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VERTICES OF IDEALS OF A -ADIC NUMBER FIELD

BY

YOSHIMASA MIYATA

Let k be a -adic number field with the ring 0 of all integers, and K be a
finite normal extension with Galois group G. Let II denote a prime element of
the ring (C) of integers in K. Then, an ideal (Hi) of (C) is an 0G-module. E.
Noether [5] showed that if K/k is tamely ramified, (C) is isomorphic to oG.
S. Ullom [10] proved that (Hi) has a normal basis if and only if trr/rl(YI i)
(yIi) N Kx, where Kx is the ramification subfield of K/k. A. Frhlich [3]
generalized E. Noether’s theorem as follows: (C) is relatively projective with
respect to a subgroup S of G if and only if S

_
Gt, where G denotes the first

ramification group of K/k. Now we define the vertex V(Hi) of (YI i) as the
minimal normal subgroup S of G such that (Hi) is (G, S)-projective. Then,
the above generalization by A. Fr6hlich implies that V((C))= G1 (cf. [6],
Theorem 3). The purpose of this paper is to study the vertex V(IIi) of (Hi). In
the first section, we shall show that Gt

_
V(1-I i)

_
G2 for any (Theorem 5)

and that if the second ramification group G2 is trivial, then V(YIi) is either G1
or (1} (Theorem 6). The next two sections deal with the restricted case where
K/k is a wildly ramified extension of degree p2. We shall show that if 1
(p2), then V(IIi) Gt (Theorem 15) and we shall obtain the necessary and
sufficient conditions for V(YIi) to be equal to G2 for the case where 1 (p2)
(Theorem 21).

Section .1

Let o be the ring of all integers of a -adic number field k. Let S be a
subgroup of a finite group G. We begin this section with recalling the
definition of (G, S)-projectivity. An 0G-module M is (G, S)-projective if there
exists an oS-endornorphism V such that

n

(1) E gi’tgi- lu,
i--1

where G t2giS (for example, see [2], p. 449, (19.1) Definitions and (19.2)
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Theorem). Moreover, from [2], p. 452 (19.5) Proposition, there exists a unique
minimal normal subgroup S such that M is (G, S)-projective. Now let K/k
be a finite Galois extension with Galois group G, and denote by r a prime
dement of K. Then, applying the above results to an 0G-module (II), we can
define the vertex V(II) of (II) stated in the introduction, i.e., V(II) is a
unique minimal normal subgroup V of G such that (II) is (G, V)-projective.

Remark. For an indecomposable 0G-module M, the vertex of M stated in
the above is the minimal normal subgroup containing an ordinary vertex of M
defined in the module representation theory of groups.

PROPOSITION 1. Let K/k and II be as in the above, and denote by Gx the
first ramification group of K/k. Then, V(II)

_
G1.

Proof. Let )1 be the ring of all integers in K1. An element a of )1
defines an OGl-endomorphism of (II) given by multiplication by a. Let
G gG. Then, for fl (II),

(2) Eg,agTX(#) (Eg,())#.
As K1/k is tamely ramified, there exists a such that Eg(a) 1. Thus, by (1)
and (2), (Hi) is (G, Gx)-projective, which means V(II i)

_
G1.

We denote by G the i-th ramification group. From [10] Theorem 3 and its
corollary, we immediately have the following lemma.

LFMMA 2. Let K/k be as above and denote by Gxl the order of Gt. Then, if
(Hi) is oG-projective, --- 1 (IGxl) and G2 (1}.

Next, let p(t) be the Herbrand function for the extension K/k, and (t) be
the inverse function of (t). Then, the upper numbering of the ramification
groups is given by

G G,k(t).

Let V be V V(II i) and (]02(t) be the Herbrand function for K/KV, where
Kv is the subfield of K corresponding to V. Then, we have

(3) (G/V)’= G’V/V

(for example, see [1], p. 38).

LEMMA 3. Let K/k and P2 be as above. Then, V(II i)
_

Gk2(2).

Proof. Let (Hi)v Kv.C3 (Hi). We can easily show that (IIi)v is
o[G/V]-projective. Then, it follows from Lemma 2 that (G/V)a {1). Let
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t be the Herbrand function for Kv/k, so by (3),

{ I },

and hence V
___
G2). From 2t, it follows that

G’x(2) G,/, l(2)) G,2(2),

which establishes V
__

COROLLARY 4. Let K/k be as above. If G G2, then V(IIi) GI.

Proof. From G G2, we have V2 V (= V), so 2(2) 2. Therefore,

G,/,2(2 G2 G1,

and hence V(IIi) Gx by Lemma 3.

We can now prove one of the main results.

THEOREM 5. Let K/k and II be as above. Then, G1 D_ V(IIi)
_
G2.

Proof. At first we treat the case where G G2. For this case, the result
follows at once from Corollary 4. Next, we treat the case G , G2. Suppose
G2 V. Then, G2 tq V, G2 and there exists a maximal normal subgroup H
of G2 such that H

_
G2 V. Therefore,

(4) HV G2 H.

Let G-- G/H and F be the subfield of K corresponding to H. t denotes
the i-th ramification number of K/k. From G q= G2, it follows that 1.
Let t2 for brevity. Since H is the maximal subgroup of G2, we have
H H1 H, D H,+ G,,. By (3),

(r) G’r/*(OH/H.

Since Gr/*(0 Gcx/,(r/,(.)), (G),.= Gx/r(.), H/H. For

_
t, r/F(i)

and for > t, tkr/F(i) > t. Therefore, Gel0 G2 for 2

_ _
and G(0

__
Gt+ t for > t. Then, we have

(5) rt () D 2 ()2 ()t D ()t+x (1}

and

(6)
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since V __C_ Gt. Let denote the Herbrand function for Knv/F and I--1 the
order of -’. Then, by (6),

(7) (2) 1 + I---1.
By (4), H-"- is isomorphic to a subgro__up of Gi/G2, so H--" is abelian. Since_
H
_

[G2, G2] by the definition of H, G2 is also abelian, and hence by (4), G2
H--’ is abelian. Let k’ be a subfield of F corresponding to r2 H"- and

denote by r the ramification number of F/k’. Then, r 1 and r2 again.
Since F/k’ is an abelian extension, from [4], p. 171, (V), and by (6), it follows
that

t=l (I -91).
Therefore, by (7), k(2)

_
t, and by (5),

(8)

Since (Hi) is (G, V)-projective, (IIi)u__is (, ---V)-projective and hence HV_
(G)$(2) by Lemma 3. From (8), HV_ G. Since HV
G, which is contrary to (4). This completes the proof of Theorem 5.

We shall conclude this section with the proof of the next theorem.

TI-mOM 6. Let K/k be as above, and suppose G2

(a) If l(IGxl), then V(II’)= Gx.
(b) If =- l(IGxl), then V(IIi) {1}.

={1}.

Now, to prove Theorem 6, we need the following lemma.

Lv 7. Let V be a normal subgroup of G and trv Eo vv. Let M be an
oG-module and suppose M is (G, V)-projective. Then, trvM is (G/V)-projec-
tire.

Proof Since M is (G, V)-projective, there exists an 0G-module N and an
0V-module L such that

MN=oG(R)vL.

Let G ugV. As is a normal subgroup of G, gV Vg and trvg gitrv.
Therefore,

trvM trvN g (R) trvL

Let { xl,..., x, } be a basis of trvL over 0, and so

xj.
\J
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This implies that trvM trvN is an [G/V]-free module. Hence trvM is
(G/V)-projective.

Proof of Theorem 6. (a) Let II v be a prime element of Kv and (IIm) be
the different of K/Kv. Then, since G2 (1) and V

_
Gt, it follows that

(9) m 2(I V[ 1).

Let (II) trv(IIJ). Then, from [9] Proposition 1.1 and by (9),

(10) n-- 2 + [(i- 2)/IVI].

Write ill VI + io with 0 o < VI. We distinguish two cases: (i) 1 < io
< VI and (ii) io 0. We first treat case (i). By (10), n 2 + 1. Since (IIj) is
(G, V)-projective, it follows from Lemma 7 and Lemma 2 that 2 + ---1
(lx/Vl), so

it Gt/Vl 1 (I Gt/VI)

and 1 can be written in the form

(11) it i[Gt/VI + IG/VI- 1.

Let (IIi)v Kv 3 (Hi) and 1-I be a prime dement of Kt. Then, (IIi)v is
(G,V)-projective, i.e., o[G/V]-projective. Since G/V_ G/V,(IIJ)v is
o[Gt/V]-projective. From (11), it follows that

--V V

where IIt denotes a prime dement of Kt. Hence (C)v is o[Gt/V]-projective
and tr/v(C) v (C)x. Then, from H. Yokoi [12], Theorem 1, Kv/K is tamely
ramified. Thus Kv K1 and V G1, which is the desired result.

In case (ii), where o 0, we obtain V G in a manner similar to case (i).
(b) Applying arguments similar to the above, for ix VI + 1, we have

trv( II’) ( II’, + ) andV

Therefore, 1 (IGtl); let i2lGll + 1. Then, (IIi) II’(II) and so (II i)
is (C)tGt-isomorphic to (II). From [10], Theorem 2 and Proposition 5, (II i) is
(C)tGt-projective and 0G-projective. Hence V(II i) {1}, and Theorem 6 is
proved.

Section 2

Throughout the rest of this paper, we assume that K/k is a wildly ramified
extension of degree p2, and we shall calculate the vertex V(IIi). Then, if
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G1 G2 or G2 {1), V(II) is determined by Theorems 5 and 6 in {}1. Thus,
we treat the case where G G2 and G2 # (1} in the following. Since the
order IGI of G is p2, G Gx and 1(721 P. Let ixp2 + io for 0

_
0 < p2.

Then, (II) is oG-isomorphic to (IIo), and there is no loss of generality in
assuming 0 _i< p2. We distinguish four cases: (i) 0,, (ii) 1, (iii)
1 <

_
p and (iv) p < < p2. In case (i), it follows from [6], Theorem 3, that

V((C)) G. In. the rest of this section, we treat the cases (iii) and (iv). First we
consider the case (iv).

PROPOSITION 8. Let K/k be a wildly ramified extension of degree p2, and
suppose that Gx G2 and G21 P. Then, ifp < < p2, V(II i) Gx.

Proof. Let (Hi) 2 (IIi) K2 and denote by II2 a prime element of g2.

Then, from the assumption p < i, (IIi)2 (II) with j

_
2. Hence, Theorem

6 yields V((IIi)2) G1/G2. Since (IIi)2 is (G, V)-projective and V

___
G2 by

Theorem 5, it follows that V((II)2) V, which implies V’(II i) Gx. The
proof is completed.

Next we consider case (iii), 1 <

_
p. Let be the second ramification

number of K/k. Then, it is easily shown that t 1 (p) (for example, see [4],
p. 172); let t ptx + 1.

PROPOSITION 9. Let K/k be as above and suppose 1 <

_
p. Then, if

t p + 1 (p:), V(II) G.

Proof Since GI p2, it follows from Theorem 5 that V G1 or V G2.

Assume V G2. We use the same discussion as in the proof of Theorem 6. Let
trv(II) (II,), so n (p- 1)t + 2 because the different of K/K2 is
(II(-x)(t+x)). Then, from the (G, V)-projectivity of (II,), (p 1)t + 2 1
(p), and tx 1 (p). Thus we can write tx pt’ + 1, and p + 1 (p2). This
implies the accomplishment of the proof.

For case (iii) with t (p + 1) (p2) and ease (iv), it follows from Proposi-
tions 8 and 9 that V(IIi) G1. From now on we consider the remaining case
(iii) with t =-(p + 1) (p2). Now, let t--p2t’ + p + 1, and let be a
generator of G2 and x - 1. Denote by II 2 and r prime elements of K2
and k, respectively. Then, we can easily prove the following lemmas.

L 10. Let val valr denote the valuation of K (val(II) 1). Then,

fo 0 z m, n, r, s < p

iff m r and n s.
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LEML 11. Let (IIi) be an ideal ofK and suppose I <

_
p. For 0

_
j, m

< p, define ay, m as follows:
(i) Ifj + rn

_
p- 1, aj, m xJ(IXrffIXl’-Jt’).

(ii) Ifj + m p and > j + 1, aj, m xJ(II’IIr-Jt’).
(iii) Ifj + m p and j + 1, aj m =,xJ(II’IIr-Jt’-l)
(iv) lfj + m > p, aj, m xJ(II’l-r-jr -1).

Then, { ay, m 10 j, m < p ) is a basis of (IIi) over o.

LEMMA 12. Let {Xj, m be as in Lemma 10. Let Lm+ be an o-submodule of
(Hi) generated by %,m for 0 _j < p. Then, Lm+ is an oG2-submodule of
(H ) and

(II’)
Further we need two lemmas, which play the important role of the proof of

the main theorem (Theorem 15).

LEMMA 13. Let e be the absolutely ramification index of k and t p2t’ + p
+ 1. Then, (p 1)t’ + 1 < e.

Proof. As is well known, 1

_
< p2e/(p 1). Then, it follows that

(p 1)t’ + 1 Z e.

Suppose (p 1)t’ + 1 e. Then, from [9], Proposition 1.1,

trG2 ( II(p-1)t’ +P
and so tr(C) (p). This means that (C) is not 0G-indecomposable. S.V.
Vostokov [11] proved that if the ramification index pm of an abelian p-exten-
sion L/k does not divide the different of L/k, then an ideal of L/k is
indecomposable. By his results, we have that (C) is indecomposable. This is a
contradiction, and the proof of Lemma 13 is completed.

LEMMA 14.
phic to L2.

Let L and L2 be as in Lemma 12. Then, L is not oG2-isomor-

Proof. Let A be the matrix representation afforded by the 0G-module Li
for 1, 2. Then,

AI(X) l,

al

r t’ ap_l
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and

0

0

0

b

where

( t9 ) -(p-j-1)t’ ( t9 ) -(p-j-1)t’-Iaj j
,r and bj j

,r

Suppose L1 is isomorphic to L2. Then, there exists an invertible matrix
A (a) in GL(p, 0) such that

(12) aal(x) a2(x)a.

Then

tP+l
a12" 0, a13/" 0,..., alp_l 0

and

al2a1 + +al,a,_ 1 O.

Therefore, a12 a_ alp 0. Also, from the (2,1) entry of (12),

+ 1 t’r all + blapl.a22r

Lemma 13 gives b 0 (,rt’+l), and hence ,r all 0 (,r +l), SO all m 0 (,r).
This implies A GL(p, 0), which is a contradiction. The proof of Lemma 14
is completed.

We are ready to prove one of the main theorems.

TaOEM 15. Let K/k be a wildly ramified extension of degree p2, and
suppose that G1 G2 and IG _l --p. Then, if 1 (p2), (l"Ii) G1"

Proof. From Propositions 8 and 9, it is sufficient to prove Theorem 15 for
case (iii) with t =- p + 1 (p2), i.e., 1 <

_
p and t p2t’ + p + 1. By S.V.
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Vostokov’s results [11] together with Lemma 13, (II) is an indecomposable
oG-module. Suppose V(IIi) G2. Then, from [2], p. 449, (19.2) Theorem,
there is an indecomposable 0G2-submodule M of (II) such that (II) is a
direct summand of 0G (R)2 M. Therefore, all indecomposable components of
oG2-module (Ii) are isomorphic to M. Hence L and L2 .are isomorphic
because dimoLt dimoL2 p. This is a contradiction, and Theorem 15 is
proved.

Section 3

As in [}2, let K/k be a wildly ramified extension of degree p2, and assume
that G1 #: G2 and G21 P. In this section, we consider case (ii), 1. Let
be the second ramification number of K/k. Using arguments similar to the
proof of Proposition 9, we have:

PROPOSITION 16. Let K/k and be as above. Then, if 1 (p2), V(II)
G1

We devote the remainder of this paper to the computation of V(II) with
0 _< e < p 1, where e denotes the absolutely ramification index of k. Since
1

_
t < pEe/(p 1), it is easily seen that

(13) if et #: 0, then e0 _< t’ and if ex 0, then e0 1 _< t’.

Since G is of order p2, G is either a cyclic group of order p2 or an elementary
abelian group of type (p, p). First we treat the case where G is cyclic.

LEMa 17. Let G be a cyclic group of order p2 with a generator o, and let 0
be a p2-th root of 1. o’ denotes the ring of all integers of k(O). Then, in o’G,

p2 1 p2 2

E 0’-X-o--tr + E (0- 1)’--(o- 1)(p(0- 1)),
i--1 iffil

where

Proof. We have

p2 1 p2 2

E0P2-x-’o’=tr+ g (0’-1)+ g (
i=1 i--1

1)(0i- 1).
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Let y--0-1andxfo-l. Then,

p2_ :2

E :)(o’- :)
i--I

i-1 j-1 J mffil
m Xm

j--1 m-1 m<i<p2-t-j
Xm yJ.

From the formula

i--m
m n-i m s

(for example, see [8]), this becomes

j=l
m+j+l)) yj"

Therefore,

p 2

E0’’-1-’o’-- E YP-I-mxm(P(0 11),
m-1

which completes the proof of Lemma 17.

LEMt 18. Let K/k be as above, and let M be an o-submodule of (H)
generated by oi(ii) for 0

_
< p2. Denote by b(M) the discriminant of M.

Then,

valk(b,(M)) 2p2((p- l)t’+ 1).

Proof. From [1], p. 12, Proposition 4, we have

b(M) det(tr o’(II)oJ(II)).
Since det(tr oi(H)og(H)) is a cyclic determinant,

(14) i( )det(troi(H)oJ(H)) Ha E O-’tr(IIo n)),
i-O



VERTICES OF IDEALS OF A }-ADIC NUMBER FIELD 195

where the product is taken over all p2-th roots 0 of 1. Then, from Lemma 17,
it follows that for some integer a of (C),

p2_ 1

E e-’tr(IIo’(II))
i--0

p2--2
O((tr 11)2 + E (0- 1)2-1-tr(II(o- 1)(II) + tr(pa)).

i=1

Let i=ixp+iowithOit o<p,andso

valc(o- 1)’(II)= 1 + o + il(pZt’ + 1)

since e Gx and ov Gt( G2). Then, from [9], Proposition 1.1, it follows

Valk(tr(II(o- 1)i(II))
_
(p- 1)t’+ lit’+ 2

and

Valk((tr II)) 2((p- 1)t’+ 1).

By (13), we have

val((O- 1)-x-’tr(II(o- 1)’(II))- val((tr II)2)
(p2- 1 -i)e/p(p- 1) + ilt’- (p- 1)t’
eo + et( p ix)l( p 1) ((1 + it)/P)(e/( p 1))
+(p- t 1)(eo- t’).

We distinguish four cases as follows: (a) et * 0 and i: p 2, (b) et = 0
and i p 1, (c) e 0 and i: p 2, (d) e 0 and p 1. In case
(a),

val((O- 1)’-t-’tr(II(o- 1)’(H)))- val((tr II))_
eo + 2et/(p 1)- e/(p 1)

>0.

In case (b), o p 2 because < p2 1. Then,

val((O- 1)’-t-’tr(II(a- 1)’(II)) val((tr II)2)_
eo + et/(p 1) ((p- 1)/p)(e/(p 1))

>0.
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Similarly, for cases (c) and (d), we obtain

val((0- 1)e2-I-’tr(II(o- 1)i(II))- val((tr II)) > 0.

Therefore, from (14), we conclude

val(det(tro’(II)e(II))) 2p2((p- 1)t’+ 1),

which is the desired result.

Next, we consider the case where G is an elementary abelian group of/72,
and we prove again two lemmas.

LE 19. Let A be a matrix of type (p, p) for 1 p, and let a
matrix B of type ( p2, p2) be given by

A1 A2
A2 A3

A, A

ap

ap-1

Then

detB= ( 1)(P- l)/2I[e (det( i-0

where the product is taken over all p-th roots 0 of 1.

Proof. Using the same procedure as in the proof of the formula of cyclic
determinants, we can prove Lemma 19.

LEMMA 20. Let K/k be a non-cyclic extension of degree p2, and let o and
be generators of Galois group G such that G2 is generated by . M denotes an
o-submodule generated by o i,J(II) for 0

_
i, j < p. Then

valb(M) 2p2((p- 1)t’+ 1).

Proof. Let a matrix A of type (p, p) be defined by

and let

for0

_
i, j < p,

am ,rm-l(A)(- (,r for 1

_
m __< p.
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As in Lemma 19, let

A1 A2 A;
A2 A3 A

A, A Ap_

Then we have

b (M) (dettB. det B).

From Lemma 19, it follows that

det B (- 1)("-’/2IIo(det(_,Oi’ri(A)).
By the formula of cyclic determinants and from [7] Lemma 5, we have

det(Ee,’(A))
p-1 ( p-1I-I
m=0 j=0

II,,(tr II + la,,j<p-lE (-’* 1)-l-j

X(0-- 1)--’(0- 1)i(- 1)’(n)

E (-’- 1)--i( 1) i ’ (
l_j<p-1

II) + p(0-1- 1)a),
where a (C) and " denotes a primitive p-th root of 1. Similarly as in the
proof of Lemma 18, we can obtain

val,(det B) p2((p 1)t’ + 1)
and

Valk(b(M)) 2p2((p- 1)t’+ 1),

and the proof of Lemma 20 is completed.

We can now prove one of the main results.

THEOREM 21. Let K/k be a wildly ramified extension of degree p2, and
suppose G1 G2 and G21 p. Let denote the second ramification number of
K/k. Then, V(IIi) G2 for --- 1 (p2) if and only if 1 (p2).
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Proof As pointed out in the beginning of {}2, we may set 1. Proposi-
tion 16 establishes the "only if" part of Theorem 21, so let us prove the
converse part. Let x - 1 for a generator of G2 and t p2t’ + 1 as
before. For 0

_
j < p, define an integer % of (H) by

Olj

and set Lt oao + Oat +’’’ + 0ap_ 1. Then L is an oG2-submodule of
(Hi). We define an o-submodule L of K by L Eg_-oto(L), where G
kJoiG2 Let M EooiY(II) and M Eoi(II). We calculate the module
index [L" M] (for the definition, see [1], p. 10). Clearly,

[L" M] ([L" M])p.

Since Y’.OXj oG2, it follows easily that

Valk([L "M1]) t’ + +(p 1)t’= p(p 1)t’/2

and

Valk([L" M]) p2(p 1)t’/2.

On the other hand, we have

[(n). M] [(C)" MI/[(C)’(II)],
SO

[(II). M]: b(M)b((C))-( ).

As is easily shown, Valk(b())) (p 1)(pZt + 2) + 2p(p 1). Then, we
obtain

Valk([(II) M]) p:(p 1)t’/2 Valk([L" M]),

and hence (H) L. Since L is isomorphic to 0G (R)o Lx, (H) is also isomor-
phic to oG (R) Lt. Therefore, from [2], p. 449, (19.2) Theorem, it follows that
V(II) G2. The proof of Theorem 21 is complete.
The author wishes to thank the referee for his advice.
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