sigma^{i}$.
Proof. We have

$$
\sum \theta^{p^{2}-1-i} \sigma^{i}=\operatorname{tr}+\sum_{i=1}^{p^{2}-1}\left(\theta^{i}-1\right)+\sum_{i=1}^{p^{2}-2}\left(\theta^{p^{2}-1-i}-1\right)\left(\sigma^{i}-1\right)
$$

Let $y=\theta-1$ and $x=\sigma-1$. Then,

$$
\begin{aligned}
\sum_{i=1}^{p^{2}-2} & \left(\theta^{p^{2}-1-i}-1\right)\left(\sigma^{i}-1\right) \\
& =\sum_{i=1}^{p^{2}-2}\left(\begin{array}{c}
p^{2}-1-i \\
j=1
\end{array}\binom{p^{2}-1-i}{j} y^{j}\right)\left(\sum_{m=1}^{i}\binom{i}{m} x^{m}\right) \\
& =\sum_{j=1}^{p^{2}-2}\left\{\sum_{m=1}^{p^{2}-1-j}\left\{\sum_{m \leqq i \leqq p^{2}-1-j}\binom{p^{2}-1-i}{j}\binom{i}{m}\right\} x^{m}\right\} y^{j}
\end{aligned}
$$

From the formula

$$
\sum_{i=m}^{n}\binom{i}{m}\binom{n+s-i-1}{n-i}=\binom{n+s}{m+s}
$$

(for example, see [8]), this becomes

$$
\sum_{j=1}^{p^{2}-2}\left\{\sum_{m=1}^{p^{2}-1-j}\binom{p^{2}}{m+j+1} x^{m}\right\} y^{j}
$$

Therefore,

$$
\sum \theta^{p^{2}-1-i} \sigma^{i} \equiv \sum_{m=1}^{p^{2}-2} y^{p^{2}-1-m} x^{m}(p(\theta-1))
$$

which completes the proof of Lemma 17.
Lemma 18. Let K / k be as above, and let M be an o-submodule of (Π) generated by $\sigma^{i}(\Pi)$ for $0 \leqq i<p^{2}$. Denote by $\mathcal{D}(M)$ the discriminant of M. Then,

$$
\operatorname{val}_{k}(\mathfrak{D}(M))=2 p^{2}\left((p-1) t^{\prime}+1\right)
$$

Proof. From [1], p. 12, Proposition 4, we have

$$
\delta(M)=\operatorname{det}\left(\operatorname{tr} \sigma^{i}(\Pi) \sigma^{j}(\Pi)\right)
$$

Since $\operatorname{det}\left(\operatorname{tr} \sigma^{i}(\Pi) \sigma^{j}(\Pi)\right)$ is a cyclic determinant,

$$
\begin{equation*}
\operatorname{det}\left(\operatorname{tr} \sigma^{i}(\Pi) \sigma^{j}(\Pi)\right)=\Pi_{\theta}\left(\sum_{i=0}^{p^{2}-1} \theta^{-i} \operatorname{tr}\left(\Pi \sigma^{i}(\Pi)\right)\right) \tag{14}
\end{equation*}
$$

where the product is taken over all p^{2}-th roots θ of 1 . Then, from Lemma 17, it follows that for some integer α of \mathcal{D},

$$
\begin{aligned}
& \sum_{i=0}^{p^{2}-1} \theta^{-i} \operatorname{tr}\left(\Pi \sigma^{i}(\Pi)\right) \\
& \quad=\theta\left((\operatorname{tr} \Pi)^{2}+\sum_{i=1}^{p^{2}-2}(\theta-1)^{p^{2}-1-i} \operatorname{tr}\left(\Pi(\sigma-1)^{i}(\Pi)+\operatorname{tr}(p \alpha)\right) .\right.
\end{aligned}
$$

Let $i=i_{1} p+i_{0}$ with $0 \leqq i_{1}, i_{0}<p$, and so

$$
\operatorname{val}_{K}(\sigma-1)^{i}(\Pi)=1+i_{0}+i_{1}\left(p^{2} t^{\prime}+1\right)
$$

since $\sigma \in G_{1}$ and $\sigma^{p} \in G_{t}\left(=G_{2}\right)$. Then, from [9], Proposition 1.1, it follows

$$
\operatorname{val}_{k}\left(\operatorname{tr}\left(\Pi(\sigma-1)^{i}(\Pi)\right) \geqq(p-1) t^{\prime}+i_{1} t^{\prime}+2\right.
$$

and

$$
\operatorname{val}_{k}\left((\operatorname{tr} \Pi)^{2}\right)=2\left((p-1) t^{\prime}+1\right)
$$

By (13), we have

$$
\begin{aligned}
& \operatorname{val}\left((\theta-1)^{p^{2}-1-i} \operatorname{tr}\left(\Pi(\sigma-1)^{i}(\Pi)\right)-\operatorname{val}\left((\operatorname{tr} \Pi)^{2}\right)\right. \\
& =\left(p^{2}-1-i\right) e / p(p-1)+i_{1} t^{\prime}-(p-1) t^{\prime} \\
& =e_{0}+e_{1}\left(p-i_{1}\right) /(p-1)-\left(\left(1+i_{1}\right) / p\right)(e /(p-1)) \\
& \quad \quad+\left(p-i_{1}-1\right)\left(e_{0}-t^{\prime}\right)
\end{aligned}
$$

We distinguish four cases as follows: (a) $e_{1} \neq 0$ and $i_{1} \leqq p-2$, (b) $e_{1} \neq 0$ and $i_{1}=p-1$, (c) $e_{1}=0$ and $i_{1} \leqq p-2$, (d) $e_{1}=0$ and $i_{1}=p-1$. In case (a),

$$
\begin{aligned}
& \operatorname{val}\left((\theta-1)^{p^{2}-1-i} \operatorname{tr}\left(\Pi(\sigma-1)^{i}(\Pi)\right)\right)-\operatorname{val}\left((\operatorname{tr} \Pi)^{2}\right) \\
& \quad \geqq e_{0}+2 e_{1} /(p-1)-e /(p-1) \\
& \quad>0
\end{aligned}
$$

In case (b), $i_{0} \leqq p-2$ because $i<p^{2}-1$. Then,

$$
\begin{aligned}
& \operatorname{val}\left((\theta-1)^{p^{2}-1-i} \operatorname{tr}\left(\Pi(\sigma-1)^{i}(\Pi)\right)-\operatorname{val}\left((\operatorname{tr} \Pi)^{2}\right)\right. \\
& \quad \geqq e_{0}+e_{1} /(p-1)-((p-1) / p)(e /(p-1)) \\
& \quad>0
\end{aligned}
$$

Similarly, for cases (c) and (d), we obtain

$$
\operatorname{val}\left((\theta-1)^{p^{2}-1-i} \operatorname{tr}\left(\Pi(\sigma-1)^{i}(\Pi)\right)-\operatorname{val}\left((\operatorname{tr} \Pi)^{2}\right)>0\right.
$$

Therefore, from (14), we conclude

$$
\operatorname{val}\left(\operatorname{det}\left(\operatorname{tr} \sigma^{i}(\Pi) \sigma^{j}(\Pi)\right)\right)=2 p^{2}\left((p-1) t^{\prime}+1\right)
$$

which is the desired result.
Next, we consider the case where G is an elementary abelian group of p^{2}, and we prove again two lemmas.

Lemma 19. Let A_{i} be a matrix of type (p, p) for $1 \leqq i \leqq p$, and let a matrix B of type $\left(p^{2}, p^{2}\right)$ be given by

$$
B=\left(\begin{array}{cccc}
A_{1} & A_{2} & \ldots & A_{p} \\
A_{2} & A_{3} & \ldots & A_{1} \\
& \ldots & & \\
A_{p} & A_{1} & \ldots & A_{p-1}
\end{array}\right)
$$

Then

$$
\operatorname{det} B=(-1)^{(p-1) / 2} \Pi_{\theta}\left(\operatorname{det}\left(\sum_{i=0}^{p-1} \theta^{i} A_{i}\right)\right),
$$

where the product is taken over all p-th roots θ of 1.
Proof. Using the same procedure as in the proof of the formula of cyclic determinants, we can prove Lemma 19.

Lemma 20. Let K / k be a non-cyclic extension of degree p^{2}, and let σ and τ be generators of Galois group G such that G_{2} is generated by $\tau . \quad M$ denotes an o-submodule generated by $\sigma^{i} \tau^{j}(\Pi)$ for $0 \leqq i, j<p$. Then

$$
\operatorname{val}_{k} \delta(M)=2 p^{2}\left((p-1) t^{\prime}+1\right)
$$

Proof. Let a matrix A of type (p, p) be defined by

$$
A=\left(\sigma^{i} \sigma^{j}(\Pi)\right) \text { for } 0 \leqq i, j<p
$$

and let

$$
A_{m}=\tau^{m-1}(A)\left(=\left(\tau^{m-1}\left(\sigma^{i} \sigma^{j}(\Pi)\right)\right) \quad \text { for } 1 \leqq m \leqq p\right.
$$

As in Lemma 19, let

$$
B=\left(\begin{array}{cccc}
A_{1} & A_{2} & \ldots & A_{p} \\
A_{2} & A_{3} & \ldots & A_{1} \\
& & \ldots & \\
A_{p} & A_{1} & \ldots & A_{p-1}
\end{array}\right)
$$

Then we have

$$
\mathfrak{d}(M)=\left(\operatorname{det}^{t} B \cdot \operatorname{det} B\right)
$$

From Lemma 19, it follows that

$$
\operatorname{det} B=(-1)^{(p-1) / 2} \Pi_{\theta}\left(\operatorname{det}\left(\sum \theta^{i} \tau^{i}(A)\right)\right.
$$

By the formula of cyclic determinants and from [7] Lemma 5, we have

$$
\begin{aligned}
& \operatorname{det}\left(\sum \theta^{i} \tau^{i}(A)\right) \\
& =\prod_{m=0}^{p-1}\left(\sum_{j=0}^{p-1} \zeta^{j m_{\sigma}} \sigma^{j}\left(\sum \theta^{i} \tau^{i}(\Pi)\right)\right. \\
& =
\end{aligned} \begin{aligned}
& \Pi_{m}\left(\begin{array}{rl}
\operatorname{tr} \Pi+\sum_{1 \leqq i, j<p-1}\left(\zeta^{-m}-1\right)^{p-1-j} \\
& \times\left(\theta^{-1}-1\right)^{p-1-i}(\sigma-1)^{j}(\tau-1)^{i}(\Pi) \\
+ & \left.\sum_{1 \leqq j<p-1}\left(\zeta^{-m}-1\right)^{p-1-j}(\sigma-1)^{j}\left(\sum_{i=0}^{p-1} \tau^{i}\right)(\Pi)+p\left(\theta^{-1}-1\right) \alpha\right)
\end{array}\right)
\end{aligned}
$$

where $\alpha \in \mathscr{D}$ and ζ denotes a primitive p-th root of 1 . Similarly as in the proof of Lemma 18, we can obtain

$$
\operatorname{val}_{k}(\operatorname{det} B)=p^{2}\left((p-1) t^{\prime}+1\right)
$$

and

$$
\operatorname{val}_{k}(\mathfrak{d}(M))=2 p^{2}\left((p-1) t^{\prime}+1\right)
$$

and the proof of Lemma 20 is completed.
We can now prove one of the main results.
Theorem 21. Let K / k be a wildly ramified extension of degree p^{2}, and suppose $G_{1} \neq G_{2}$ and $\left|G_{2}\right|=p$. Let t denote the second ramification number of K / k. Then, $V\left(\Pi^{i}\right)=G_{2}$ for $i \equiv 1\left(p^{2}\right)$ if and only if $t \equiv 1\left(p^{2}\right)$.

Proof. As pointed out in the beginning of $\S 2$, we may set $i=1$. Proposition 16 establishes the "only if" part of Theorem 21, so let us prove the converse part. Let $x=\tau-1$ for a generator τ of G_{2} and $t=p^{2} t^{\prime}+1$ as before. For $0 \leqq j<p$, define an integer α_{j} of (П) by

$$
\alpha_{j}=x^{j}\left(\Pi \pi^{-j t^{\prime}}\right)
$$

and set $L_{1}=\mathrm{o} \alpha_{0}+\mathrm{o} \alpha_{1}+\cdots+\mathfrak{o} \alpha_{p-1}$. Then L_{1} is an $o G_{2}$-submodule of $\left(\Pi^{i}\right)$. We define an \mathfrak{o}-submodule L of K by $L=\sum_{i=0}^{p-1} \sigma^{i}\left(L_{1}\right)$, where $G=$ $\cup \sigma^{i} G_{2}$. Let $M=\sum_{0} \sigma^{i} \tau^{j}(\Pi)$ and $M_{1}=\sum_{0} \tau^{i}(\Pi)$. We calculate the module index [$L: M$] (for the definition, see [1], p. 10). Clearly,

$$
[L: M]=\left(\left[L_{1}: M_{1}\right]\right)^{p}
$$

Since $\sum \mathfrak{o} x^{j}=\mathfrak{o} G_{2}$, it follows easily that

$$
\operatorname{val}_{k}\left(\left[L_{1}: M_{1}\right]\right)=t^{\prime}+\cdots+(p-1) t^{\prime}=p(p-1) t^{\prime} / 2
$$

and

$$
\operatorname{val}_{k}([L: M])=p^{2}(p-1) t^{\prime} / 2
$$

On the other hand, we have

$$
[(\Pi): M]=[\mathfrak{O}: M] /[\mathfrak{D}:(\Pi)]
$$

so

$$
[(\Pi): M]^{2}=\mathfrak{d}(M) \mathfrak{d}(\mathscr{D})^{-1}\left(\pi^{-2}\right)
$$

As is easily shown, $\operatorname{val}_{k}(\mathfrak{D}(\mathcal{O}))=(p-1)\left(p^{2} t^{\prime}+2\right)+2 p(p-1)$. Then, we obtain

$$
\operatorname{val}_{k}([(\Pi): M])=p^{2}(p-1) t^{\prime} / 2=\operatorname{val}_{k}([L: M])
$$

and hence $(\Pi)=L$. Since L is isomorphic to $\mathrm{o} G \otimes_{G_{2}} L_{1}$, (Π) is also isomorphic to $\mathfrak{o} G \otimes_{G_{2}} L_{1}$. Therefore, from [2], p. 449, (19.2) Theorem, it follows that $V(\Pi)=G_{2}$. The proof of Theorem 21 is complete.

The author wishes to thank the referee for his advice.

References

1. J. Cassels and A. Fröhlich, Algebraic number theory, Academic Press, New York, 1967.
2. C.W. Curtis and I. Reiner, Methods of representation theory vol. 1, Interscience, New York, 1981.
3. A. Fröhlich, Some topics in the theory of module conductors, Oberwolfach Berichte vol. 2 (1966), pp. 59-83.
4. H. HASSE, Führer, Discriminant und Verzweigungskörper relativ-Abelscher Zahlkörper, J. Reine Angew. Math., vol. 162 (1930), pp. 169-184.
5. E. Noether, Normalbasis bei Körpern ohne höhere Verzweigung, J. Reine Angew. Math., vol. 167 (1932), pp. 147-152.
6. Y. Mryata, On a characterization of the first ramification group as the vertex of the ring of integers, Nagoya Math. J., vol. 43 (1971), pp. 151-156.
7. \qquad , On the module structure of the ring of all integers of a \mathfrak{p}-adic number field, Nagoya Math. J., vol. 54 (1974), pp. 53-59.
8. Sūgaku Jiten (Mathematical dictionary), Iwanami, Tokyo, 1968.
9. S. Ullom, Normal bases in Galois extensions of number fields, Nagoya Math. J., vol. 34 (1969), pp. 153-167.
10. \qquad , Integral normal bases in Galois extensions of local fields, Nagoya Math. J., vol. 39 (1970), pp. 141-148.
11. S.V. Vostokov, Ideals of an abelian p-extension of a local field as Galois modules, Zap. Naǔ̌n. Sem. Lenigrad. Otdel. Mat. Inst. Steklov. (LOMI), vol. 57 (1976), pp. 64-84 (Russian).
12. H. Yokoi, On the ring of integers in an algebraic number field as a representation module of Galois group, Nagoya Math. J., vol. 16 (1960), pp. 83-90.

Shizuoka University

Shizuoka, Japan

[^0]: © 1987 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

