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NILPOTENT ELEMENTS IN GROTHENDIECK RINGS

BY

ROGER WIEGAND

This work was inspired by the following theorem of Bass and Guralnick [3]:
Let P and Q be finitely generated projective modules over a commutative
ring. Then (R)mp =_ (R) mQ for some rn > 0 if and only if np =_ ,,Q for
some n > 0. Their proof depends on the fact [1, Ch. IX, 4.4] that ([P]-
[Q])a+x= 0 in Ko(R), whenever P and Q are finitely generated projective
modules with the same rank and R is Noetherian and d-dimensional.

In Section 2 of this paper we show that the nilpotency theorem, suitably
interpreted, is valid without the assumption that P and Q be projective. In
Section 3 we investigate to what extent the Bass-Guralnick theorem generalizes
to non-projective modules, and we obtain some positive results in dimensions
one and two. In the fourth section we prove the nilpotency theorem for finitely
presented modules over arbitrary (non-Noetherian) rings. The bound d Krull
dimension always suffices, and in at least one case we can do much better: For
the ring of continuous real-valued functions on a compact Hausdorff space X
one can take d covering dimension of X.

I want to thank the referee for reading this paper carefully and for
suggesting some substantial improvements, particularly in Section 3.

1. Notation and preliminaries

All tings are commutative, and modules are always finitely generated. If M
and N are R-modules, we write MN for the tensor product M (R)R N, and M
for the r-fold tensor power, with M R. Similarly, M + N M N and
rM rM. If f Z+[X1,..., Xn], the set of polynomials with nonnegative
integer coefficients, and M1,..., Mn are R-modules, the expression
f(Mx,..., M,,) makes sense. For an arbitrary polynomial f Z[Xx,..., X],
let f+ (respectively -f-) be the sum of all the monomials of f with positive
(respectively negative) coefficients. Then f f+-f-, and f+ and f- are in
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z+[xl,..., X.l.

1.1. Notation. Let Mr,..., M be R-modules, and let f Z[X:,..., X].
We write f(Mt,..., M) =- 0 provided f+(Mt,..., M) -- f-(Mt,..., M).Let

g,) { / g,) _= o},
and let

The latter set is an ideal (see (1.2)), and we let

Of course (Mx,..., M,)
_
(Mt,..., M,), but the reverse inclusion can

fail. Suppose, for example, that M R --- 3R but M 2R. Then X- 2 is in
(M) but not in (M). Fortunately, failure of direct-sum cancellation is the
only thing that distinguishes . from . We leave the easy proof of the next
lemma to the reader.

1.2. LIMMA. .(Mt,..., M) is an ideal of Z[Xx,..., X]. Moreover, a
polynomialf is in Y(Mt,..., M) if and only if
/+(Mt,..., M,,) + p(Mt,..., M,,) -= f-(Mt,..., M,,) + p(Mt,..., Mn)

for some p Z+ X, Xn].

The reason for working with rather than the more manageable is that
we want to get information about the real world of isomorphism classes of
modules, not just about relations in Grothendieck tings. I have been unable to
decide whether or not ./is always generated by as an ideal (or even as an
additive group). If the M are projective and f (Mx,..., M) then by the
next remark we have kf I(Mt,..., Mn) for large k. Therefore f (k + 1)f

kf is the difference of two dements of .
1.3. Remark. Let Mx,..., M be projective R-modules, and let

f C(Mx,..., M).
Then

for all sufficiently large k.
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Proof. Let A +-- f+(M,..., M.), A--- f-(Mx,..., M.). By (1.2) there is
a projective module B such that A+ B --- A- B. We want to prove that
kA +_-- kA- for large k. We may assume A + and A- have constant positive
rank, and, by restricting to a suitable finitely generated subring, we may
assume R is Noetherian with finite Krull dimension d. Now take k > d and
use the Bass cancellation theorem [1, Ch. IX, 4.1].
The proof of the nilpotency theorem depends on several well-known ele-

mentary results, which we collect here for ease of reference.

1.4. LEMMA [2, Ch. II, Prop. 19]. Let S be a multiplicative subset of R, and
let M, N be R-modules, with M finitely presented. Then the natural homomor-
phism S-XHoms(M, N) --, Homs-xs(S-XM, S-XN) is an isomorphism.

1.5. LEMMA. Let M andN befinitely presented R-modules such that Mp =- Np
for all P in some finite set f ofprime ideals. Then there exists a homomorphism
: M --, N and a neighborhood U of f in spec(R) such that : M -, N is
an isomorphism for all Q U.

Proof. Using (1.4) one can find homomorphisms : M--, N and :
N --, M and an element s R -U, such that e/s and /s are reciprocal
isomorphisms between S-M and S-N. Take

V= D(s) (Supp(.$- S2IN) t9 Supp($- S21M)).

1.6. LEMMA. Let M. be a complex of R-modules, with connecting maps

O.:M.--*M._x, n-Z.

The following are equivalent:
(1) M. is exact, and ker On is a direct summand ofM for every n Z.
(2) The identity map on M. is chain homotopic to O.

Proof. (1) (2) Let u._:p, be the canonical factorization of On through
ker 0_. Each of the short exact sequences

(1.6.1)

splits, so there are maps f: M -, ker 0. and g.: ker On_: -* Mn satisfying

f.u. I, p.g. 1, u.f. + g.p. I.

Set d. g.+f.: M. --, M.+ t. Then

On+ldn + dn_lOn unPn+lgn+lfn + gnfn_lUn.lPn 1,

as desired.
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(2) (1) Given maps dn: Mn
-, Mn+ such that On+tdn + dn_On 1,

one checks that M. is exact. Also, the surjection Pn in (1.6.1) is split by
d_lU_, so ker 0 is a summand of M.

DEFINITION.
splits.

If M. is a complex satisfying (1) and (2) of (1.6), we say M.

1.7. LMMA. Let M. be a complex offinitely presented R-modules. If, for
every maximal ideal /(, the localized complex (M.) splits, then M. splits.

Proof Certainly M. is exact. We have to show that the short exact
sequences (1.6.1) split. But (1.6.1) splits if and only if the map

: Hom(ker 0._t, M,) Hom(ker 0._t,ker 0,_t),

induced by Pn, is surjective. Now ker 0n is finitely generated, being a homo-
morphic image of M+t, and it follows that ker0_ is finitely presented.
Since (1.6.1) splits locally, (1.4) implies that is surjective for all t’. Hence

is surjective.
We conclude this introductory section with a proof of the nilpotency

theorem for projective modules, even though a much more general result will
be proved in Section 2. The proof given here is easier than existing proofs in
the literature [1], [14] and is conceptually cleaner than the proof given in
Section 2. For simplicity we work with the whole spectrum, rather than just
the maximal ideal space, though the modifications required to get the sharper
theorem of [1] and [14] are easy and standard.

1.8. TaOmM [1, Ch. IX, 4.4]. Let M and N be projective modules over a
d-dimensional ring with Noetherian spectrum. If M and N have the same rank
(i. e., are locally isomorphic), then (M N)d+ O.

Proof By (1.5) there exist a homomorphism f: M - N and an open set
U D(1) containing all minimal primes, such that f is an isomorphism for
all Q U. Now R/I has dimension less than d, so

((M/IM) (N/IN)) affi 0

by induction. This means, according to (1.1), that U/IU--- V/IV, where U
(respectively V)is the direct sum of the modules (d)Md-iNi over all even
(respectively odd) subscripts i. Since U is projective there is a map g: U V
inducing an isomorphism modulo I. Then go is suective, hence an isomor-
phism, for every prime Q

_
I. Form the complex

0 "-’ MU --’ MV NU NV -" 0 (1.8.1)
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where a [1 (R) g, f (R) 1] and fl [f (R) 1, -1 (R) g]. We want to show that
(1.8.1) splits, and by (1.7) it is enough to check this at each maximal ideal .
Fortunately, eitherf or g is an isomorphism. If, say, f is an isomorphism,
the maps [0, f.t @ 1] and [fjt @ 1, 0] split (1.8.1) at ’.

2. The nilpotency theorem

If M and N are not projective, the simple inductive argument of (1.8)
breaks down. The proof we will give is similar to the proof for projectives
given in [14, Part II, Ch. 10].

2.1. LEMM. Let X. be any complex, and let Y. be a,complex with Yi 0 for
O, 1 and with connecting map f: Yx Yo an isomorphism. Then X.(R) Y.

splits.

Proof. Let Z.= X.(R) Y.; so Zn X,Yo + X,_tYt, and the connecting map
Z. Z,,_x is

A.=[a.(R)I +1(R)/]0 O-x (R) 1

The chain homotopy is given by the maps

Dn-- +1el-: 0 "Zn-*Zn+I"

2.2. TI-IEOM. Let R be a commutative ring with d-dimensional Noetherian
j-spectrum, let Mi, N be finitely presented R-modules 0 < < d, and assume
(Mi)e -- (Ni)e for allj-primes P ofj-height < i. Then

Proof. By (1.5) there is a map f0:M0 No such that (f0) is an isomor-
phism on some open set U0 containing all minimal j-primes. Then U0 contains
all but a finite set f of j-primes of j-height 1, so there is a map ft: Mt N
which is an isomorphism at all j-primes in some neighborhood Ux of f. Then
Uo U U1 contains all but finitely many j-primes of j-height < 2. Continuing,
we get f: M N, 0 < < d, such that at each j-prime at least one of the f
is an isomorphism. Form d + 1 complexes with M in degree 1, N in degree 0
and f as connecting map, and tensor them all together. The resulting complex
U. splits, by (2.1) and (1.7). This means

( C,: rn even) -= ( C: n odd),

and the desired conclusion follows.
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The theorem is of course tree if all occurrences of "j-" are deleted.

2.3. COROLLARY. Let R be a regular Noetherian domain of dimension d, let
0 --, Pd --’ Po --’ M --, 0 be a projective resolution of M, and let S
Im(Pi -" Pi-) be the th syzygy (with SO M). Let r be the torsionfree rank
of Si. Then (SO roR) (Sd rdR) =-- O.

2.4. COROLLARY. Let M and N be locally isomorphic finitely presented
modules over any commutative ring R. Then (M- N)n 0 for some integer
n>_l.

Proof We may replace R by a sufficiently large finitely generated subring,
and then apply (2.2). The only difficulty is in preserving the hypothesis that M
and N be locally isomorphic. This is done as follows: Using (1.4), we find
M N and s R such that the maps M[si-x] N[si-1] induced by i are
isomorphisms, and such that Rs + + Rsm R. We include, in our finitely
generated subring, all the si, all scalars necessary to define the and their
"inverses", and dements r such that rls + + rmSm 1.
We conclude this section with the stable version of the theorem of Bass and

Guralnick. The delicate question of direct-sum cancellation will be postponed
until the next section. Write (S) for the ideal of Z[X, Y] generated by S.

2.5. L.MMA. For integers n > 1 and e > 0,

Xn‘ yn’ <n(X- Y),(X- Y)2").

Proof [3, Part (b)]. We may assume n > 2 and e > 1. By induction on e,
write Xhe-1 Yne-1 + F, where

2e-1F<n(X- Y),(X- Y >.
Taking the n th power of both sides, we get

Xn‘ yn" + nyn’-F + G, where

Now F (X- Y), so nF (n(X- Y)); and clearly

Therefore

F2 <n(X- Y),(X- Y)2").

nY"e-F + G (n( X Y), ( X y)2">,
as desired.
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2.6. LEMMA. For integers e > 0, c > 1 and m > 1,

(mcm-X)(X_ y) Xm gm + X- c, Y- ce(X g.

Proof. Let h(X, Y) (Xm Ym)/(X- Y). Then h(c, c) mcm-l, $o

h(X, Y) mcm-x <X- c, Y- c>.
Therefore (mcm-1)e (h) + (X- c, Y- c). Now multiply by X- Y.
Combining these lemmas with (2.2), we obtain:

2.7. PROPOSITION. Let R be a ring with d-dimensional Noetherian j-spec-
trum, and let M and N be locally isomorphic finitely presented R-modules.

(a) In the ring Z[M, N], if nM nN for.some n > 1 and 2e> d, then
Mne Nhe.

(b) Assume Mp -- cRp for eachj-prime ofj-height < d. In the ring Z[M, N],
if Mm Nm for some m > 1, then

(mcm-1)aM-_ (mcm-1)aN.

3. Rings of dimension one and two

In order to get concrete information from (2.7), we need results on direct-sum
cancellation for non-projective modules. For one-dimensional rings, Guralnick
has proved the following result:

3.1. TaEOREM (Guralnick). Let S be a one-dimensional, reduced, Noetherian
ring with finitely generated normalization. Let M, N, U be S-modules, and
assume that there is an integer rn such that for each maximal ideal P, UI, is
isomorphic to a direct summand of mMe. Then M U = N U implies
MN.

Proof By the proof of [6, Lemma 3.1] or by the methods of 1 one checks
that U is (globally) a direct summand of 2raM. Now apply [6, Theorem 6.1].
(The assumption that S is a module-finite algebra over a Dedekind domain is
not necessary in this set-up.)

3.2. THEOREM. Let R be a one-dimensional, reduced, Noetherian ring with
finitely generated normalization, and let M and N be R-modules such that
nM =- nNfor some n > 1. Then Mn -- Nn.

Proof. Let X and Y be indeterminates, and write

X + (X- )- + ()(2 X- y)2yn-2 + "’’.
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Moving all the negative terms to the left, we get

x’+ / /

y,+(nX)Yn-t+( n)!2(X2 + y2)yn-2 +...

Now M and N are loally isomorphic, [11, {}5], so (M- N) 0 for r > 2.
This means 2MN --- M N, etc., so when we plug M and N into (3.1.1) and
use the fact that nN --- nM, we get Mn U --- N" U, where U is a direct
sum of modules of the form MW with i+ j--n. But MN is locally
isomorphic to M, and we can apply (3.1), obtaining M --- N.
The reverse implication in the Bass-Guralnick theorem can fail, even for

ideals in a one-dimensional ring. The following example was suggested by L.S.
Levy.

3.3. Example. Let R k[T3, T4, Ts], where k is a field of characteristic
0. Then R has fractional ideals I, J such that i (R)sI---J (R)zJ, I and J are
locally isomorphic, and nI nJ for all n > 1.

Pro.of. The conductor c of R in its normalization 1 kiT] is T3k[T];
and R/e kit], with 3 0. There is an action (M, g) --, Ms of (/i/e)*, the
group of units, on the set of isomorphism classes of torsionfree R-modules.
(See [17] and [18].) Also, to each torsionfree R-module is associated a certain
subgroup Au of (R/c)* in such a way that (i)flu(R)v =.AuAv, and (ii)
U3-- U ** g e AvH where H is the image of R* in (R/c)*. (See [18,
1.7,1.6].) For a fractional ideal I, the subgroup At is easily described: Let S
be the endomorphism ring of I; this is a ring between R and R, and
a (s/c)*.

Let I R + RT, g 1 + e (R/c)* and jr ig. The cndomorphism ring
of I is just R, so A (R/c)* k*, and of course H k* as well. Also,
A(m) k* for all m 1, by (i). Now mY m(Ig) -- (ml)g by [18, 1.4.1];
and since g has infinite order modulo k*, it follows from (ii) that ml mY
for all m 1. Since the group action does not disturb local isomorphism
classes, [17, 2.2], I and J arc locally isomorphic. It remains to bc shown that
l@l=Y@Y.

Temporarily abandonin$ our established notation, we let I and J denote
the ordinary ideal products. Clearly I kiT], and since J is locally isomor-
phic to I and kiT] is a principal ideal domain, I and J are isomorphic.
Also, the torsion submodules of I (R) I and J (R) J, bein$ of finite lensth, are
isomorphic. Now the torsion submodule Wof I (R) I is clearly the kernel of the
multiplication map I (R) I- I, so it will suffice to show that the exact
sequence

O WI@II2O (*)
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splits. For then the analogous sequence for J splits locally, hence globally by
(1.7).

Let o be the automorphism of I (R) I taking a (R) b to b (R) a, and let C be
the image of 1 o. Since (1 o)2 2(1 o), the inclusion C I (R) I is
split by 1/2(1 o). The proof will be complete if we can show that C-- IV.
Since C is generated by 1 (R) T- T (R) 1 we have C __. W. For the reverse
inclusion, let x W, say

x=a(1 (R)l)+b(l(R) T) + c(T(R) I) + d(T(R) T),

with a, b, c, d R, and a + (b + c)T + dT2 0. Write a EnanTn, a n

k, etc., and let

Xn anTn(1 (R) 1)+ b,_lTn-l(1 (R) T)
+c,,_ITn-I(T (R) 1) + dn_2Tn-2(T (R) T)

Then x Y’..x., so it will suffice to show that xN C for each n > 1. We
know that a, + b,_x + c_ + d_2 0 for all n, and it follows easily that
x,, 0 for n > 4. Also x3 a3T3(1 (R) 1) 0, since a is forced to be zero by
the requirement that b, c, d R. Similar arguments yield x0 x2 0, and
x bo(1 (R) T) + co(T (R) 1), which is in C because b0 + co 0.

It is interesting to note that the analogous calculation does not work over
the ring S k[T 3, T4]. If we take I S + ST, (,) does not split, and W
needs two generators:

1 (R) T- r(R)l and r6(l(R)l)- r4(r(R) r).

For torsionfree modules over coordinate tings of smooth surfaces, we
actually get both implications of the Bass-Guralnick theorem, provided we kill
the torsion in the tensor powers. For an R-module U, let ’(U) denote the
module U/torsion.

3.4. THEOREM. Let R be a two-dimensional regular domain, finitely gener-
ated as an algebra over an algebraically closed field K, and let M and N be
torsionfree R-modules of rank c, not a multiple of the characteristic of K. Then:

(a) If nM nN for some n >_ 1, then (Mn) = ’(Nn).
(b) If(Mm) --- (Nm) for some m prime to p, and M and N are locally

isomorphic, then (mcm- )2M -- (mcm- ) 2N.

Proof. By (2.7) and (1.2) we have, in part (a), Mn2 U --- Nn2 U for a
suitable module U. (We need [11, {}5] again to conclude that M and N are
locally isomorphic.) Similarly, in part (b), we get

( mc"- 1)2M V = ( mc"- 1)2M V for some V.
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(For each prime P of height 1, Me and Ne are free because Re is a discrete
valuation ring.) Now apply " to both of these isomorphisms. By [17, 1.2] we
can cancel ’(U) and ’(V), since the torsionfree ranks of M": and
(mcm-t)2M, namely c and (mcm-t)2c, are both prime to p.

4. Non-Noetherian tings

Our goal is a proof of the nilpotency theorem, (M N)d+l 0, for locally
isomorphic finitely presented modules over a ring whose spectrum is d-dimen-
sional but not necessarily Noetherian. In some situations d can be chosen
much smaller than Krull dimension. For example, if R is the ring of continu-
ous functions on a compact Hausdorff space X, one can take d to be the
covering dimension of X.
Along the way we obtain a few results of independent interest, for example,

a local-global bound on the number of generators of a module.The method we
employ was pioneered by Heitmann in his 1976 paper on Priifer domains, [8],
and was refined and generalized in [15]. Here the method receives a further
cleansing, and the main theorem of this section, (4.5), is an abstract formula-
tion of Heitman’s idea. The abstract form is rather easy to prove and very easy
to apply in a wide variety of situations.
We now review the required background on the patch topology. See [10] for

the details. A spectral space is a topological space that is homeomorphic to
spec(R) for some commutative ring R. A constructible set in a spectral space
X is a subset of the form Dt C D, where D and D2 are open and
quasi-compact. (The "c" denotes "complement".) A patch is an intersection
of constructible sets, and the patch topology on X is obtained by taking the
dosed sets to be the patches. A patch, when endowed with the Zariski
topology inherited from X, is again a spectral space. If x, y X we write
"x > y" provided x cl(y }, where cl denotes closure in the Zariski topol-
ogy. (Unless the patch topology is mentioned explicitly, all topological notions
refer to the Zariski topology.) The height of an dement x is defined by
declaring that ht(x) > n if and only if there is a chain x0 < < x x;
and dim X is the supremum of the heights of dements of X.

4.1. PROPOSITION [10, {}2]. Let Y be a patch in a spectral space X, and let
x X. Then x el Y if and only if x > y for some y Y.

4.2. Notation [8], [15]. Let be a finite coveting of a topological space X
by quasi-compact open sets, and define closed sets E(D0,..., D), for D sg,
by the following roles: E(Do) d Do, and

E(Do D.)=cl[E(D0 D t) O Dc O D.]
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Let m,(x), or simply m(x) if ’ is understood, be the largest integer n for
which there exist D such that x E(Do,..., D). Clearly
E(Do,..., Dn) if D Dj for some j, so m(x) < I1. Let

m: sup(m,(x): x X}.

We assign to each spectral space X an invadant

(X) (0,1,2,...,)

as follows: #(X) < n if and only if each open coveting of X can be refined by
a finite quasi-compact open covering ’ such that m, < n.

4.3. PROPOSITION. With X, as in (4.2), we have m(x) < ht x for each
x X. Therefore #(X) < dim X.

Proof Given Do,..., Dn .’, let Bo Do, and for I < k < n let

If k > 1 and x Bk, then (4.1) implies that x is in the closure of some
y Bk_ (since x E(Do,..., Dk_ t) el Bk_ x). Further, x 4: y since x
D,_ and y Dk_ x. By induction, ht x > k for each y Bk, and by (4.1)
ht z > n for each z E(Do,..., D).

4.4. LEMMA (Heitmann, [8]). Let X and 1 be as in (4.2) and let F be a
closed set on which m is constant. Then D t3 F is closed for each D .

Proof. Given p cl(D N F) we want to show that p D. By (4.1) there
is a point of q D N F such that p > q. Choose Di such that q
E(Do D), where m(p) m(q) n. Then q E(Do, D_ D) as
well. If p D, select any D’ with p D’, and check that

contradicting rn(p) n.

4.5. THEOREM. Let X be a spectral space, and let be a quasi-compact open
covering satisfying the following two properties:

(a) Every quasi-compact open subset of a member of
(b) If A and B are disjoint closed sets, each contained in a member of all,

then A t3 B is contained in a member of
Then X is covered by I(X) + 1 members of ql.
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Proof Let m #(X), and choose a finite, quasi-compact open refinement
(= subcover) ’= {Ax,..., A }, with m,= m. For k 0,..., m, let

Fk--- { p XIm(p) > k }.
Each Fk is dosed, being the union of the closed sets E(D0,..., D), the D
ranging over the finite set .’. By (4.4), the pairwise disjoint sets

Ax Fm, A[ t3 A 2 C Fm,..., A A-x At Fm
are closed, and their union is Fm. Each of these sets is contained in some Ay, so
Fm

_
Eo for some E0 q/, by assumption (b). Now m, has constant value

m 1 on Fm_ 3 E, so the same argument provides a set E, qz’ such that
F,,,_ x E __. E. Similarly,

Fro_ 2 N E) E c_ E2 a/Z,

etc., and eventually we get X Fo Eo t2 Em.

For module theoretic purposes we need to work with a patch X containing
all maximal ideals of a flag R. We call the smallest patch containing all
maximal ideals the h-spectrum of R and denote it by h-spec(R). (Heitmann
calls this set the j-spectrum in [9], but I prefer to use j-spec(R) to denote, as
usual, the set of primes that are intersections of maximal ideals.) One always
has j-spec(R)

_
h-spec(R), and the two sets agree if j-spec(R) is Noetherian,

[16, 1.5]. In general they may be unequal. (See (4.12).)

4.6. Ta.OEM (See [5, 3.2]). Let M and N be R-modules (M need not be
finitely generated), and suppose that for each maximal ideal p there is a map f:
M --. N such that f,: Me

--, N, is surjectioe. Then there are maps f: M --, N,
1,...,/x #(h-spec R), such that at each maximal idealp at least one of the

fi is surjective.

Proof. Let X h-spec(R), and let be the set of all quasi-compact open
sets D of X for which there exists f: M N such that f,: M,--, N, is
surjective for all p D. Since N is finitely generated, qz covers X. Clearly (a)
of (4.5) is satisfied, and all we need to check is that (b) holds.

Let A and B be disjoint dosed subsets of X, with A
_

U, B
___

V, and
U, V q/. Choose f, g: M N, surjective on U, V, respectively. There are
ideals L J such that A V(I) X and B V(J) X (where V(I) denotes
the set of prime ideals of R containing I). Then I + J R, say b + a 1
with b I and a J. By Nakayama’s lemma, h af + bg is surjective at
every prime in A t2 B. There is an open (in spec(R)) neighborhood W of
A B on which g is surjective, and, since AUB is quasi-compact, W can be
taken to be quasi-compact too. Then A B

__
W X q/, and (b) is

proved.
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4.7. COROLLARY (See [15, 2.1]). Let N be a finitely generated R-module, and
let # #(h-spec R). If N is locally n-generated, then N is generated by
n (Ix + 1) elements.

Proof. Apply (4.6) with M a free R-module of rank n.

4.8 COROLLARY. Let M and N be locally isomorphic finitely presented
R-modules, and let # =/x(h-spec R). Then (M N)’+ =_ O.

Proof. By (1.4) or (1.5) the hypotheses of (4.6) are satisfied. Let f0,..-, f
be the maps promised by 4.6. At each maximal ideal p, at least one of the f
must be a surjection, hence an isomorphism, since M, -- N, and surjective
endomorphisms of finitely generated modules are isomorphisms. Now proceed
exactly as in the last part of the proof of (2.2).
Combining (4.3) and (4.8) we have:

4.9. COROLLARY. Let M and N be locally isomorphic finitely presented
modules over a ring R with dim(h-spec(R)) d. Then (M- N)d+l m 0.

4.10. THEOREM. Let R be the ring of continuous (real-valued or complex-
valued) functions on a compact Hausdorff space of covering dimension d. If M
and N are locally isomorphic finitely presented R-modules, then (M N)d+ =_

O.

Proof. It is enough to prove that #(h-spec(R))< d. In fact, a stronger
assertion is true"

4.11. PROPOSITION. Let R be the ring of continuous functions on a compact
Hausdorff space of covering dimension d, and let X be any patch in spec(R)
containing all the maximal ideals of R. Then It(X) < d.

Proof Let q/be any open covering of X. We seek a finite quasi-compact
open refinement such that m,< d. We may assume q2’ is finite, say
vii (Wt,..., Wk }. Let Y be the maximal ideal space of R, and set U W
t3 Y. Since Y is a normal space of covering dimension d, there is an open
coveting (V,..., Vk } of Y such that el,V

___
U for each and such that any

d + 2 of the sets clyV have empty intersection. (See [12, Chapter 3.1.6].)
Write V V/t3 Y, where the V are open in X. Since Y is dense in X
(because the Jaeobson radical of R is 0), cl,V (cl.V/) t3 Y for each i. Now
each nonempty dosed subset of X meets Y, so any d + 2 of the sets cl V/have
empty intersection. Also, the V’ cover X for the same reason. I claim that
V/’ W/. For, let x V’, and choose y el( x ) 3 Y. Then

y (cl’)q Y_ U,.___ W.
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It follows that x W, and the claim is proved. Since X is homeomorphic to
the spectrum of some ring, the open cover (V{,..., V{ ) can be shrunk to a
quasi-compact open cover

dm {A1,...,Ak}, with Ai c: V/’.

To see that ma,< d, let Do,..., Da+ . If D =Dj for some i:j we
know that E(Do,..., Da+t)= . If, on the other hand, the D are distinct,
then (el Do) cl(Da+t) . But it is clear from (4.2) that this inter-
section contains E(Do,..., Da+ t), which must therefore be empty.

4.12. Remarks. Let Y be any infinite compact Hausdorff space and let R
be its ring of continuous real-valued functions. By [7, 4K.1] there is a point
p Y such that the maximal ideal /t’’ is not equal to , the set of functions
vanishing in a neighborhood of p. From the discussion in [7, 14.19] it follows
that there is a chain ’ in specR with I 2. In particular, dim R oo.
The h-spectrum of R is easily seen to be exactly the set of z-ideals. (I am

indebted to Chuck Weibel for pointing this out.) Its dimension appears to be
harder to compute. Certainly dim(h-spec Y) > 1 always, since minimal primes
are always z-ideals [7, 14.7]; and for Y N t3 (oo }, the dimension is exactly
one [7, 14G]. I will show that when Y is the unit interval, dim(h-spec(R)) > 2,
so that by (4.11) we have/(h-spec(R)) < dim(h-spec(R)). To see this, identify
Y with the maximal ideal space and let X be the set of minimal primes. It will
suffice to prove that X t3 Y is not a patch, and I will do. this by producing a
function f R such that D(f) (X t3 Y) is not quasi-compact. In fact, let f
be any function vanishing only at 0 and 1. Choose gt with zero-set

{0} U (l/n: n > 1),

and for n > 2 let g have

[0,1/(n + 1)] t3 [1/(n 1), 1]

as its zero-set. Clearly D(f) q Y U, ztD(g,), and X
_

D(ft) because gl is
a non-zerodivisor. Thus D(f) N (X t3 Y)

_
UnztD(gn), but no finite union

of D(gn)’s will contain D(f) tq Y.
Finally, we remark that any infinite compact Hausdorif space Y gives an

example in which h-spec(R) contains j-spec(R) properly, since the latter set is
just the maximal ideal space.

5. Relations among projective modules

For one-dimensional domains we will prove that the only relations among
projective modules are the quadratic ones given by the nilpotency theorem and
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the linear ones coming from relations among their determinants. Here is the
precise result"

5.1. PROPOSITION. Let Mx,..., Mn be projective modules over a one-dimen-
sional domain R. Let cj be the rank of Mj and let

% det Mj Pic R.

Then (Mx,..., M) .g(Mx,..., M), and this is the ideal of

Z[Xx,...,

generated by all elements (X ci)( Xj cj) and all elements

al(X cx) + +an(X c),

where an.., aan 1 in Pic R.

Proof If M is a projective R-module of rank c, then

M-= (c-1)RAM (5.1.1)

(This is Serre’s theorem, [13], if R is Noetherian, and in the general case it
follows from [9, 2.6].) Therefore M is determined, up to isomorphism, by its
rank and its determinant. It follows that projective modules satisfy direct-sum
cancellation, so

o(Mx,..., M) (M,..., M)

by (1.2). Therefore arM + + a,,M,, is free, since its determinant is 1, and
it follows that the purported linear generators

at(X1 ct) + +a(Xn- c)

are all in (Mx,..., M). For the quadratic ones, we obtain easily from
(5.1.1) the formula

det(MMj) -’-,
ai,aj (5.1.2)

and it follows that MMg + ccgR = c,Mg + cgM, since both sides have the
same rank and the same determinant. This says

(X c,)(Xj cj) (Mx,..., M) for all i, j.
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Now let h f- g J(Mt,..., M), where/, g Z+[X,..., X] and

The rank of f(Mx,..., M,,) is obviously f(ct,..., c,,), and from (5.1.2) it
follows that

det( f(Mx,..., M,,)) a,.., a ofwhere eg (q,..., c).

Applying the same reasoning to g, and equating ranks and determinants, we
get

o,

and

ax.., aan 1in Pier
Oh

where ay (ct,..., c).

Expanding h about the point (ct,..., c), we have

h at(X c) + +a,,(X,,- c,,) + q,

where q is in the ideal generated by the elements (X c)(X c/).
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