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EVIDENCE FOR A CONJECTURE OF ELLINGSRUD AND
STROMME ON THE CHOW RING OF HILBd(P2)

BY

ALBERTO COLLINO

Introduction

According to a theorem of Fogarty the Hilbert scheme Hilba(X), which
parametrizes finite subschemes of length d in a non singular surface X, is a
non singular variety, of dimension 2d. Recently Ellingsrud and Stromme (see
[5]) have computed the homology groups of Hilba(p2). They have proved:

(1) Hilba(P2) has no odd homology and the homology groups are all free.
(2) The cycle map induces an isomorphism from the Chow group

Ak(Hilba(p2)) to n2k(Hilba(p2),Z).
(3) The ranks of Ak(Hilbd(p2)) can be computed by means of certain

functions related to the partition function.
We recall the table in Fig. 1 for the ranks of Ak(Hilbd(P2)).
Ellingsrud and Stromme [5] propose the following conjecture.
Let p: I --, Hilbd(P2) be the universal family, let q: I ---, p2 be the natural

projection, let . be a line bundle on p2 then E(.):= p,q*.’ is a vector
bundle of rank d on Hilbd(p2),

Conjecture (Ellingsrud and Strmme). The Chern classes of the bundles
E((m)), m 0,1,2, generate the homology ring of Hilbd(p2).

It is easy to see that conjecture is true for Hilb2(P2). We have been
informed that the conjecture has been verified by the two authors for Hilb3(P2);
see [6]. They have considered the birational image H of Hilb3(P2) inside the
Grassmannian which parametrizes nets of conics in the plane and they have
computed the Chow ring of H using methods from the theory of principal
Gin-bundles.
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FIG. 1

Here we shall prove:

THEOREM. (1) The monomials of weight I in the Chern classes of E($(m)),
m O, 1, 2, generate Al(Hilbd(P2)), d > 3.

(2) The monomials of weight 2 in the Chern classes of E(#(m)), m 0,1,2,
generate A2(Hilbd(P2)), d > 3.

(3) The monomials of weight 3 in the Chern classes ofE()(m)), m 0,1,2,
generate A3(Hilbd(p2)), d > 3.

Part (1) in the theorem is contained implicitly in [3], where a description of
a basis for Pic(Hilbd(P2)) is given.
Our approach is quite direct. First we describe b curves, b2 surfaces, b3

threefolds which are candidates for the elements of a basis for
Ax(Hilbd(P2)), A2(Hilbd(p2)), A3(Hilbd(P2)). Next we compute the degree
over these varieties of the monomials in the Chem classes of E((m)). For

1, 2, 3, we have a matrix M of intersection degrees. We find inside M
minors of rank b such that the associated determinants generate the ideal (1)
in Z. This implies that in A(Hilbd(P2)) there are b independent elements
which have a unimodular matrix of intersection with b elements in the lattice
generated by the monomials of weight in the Chem classes of E()(m)).
From Poincar6 duality it follows that the monomials of weight 1, 2, 3, generate
Al(Hilbd(P2)), A2(Hilbd(p2)), A3(Hilbd(P2)) and that the proposed genera-
tors generate indeed A(Hilbd(P2)), A2(Hilbd(P2)), A3(Hilbd(P2)).

In order to compute certain degrees of intersection we need to study (a) the
threefold in Hilb3(P2) which parametrizes not reduced subschemes of length 3
with support a single point P which moves in a line L and (b) the threefold in
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Hilb4(P2) which parametrizes not reduced subschemes of length 4 with
support a fixed point P0. We have thus been induced to study certain varieties
F, S, T which are the desingularization of the locus in Hilb2(P2),
Hilb3(p2), Hilb4(P2), respectively which parametrizes dosed subschemes of
length 2, 3, 4 which are supported on a single point moving in p2. This is the
content of Part 1.

In Part 2 we prove the theorem for A and A2; in Part 3 we prove the results
on A3.
We work over the field of complex numbers because we use some elemen-

tary facts from [2] on the classification of subschemes of p2 of length 3 and 4;
but our arguments seem to be characteristic free.
We shall use the word bundle in two ways, to denote a locally free sheaf or

as an abbreviation of projectivized bundle. We follow the Grothendieck
convention that if f is a locally free sheaf then P(f) is the projectivized
bundle of quotient lines of d’, i.e, P(f)= Proj(Sym f). The standard
properties of Chem classes, cf. Chapter 3 of [7], will be applied without
explicit comment.
We shall write often E,, for the bundle E(d)(m)) on Hilba; on the other

hand when we deal with the pull back of E,, to some variety W we shall use a
notation like of(W, m) or f(W, 19,(m)) in order to avoid confusion with other
objects denoted E on W.

Acknowledgements. This work was done while the author was a guest at the
Department of Mathematics, Brown University; many computations, of ele-
mentary nature but too long to be performed by hand, have been done using
the Macsyma symbolic manipulation program on the Symbolics computer of
this department. The author wishes to thank Professors Fulton and Harris for
their invitation to come and for their help both in mathematical and practical
matters.

Part I

(1.1) In this part we construct the families of second and third order data on
a non singular surface, compute their Chow tings and indicate how one can
find the Chem classes of the secant bundles on these families. We do things in
greater generality than we actually need for the applications in Part 2, because
we think that our construction should be useful in some other situation.

(1.2) DEFINITION. Datum of order (n 1) on a non singular surface X is a
set Z of n dosed finite subschemes of X, Z { Zx, Z2,..., Z, }, such that: (a)
length Zm m, (b) Z,, is a dosed subscheme of Zm+ t and they have the same
support.
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We call support of a datum Z the point Zx. If Zn is a closed subscheme of a
non singular curve we say that Z is linear, and we say that Z is linear if Z is
linear. Every datum of order 1 is of course linear.
A datum of order 0 is a point of X, so X itself is the family of 0-order data

(the Latin grammar says that the plural of datum is data). A datum of order 1
is a point with associated a tangent direction, hence the family F of first order
data on X is a px bundle over X. Note that F is the projectivized bundle
P(flXx) over X; el. [9, V, B].

(1.3) A linear datum Z of order (d- 1) is uniquely determined by Zd, so
that the set of linear data of order (d- 1) is identified with a subset, say
U(d), of Hilbd(P2). We denote by V(d) the subvariety of Hilbd(X) which is
the closure of U(d). The family of second order data S and the family of third
order data T which we consider are desingularizations of V(3) and V(4)
respectively and they contain U(3) and U(4) respectively as open subsets. More
precisely a datum of order (n- 1) determines a point in X x Hilb2
x Hilbn; we denote by D(n- 1) the dosed subvariety of X x Hilb2
x x Hilb which is supported on the set of data of order (n 1). It turns
out D(0) X, D(1) F, D(2) S, but D(3) T U R, where R does not
contain linear data. S is a pt bundle over F and T is a p1 bundle over S
under the natural projections.

We have noted that F P(fl) and we produce below bundles of rank 2, Y’
on F and " on S such that S P(Y’) and T p(7-). Since the Chem
classes of Y’ and 37- can be computed, the Chow tings of S and T are known
when the Chow ring and the canonical classes of X are known.

If X p2 then the variety S is a classical object of Study; we show in fact
that it coincides with the variety of curvilinear dements of order 2 studied in
[13], [12], [11]. Semple in his paper constructs a certain P bundle over S and
he claims that points of this variety correspond to the curvilinear elements of
order 3 in the plane. We check that our variety T is not the variety constructed
by Semple; this is somewhat expected and simply says that non linear data of
order 3 and non linear curvilinear dements of order 3 are different objects.
One motivation we had for our construction came from reading the paper of

Roberts and Speiser [11], where they compute the intersection ring of the
variety of curvilinear dements of order 2 when X is p2. Their method seems
to depend on the special geometry of p2. We refer to this paper for a
discussion of interesting applications of the structure of the intersection ring
A(S) to problems in enumerative geometry of contacts.

(1.4) Local description. Let R denote C(x, y), the analytic local ring of the
origin in A2, let m denote the maximal ideal in R and let Rm R/mm+ be
the truncated polynomial ring. If we fix an isomorphism between R and the
completion of the local ring of X at P, then the ideals in R of colength n
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determine closed subschemes of X of finite length n supported at P and
conversely. The classification of data of order n with support P is then
equivalent to the classification of sequences of nested ideals (1
with 1 m, colength 1k k, and 1 I+t. If rn > n the classification of
sequences of nested ideals as before is the same inside R and R".
The analytic classification of ideals of R of colength < 4 is elementary, cf.

[2]. The ideals of colength 2 are all of type 1 (f) + m2, where f is a local
parameter, i.e. f m2. The ideals of colength 3 divide into two types: (a)
(f) + m3, (b) m2. The ideals of colength 4 are of three types: (a) (f) + m4, (b)
(f)m + m3, (c) (f2, g2) + m3 where f and g are independent local parame-
ters. We sometime refer to Spec(R/m2) as to "the big point" at P. Note that
in our list the ideals of type (a) are exactly the ideals of the linear subschemes
supported at P.

In the following we construct varieties A, B, C, which are the fibres over P
of the families F, S, T discussed in the introduction. In other words A is the
family of ideals of colength 2 and B is the family of sequences of nested ideals
of the form (m, 12, I3). The variety C parametrizes also sequences of nested
ideals of the form (m, 12, 13, Ia), and it is in fact the irreducible component in
the family of such sequences which contains as a open set the locus of the
sequences where 13 is of type (a). Given an ideal of colength 4 there is a point
of C where it appears as 14.

(1.4.1) Remark. The family of nested ideals of type (m, 12, m2, I4), where
I is of type (b) or (c) is a 3 dimensional variety; it is the fibre over P of the
second component R of D(3); el. (1.3) above.

(1.4.2) The variety A is the p1 which parametrizes the lines in the vector
space V .’= (m/m2). A point a of A determines a local parameter fa in V, up
to a constant, and conversely. On A there is the tautological sequence

0 Y2 V,tPA(1)0.

The fibre of Y2 at a point a is the line (fa) in V. The vector space R2 lifts to
a bundle R on A; similarly so does (m2/m3). The bundle R is in fact a
sheaf of rings, Y2 (R) VA is a sheaf of ideals and a subbundle of rank 2 in R.
The fibre of Y2 (R) V, at a point a is the ideal (fa) m. We define

Y2 is a sheaf of ideals in R2 and a bundle of rank 4. We denote by B the
grassmannian bundle of lines in Y/Y2 (R) Va.

Clearly B is apt bundle over A. If there is no confusion we denote in the
same ways bundles on A and their lifting to B. By construction there is on B a
tautological bundle Y3 of rank 3 with Y2 (R) Va Y3 Y2+.
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The fibre of the bundle Y3, at a point b of B which maps to a, is a vector
space Y3(b) which satisfies the inclusion (fa)m c Y3(b) c (f) + m2 c R2;
hence mY3(b) c m(fa) c. Y3(b)" Therefore Y3(b) is an ideal in R2, of co-
length 3.
The ideals of colength 3 in R2 are in 1-1 correspondence with the ideals of

the same kind in R, and we classify them in the same way. Looking at the list
we find that a linear ideal occurs exactly once as Y3(b), while m2 occurs once
in each fibre of B --, A. In fact m fits in the inclusions (fa)m c m2 c (fa) +
m2; hence it gives a section from A to B.
Next we construct C by a similar procedure. On B there is a bundle

it can be seen as the universal sheaf of ideals of R of colength 3. We also
consider

W :-- Image(Y2 (R) (m2/m3)B $ Y2 $ (9A(1) (R) Y3) in R,

where Y22 c (mZ/m)/ and d?a(1) (R) Y c (mZ/m)/ (m/m4)/.
It is easy to see that W is a bundle of subvector spaces of corank 5 in R.

Note that W c Y3+. We define C to be the grassmannian of lines in Y/W.
Again C is a pl-bundle over B. As before there is on C a tautological bundle
Y4 which fits in the inclusions Wc c Ya c (Y)o By construction the fibre of
Ya at a point c which projects to b in B is a vector space which fits in the
inclusions

W(b) ((fa)m2 + (fa2) + mY3(b)) Y4(c) c (Y3(b) ma/m4) Ra;

conversely any such vector space determines uniquely a point c. Further such
a vector space is an ideal because Ya(c)m c Y3(b)m c Ya(c).
On C we have the inclusion of sheaf of ideals

the fibres at a point c C give

r,(c) c c (Ia) + ,,’= c

which is the nested sequence of ideals associated to a datum of order 3. On the
other hand a datum of order 3 determines a unique point of C if it is not
of the type in remark (1.4.1). The simplest way to verify this assertion is to
look at the list of ideals of colength 4. A linear ideal may appear as Y,t(c)
exactly for one point c. The ideals of type (b) provide a section of
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C B, indeed for all b

W(b) c (fa)m + m/m c Y(b) + m/m c R4.

(1.5) Global description. We produce globally on X the construction given
locally at P in (1.4). The notations are independent; also we change the point
of view a little, focusing on the quotient rings instead of the ideals.

Let be the bundle of principal parts associated to dx; el. [9, IV, A]. The
fibre at P of is R, the truncated polynomial ring of (1.4). There are
several exact sequences involving # which we will use without comment,
e.g.,

0 --, Sym3fl --, 3 -, 2 ._, 0.

If Y --, X is a morphism we shall abuse notations, denoting fix, , etc., the
pull back to Y of those bundles on X. Similarly given a map Z Y we shall
denote in the same way a sheaf on Y and its pullback to Z, if no confusion
arises.
We define F .’= P(flx); it is a PX bundle on X. F is the family of first

order data; el. [9, V, B]. On F one has the tautological sequence

(1.5.1)

hence also

where . is a bundle of rank 2. The fibre of . at a point of F is the structure
ring of the associated scheme of length 2.
Next we introduce the global form of the sheaf Y2 (R) V used in (1.4), i.e.,

the bundle .W(R) ill. There is a diagram of bundles on F:

(1.5.2)

0 0

0 .oF(R) f --, SymZr dgA2) 0

where is defined by exactness, rank ’ 4. There is a surjection c . __> 0;
let be the kernel, a bundle of rank 2 on F. Note the exact sequence

(1.5.3) 0 -, --, a--, 0.
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(1.5.4) Let 5a f v, the dual line bundle; we define S ,= P(Sa). In order to
see that S is indeed the variety of second order data we have only to check
that the fibre of S over a point P of X is the variety denoted B in (1.4). This is
straightforward.
The tautological inclusion dgs(-1) K composes with , we define
by exactness in

(1.5.5)

is the "universal" bundle of rank 3 on S. The fibre of 2 at a point s which
maps to z in F is by definition a vector space D, with = 2,, 2, = ..
Note that D, is the structure ring of a scheme of length 3.
From (1.5.3) one has a surjection Sa---) .(-2), hence a section o" F S.

Let Y. o(F), using the defining property o*(ds(1)) dv(-2), it is easy to
check that

ds() _- dgs(1) (R)

The global section Y. corresponds to the map (Ps(-1) .a induced from
Ps(-1) ---) g’. For later use we note the following diagram:

(1.5.6)

0

0 d9(2)

0 0

--) ds(- 1) - .

(1.5.7) The construction of T is similar, in order to compute Chem classes
we proceed in two steps to produce a bundle " on S with T P(’).

First we shall construct a bundle g of rank 6 with a natural surjection
,,g" ; the fibre of g at a point s as above represents the quotient

notations as in (1.4). Next we shall produce t’, a quotient bundle of g’ of
rank 5 with a surjection r: ’, 2 0. t’ is the global form of the bundle
R3s/W, which appears in (1.4). We define ’--- (Kern r) v and T P(’).
To begin, we consider g a bundle of rank 6 on S which is the quotient

bundle of 3 whose fibre at a point s as above represents the quotient
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R3/(fam2 + fa2). There is an exact diagram:

0 0 0

0 _.a(R) Sym2l d’ ....(R)2 0

(1.5.8) 0 "" Sym3fil ...3 2 0

dTv(3) ---, ,,f’-, " 0

179

The diagram is obtained by defining d’ as the kernel of the map 3
and is by definition the quotient of .L’(R) 2 __, #a2. Then the middle column
surjects onto the right column and the left column is the exact sequence of the
kernels. At a F the kernel of f--, .W (R)2 is a subbundle of Sym3f] which
locally represents the ideal fom2; hence it is .W(R) Sym2f]. By computing
Chern classes we find that the kernel of v__, is the line bundle
Next we consider v/t’, the rank 5 bundle on S whose fibre at a point is the

quotient

R3/( fam2 + fa2 + mY3 (b)).

is a quotient of ,,f’, we denote by @ the kernel of ,f’--, v/t’. @ is a line
bundle which we determine in a moment. There is an exact diagram

Here ,, is by definition the kernel of ---, ; it is a line bundle. The fight
column in the diagram comes from the known surjection v . Direct
inspection, based on the local considerations of (1.4), shows that the map

p: --, .Z’(R) ivy(1)

is an isomorphism away from X and that over X the map p vanishes simply.
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Therefore there is an isomorphism of line bundles:

we have computed above that Vs(X) dgs(1) (R) .W; hence

(1.5.10) (Vs(-1) (R) dg(1).

We compute the line bundle ; using the snake lemma we find the exact
sequence

(1.5.11) 0 O(3) ag--, Ox (R) O(1) ---, 0,

i.e., ar= d9(3) (R) dg(X) d9(3) (R) .W(R) $s(1).
Composing ’ ’ with ’--, , we have a surjection ,r: ,It’--, ; we

define q/to be the kernel of r. From the preceding diagrams we find the exact
sequence

(1.5.12) 0 d9(3) (R) .W(R) ds(1) --, q/--, dgs(-1) 0.

(1.5.13) We define 57"= q/v, T P(7"). As we said T is the family of third
order data on X. The "universal" bundle of rank 4 on T is the bundle
which appears in the diagram (1.5.14) below.

Using the tautological inclusion dgr(- 1) q/we have a map dr(- 1) t’
which fits in the exact diagram below. Recall that we remarked in (1.4) that
the ideals of colength 4 and type (b) determine a section p: S T, p is the
section associated with the surjection ,t’ ’. More precisely there is a
morphism dPr(- 1) dPs(- 1) obtained by composing d;r(- 1) with

’ (in fact by definition Pr(-1) is the zero map). The related
global section of OPt(l) (R) Ps(-1) is p(S), in other words Vr(tp(S)) Vr(1)
(R) dgs(-1). We have also here a diagram analogous to (1.5.6):

(1.5.14)

0

0 dTe(3) (R) .(R) dPs(1)

0 0

dgr(- 1) dgs( 1)

0 0

where .W" is defined by exactness.
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(1.6) Semple Bundles. We keep the notations used before in (1.5) and let
f" F--, X be the natural projection from the projectivized bundle P(flx) to
the smooth surface X.
We are going to define a P bundle over F which we shall denote F(2); since

the costruction is iterative we find convenient to let F(0)= X, F(1)= F,
f(1) f, and f(2)" F(2) -, F(1) be the natural projection.
By definition the sheaf of relative differentials for f(1) is the cokemel Rt in

the following exact sequence of bundles on F(1):

(1.6.1) 0 --* f(1 *) F(O) "-* F(1) --* R1 O.

From this sequence, by pushout via /(1)*fl<o) --, m)(1) --, 0, we obtain
the following bundle @t, which is an extension of R by FO)(1),

(1.6.2)
0 f(1)*G.(o F(1) -’* R1 -’ 0

0 --* dF(1)(l) "* it -- R -- O.

We define F(2) P(@t). On F(2) we have the bundle R 2 of relative
differentials defined as before and we obtain a rank 2 bundle @2 by iterating
the same construction we used for @l- More precisely we use the surjection

f(2)*flv(:) --) (Vv(2)(1) -o O,

which comes by composition of

with

f(2)*fl(1) f(2)*(l) 0

f(2)*(:) v(2)(1) O.

So we have

(1.6.3)
--,00 --*f(2)*fl(:) --* fir(2) R 2

0--* v(2)(1) 2 R2 0.

(1.6.4) By the iterative procedure indicated above we may define more
generally F(m + 1) P(f#,), and let f(m + 1) F(m + 1) F(m) be the
natural projection.
The projective bundles F(m) are the modem interpretation of a construc-

tion proposed by Semple [12] in the case when X P2. More precisely given
the map f(m)" F(m) F(m 1) Semple deals with the projectivization of
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the rank 2 bundle of the "focal planes" supported by F(m). We recall that by
definition the focal plane at a point p F(m) is the plane in Trm,, the
tangent space of F(m) at p, which is the preimage under the differential map

TF(m_l),f(pf(m),

of the tautological line I in TF(m_l),f(,). By tautological line we mean the dual
of the quotient line which is the fibre of tVF(m)(1) at p (here we use the duality
between tangent and cotangent space and think of the surjection

( f(m).(f(m_l)) --* tVr(,,)(1), ).
Since we use the Grothendieck definition of projectivized bundles, then our
bundle P(m) is indeed the variety proposed by Scruple.

Semple shows that F(2) is the variety of "curvilinear dements of order 2" in
the plane (for the definition of this classical concept werefer to [2] again). He
also asserts [12, p. 35, line 4 above] that the points of F(3) correspond
evidently to the curvilinear dements of order 3 in the plane. On the other hand
Semple does not claim to have proved that his variety F(3) is indeed the model
of the family of the said curvilinear dements. We do not deal here with the
question whether F(3) is the correct model of the family of the curvilinear
elements of order 3 in the plane; but we remark the following:

(1.6.5) PROPOSITION. (1) F(2) and S are isomorphic P bundles over F(1),
for any surface X.

(2) F(3) and T are different Px bundles over S F(2).

Proof We prove (1) when X--p2 first. In this case the projection
S -o F(1) has two disjoint section. One is the section o with image Y, which
we have described above in (1.5.4); the other section, which we will call linear
with image A, is given by associating to a datum of order 2 the unique datum
of order 3 in the plane which contains the said datum and is a closed
subscheme of a line. Since S has two disjoint sections, the bundle 5a to which
it is associated splits. Further since the section Y. is associated with the
quotient line bundle tPF(--2) (see the discussion before (1.5.6)), this line
bundle is one of the summands and therefore

(1.6.6) 2).

We prove that fox also splits by using the same argument. Associated with
the surjection f R --. 0 we have a section, o’ say, o" F(1) F(2). A
second section comes from the geometry of F(1), which is the incidence
correspondence point-line in the plane. Through any point x F(1) there is
associated a distinguished line 1. The second section, say h’, is obtained by
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associating to x the tangent direction in the focal plane which is determined
by 1,,. Since 1,, and the fibre of f(1) are not tangent then they determine
different directions in the focal plane hence the two sections are disjoint.
Therefore

(1.6.7) -- Ore)(1) R

Using the Euler sequence on F(1) (of. [7, B 5.8]),

(1.6.8) 0 R1(1) /(1 * (’1) ---> 0,) F(0) 0F(1)

we see from (1.5.1) that a= RI(1) and we conclude

(1.6.9) ,.(R) ,,o(R) 0F(1)(1) 1"

Therefore F(2) and S are isomorphic projective bundles over F because the
associated vector bundles x and 5a become isomorphic after tensoring with
a line bundle.

In order to prove the isomorphism of F(2) and S for any surface X we shall
use some explicit computation due to Semple [12, p. 33].

Let a:C V and fl:C V be two irreducible smooth analytic branches
centered at a point p X and contained in the analytic neighbourhood V of
p. By associating to C the tangent direction at a(t) and fl(t) one has
liftings a’ and fl’ to F. If a and fl are tangent at p then a’(0) fl’(0). Now
Semple proves that a’ and/3’ have the same tangent direction at a’(0) fl’(0)
on F if and only if the branches a and fl support the same second order
datum at p. We note that by definition the tangent direction at a’(0) lies in the
"focal plane". Also, when a is singular and represents an ordinary cusp at p,
then a’(0) is still defined as the limit of the a’(t) and the curve a’ is tangent at
the point a’(0) to the fibre of F ---, X.

In this way we have the description over the fibre at p of the isomorphism
from F(2) to S which we have produced globally above in the case X p2.
The point now is that we may cover X by open analytic neighborhoods V
which are isomorphic with open sets in p2. Then the restrictions of F(2) and S
to V are isomorphic by what we proved above and the computation of Semple
shows that they are naturally isomorphic; hence there is a global isomorphism
from F(2) to S.
To prove point (2) we remark that F(3) and T are isomorphic pl-bundles

over S if and only if there is a line bundle r say such that r (R) f2 -- ’- Now
C1( 2c(R) ’2) 2C1() + C1(’2),

so verifying that T and F(3) are not isomorphic will be enough to prove that
cx(ffg_) cx(q’) is not divisible by 2 in the Picard group of S. From sequence
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(1.5.12) we have Cl(") "-Cl(dgr(3) (R) .a). From the sequences above we
compute

ct(f2) ct($m(1)) + ct(R2).

On the other hand recalling the Euler sequence

0 --, R2(1) f(2)*x d9(2)(1) --* 0

we note that Cl(R2)---C1(dgF(2)(--2))+ X, where x comes from Pic(F(1)).
Therefore

cx(7") ct(2) cx(tPm)(1)) + y,

where y comes from Pie(F(1)). It is clear that cx(tPm)(1)) + y.is not divisible
by 2, for instance because the restriction of this class to a fibre of f(2): F(2)
--, F(1) has degree 1.

Remark. The splitting of Sa in the case of p2 is the basic fact which allows
the computation of the ring A(S) in [11].

(1.7) Secant bundles on F, S, T and their Chern classes. In the following U
denotes either F, S, T and n 2,3, 4 respectively and g:U X is the
structure map.
We consider the "universal" closed subscheme Y of U x X, with projections

Pv: Y U and q: Y X, such that for any u U the fibre pt(u) is the
subscheme of length n determined by u; equivalently Y is the scheme
associated with the sheaf of algebras . on F, on S, .A/" on T. Let c be a
line bundle on X and let E(c, U) pv.q*(:), a bundle of rank n on U; of
course E(dg, F) ., E(dg, S) , E(dg, T) V’. We call bundles of type
E( ) secant bundles. There is some interest in computing the Chem
classes of secant bundles. In our case the computation is reduced to the case of
the Chem classes of ., , ’, because of the following:

PROPOSITION. c.(E(r, U)) c.(E(O, U) (R) g*(")).

Proof. Let Z supp(Y)c U X X; Z is a smooth variety naturally iso-
morphic with U, because it is the graph of g:U- X. By devissage the
inclusion i:Z Y induces an isomorphism of the Grothendieck groups of
coherent sheaves, i.: K.(Z) K.(Y) (cf. [10]). Therefore p K.(Y) K.(U)
is also an isomorphism, because pi" Z U is the identity. There are two
maps, (gp)* and q*, from K.(x) to K.(Y); the statement of the proposition is

(+) p q*(class " ) p ( gp )*(class c ).
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Let y class dy in K.(Z) K.(U); since p is the inverse of then the
fight hand side of (+) is the product yg*(class 5f), the left hand side is the
product y(qlz)*(class af), therefore they are equal because qlz g.

(1.8) Some computations. We recall the following standard facts, see [7].
Let d’ be a vector bundle of rank e on a scheme Y. Define the Chem

polynomial

c,() 1 + ci()t + c2(d’)t 2 + +ce(d’)t e + 0

where c(d’) is the i-th Chem class of d’.
If Y is a nonsingular variety then P($’) is nonsingular and the Chow ring

A’(P(d’)) is an algebra over A(Y) which can be described by A’(P(d’))=
A "(Y)[z]/I, where I is the principal ideal

I (z’+ (-1)ct(E)z- +’." +(-1)G(E))
and z ct(dgp()(1)).

(1.8.1) Let

o ct(d(1)), v cx(CPr(1)).

Note that )k + p k, Mp
From (1.5) above we have

Ct(,’a) 1 --(X + 2p)t + 2hpt 2,

ct(7") 1 (3p + h)t- o(3q0 + h + o)t 2.

Then using the standard theory,

A(F) A’(X)[I/(C k + ),
a(S) a(e)[o]/(o + ( + )o + 2),
A’(T) A’(S)[’r]/(’r + (2 + k), + (-qo + 2).

(1.8.2) We specialize to the ease X p2. Then A’(P) Z[a]/(a3), k
-3a, 1 3a2, where a is the class of a line. In this case F is the incidence
correspondence line-point. The inclusion F p2 (p2)v corresponds to the
epimorphism of P2 sheaves (91,2) (R)3 .., T,(-1) --, 0, so that F is also the
projectivized bundle P(T,,_(-1)); indeed
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Let/3 cx(0p2)^(2)). Then + =/3 2a and X -a -/3. Note that

a(e)
a(s) z[, #, 0.]/(3,/3, 2_ / + 2, 0.2 q_ (/_ s)0. q- 6a2).

In this case we know that there are two sections of S --, F, one which we
called , associated to the "big points", and the other which we called A or
linear in (1.6.5) above. We have class(E) 0. + h, from (1.5). Similarly, using
say Example 3.2.16 in [7], we compute class(A) o + 2. Using the identifi-
cation of S with the Semple bundle F(2) above, we recover in this way some
of the results in {}1 and 2 of [11].

(1.8.3) We compute the Chem polynomials of E(0p2(n), F)

ctE(Op2(n), F) ct(Op2(n ) (R) a)
ct(X(n))(1 + (, + ha)t) -x

(1 + (3n- 3)at + 3(n- 1)2a2/2)
X(1 -(X + na)t + (2 + na)2t 2 + (h + na)3t3)

Note that cxE(Op2(n ), F) 2ha + q. Also

Note

and

ct(Oi,2(n) (R) (2) $ X(n))(1 + (-0. + na)t) -x

(1 + (3n- 3)at + 3(n- 1)2a2t2)(1 + (2+ + na)t)

(1 + (-0. + nalt) -x.

cxE(Op2(n), S) (3n 3)a + 2+ + 0. (3n 7)a + 2/3 + ,
c2Eo(S ) 3a/3- 9/3 2 + (/3-
c2Ex(S) -4a# + 2# + ,
c2E2(S ) -5a + 7fl 2 + ( + 2a)o, c3Eo=0,
c3EI(S ) -42 -I- 20., c3E2(S ) _4a2 +

Later we shall need the following degrees in S:

(c2Eo)2=15, c2EoczE1--O, c2Eoc2F,2---9, (c2E2)2--15.
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Part 2

We shall repeatedly use the following procedure in order to compute the
degree of the monomials in the Chern classes against the proposed generators.
Given a subvariety, call it W, in Hilba(P2) we build some manageable
desingularization U of W. Next we consider the "universal" closed subscheme
I of U x p2, with projections Pv: I ---> U and q: I p2, such that for any
u U the fibre p3X(u) is the subscheme of length n determined by u. Let
O(m) be the line bundle on p2, we let E(O(m), U) Pv * q*(O(m)). From
the universal properties of the Hilbert scheme it follows that Pv: I U is a
flat map, the pull back of the universal family over Hilb(p2); moreover
E((m), U) is the pull back to U of E((m), Hilb(P2)) by the property of flat
base change (cf. lectures 14, 15 in Lectures on curves on an algebraic surface by
D. Mumford, Annals of Mathematical Studies, vol. 59, 1966). Therefore the
Chem classes of E(O(m), U) are the pull back to U of the Chern classes of
E(O(m), Hilb(p2)). It follows that the degree over W of the monomials of the
appropriate weight in the Chern classes of E(O(m), Hilb(p2)) is equal to the
degree over U of the same monomials in the Chern classes of E(O(m), U). We
compute this degree using the "easy" geometry of U.

(2.1) List of generators. We now describe some subvarieties of dim 1 and 2
on Hilba(P2) which turn out to be generators for the Chow groups
Al(Hilba(P2)) and A2(Hilba(P2)). Although we shall not indicate how, these
generators were motivated by our reading of [5].

In order to save time we adopt the following conventions. We fix a point P0
which we will refer to as the off#n; next we fix d points Q1, Q2,..., Qa, and
two fines L, M. We assume that the points and the lines are in general
position. We shall let Q(m).’= Q1 to Q2 to to Qm, the subscheme of p2

made of the first m points. In the following, P will denote either a point or
the subscheme of length 1 supported at P. U denotes a curve in Hilba(P2),
D, denotes a surface in Hilba(P2). In defining a subvariety Z of Hilba(P2) we
shall write Z := [X to Y to to W] to mean Z is the subvariety in Hilba(P2)
which is the closure of the set of points representing closed subschemes S of
the plane of length d, where S X to Y to to W, X a subscheme with the
property x, Y a subscheme with the property y,..., W a subscheme with the
property w, and the reduced supports of X, Y,..., W are pairwise disjoint.

(2.1.1) u ..= [P to Q(d- 1)1 with P L; U2 ".= [Y to Q(d- 2)] with
length(Y) 2 and support(Y) P0.
Note that U p1 and E(Oi,2(n ), U1) Ol,l(n) (01,1) <a-l). Also U2 is

p1, because it is the fibre A of the bundle F over P0. We have computed
ctE(Ol,2(n), F) in (1.8.3); hence ct(E(Ol,2(n), F) (1 + pt), where p is the
class of a point.
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1Eo 0 1

ClE 1 1

FIG. 2

Therefore we obtain table of degrees in Fig. 2.
(2.2) We define 5 surfaces, D D5, in Hilbd(p2), d > 3, and need a sixth

surface DO for Hilbd(P2), d > 4. We let DO be the subvariety of Hilbd(P2), d
> 4, which parametrizes the folowing subschemes Z p2.
We lexicographically order the monomials of the same degree in x and y; in

particular x < y. We order monomials of different degree according to the
degree. Let Set {1, x, y,... } be the set of the first (d + 2) monomials and
let J be the ideal of C{ x, y } generated by the monomials which are not in
Set. Let V be the vector space generated by the last 3 monomials in Set. Given
any subvector space W V of codimension 1, the ideal J + W is the ideal of
a closed subscheme Z(W) of length d with support the origin.

Clearly DO p2, and E(dgp2(n), Do) = *(d-t) (1 dg(1).
In the definition of the other surfaces D, 5 > > 1, we continue to use the

notations introduced above.
D [Y t3 Q(d 3)] where length (Y) 3, support(Y) Po- The desingu-

larization of surface/)1 is isomorphic to the fibre B of S over Po; see (1.4).
D2 [Y t3 Q(d 2)] where Y varies in the family of the dosed subschemes

of L which are of length 2. Note that D2 -- p2, the second symmetric product
of pt.

D [Y (d 2)] where length (Y) 2, support () is a varying point
in L, so Y is not reduced. D is isomorphic with the restriction of F to L;
see (1.5).
D4 [Y L X L Q(d 3)] where length (Y) 2, support (Y) P0, and X

is a varying point in L.
D [P t3 Q(d- 1)] where P varies in p2.

(2.2.1) We have the table of degrees in Fig. 3.
Note that the determinant of the 6 6 matrix is -1. When d 3 we

exclude the first column, because DO is not defined for Hilb3(P2); in this case
the last 5 columns and the rows 1, 2, 3, 4, 6 give a matrix of determinant -1.
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0 1 0 0 0 0

c2Ei 0 1 0 1 1 0

cE o

(cE1) 1

1 1 2 2 0

3 0 1 2 1-((/- 1)

( ClE1) ( Cl E2 ) 1 3 0 3 3

(ctE2)2 1 3 1 5 4

FIO. 3

2- (d- 1)

4-(d- 1)
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We explain briefly how the intersection numbers are computed, the careful
reader should be able to fill in the details.

(2.2.2) The intersection numbers with DO come from the explicit identifica-
tions DO -- p2, E(Cgp2(n), Do) = d9 *d-x) 9(1).

(2.2.3) The desingularization of the surface Dx is isomorphic to the fibre B
of S over Po. Hence

o’ +

because A’(B) A’(S)/(a). Recalling (1.8.3), we have

ctE(@p(n), B) (1 + (2p)t)(1 + (-o)t) -1

and to finish we only need to remark that qo has degree 1 on B.

(2.2.4) We recall that D2 = p2, the second symmetric product of pt. The
inclusion of the universal family I D2

p2 factors through D2 L and I
is a divisor of bidegree (1, 2) in D2 x L. The computations of ctE(CPp(n), D2)
is then standard using relative duality:

ctE(d)I,,O2) c,(do,(-l)), ctE(d)p2(1), D2) I,

ctE(d)p,(2), D2)

(2.2.5) D3 is simply the restriction of F to L, therefore

A’(D3) Z[a, ]/(2, f13,--a =F /2).
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From (1.8),

ctE(Oi,(n ), F) (1 + (3n- 3)at)(1 -(X + na)t + (X + na)2t 2)
1 + (2ha + p)t + (nacp)t

where p fl 2a, -a fl, and degree ap 1.

(2.2.6) D4 is isomorphic to a smooth quadric surface, being the product
L A, where A -- p1 is the fibre of F over P0. We have

ctE(Op2(1), D4) Ct(OL(rt)) ctE(Op2(n), A) (1 + nat)(1 +

where a and p are the classes of the two lines in the quadric.

(2.2.7) D5 is isomorphic to the surface, M say, which is the blow-up of p2
along the points Qx, Q2,-.., Qd-x. The points of the exceptional fines L in M
represent subschemes

Z-- W U Qx U Q... uQ/_ LI Qi+,..., uQa-x,

where length(W) 2, support(W) Q. The universal family I c M p2 is
the union

I= G U M U M U UMa_,

where G is the graph of the map M p2, G M -- M, G n M -- L, Mi n
Mk

, support(q(M)) Q. The decomposition of I gives a Mayer-Vieto-
ris sequence

hence also

0 --* O, (R) q*Oi,(n ) --, O(n) (OM,) --* 0,--* O,

where 0(n) is the pull back to G of 0p,(n) via G -- M p2. Since

E(Oi,(n), Ds) P,(OI (R) q*OI,(n)),

using the property that p is finite we compute

ctE(lp2(n), 95) (1 + nlt)" (1 2kxt).....(1 X(a_)t )

where # class OM(1) and k class(Li).
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(2.3) From the table we see that in Hilb3(p2), 2E1 3(clE1)(clE2). Using
Porteous’s formulas one could check that CEE is the class of the locus in
Hilb3(P2) of the subschemes of length 3 which are subschemes of lines moving
in a given pencil. Similarly 2E2 is the class of the locus in Hilba(P2) of the
subschemes of length 3 which are subschemes of conics moving in a given
pencil. Also CEE0 has geometric meaning. Let D(2) denote the fourfold in
Hilba(P2) which is the locus of subschemes supported on a single varying
point. Clearly D(2) N Dj if j : 1; hence class(D(2)) XCEEo, for some
integer x. We determine x by restriction to the subvariety p3 Hilba(L) c
Hilba(p2). This variety is called T4 later below and we compute there that
degree CEEo is 1 on T4; on the other hand the restriction of D(2) to P3 is
transversal and gives a twisted cubic in Pa. Hence class(D(2)) 3c2E0.

Part III

(3.1) Aa(Hilba(p2)). We describe here some subvarieties of dim 3 on
Hilbd(P2), d > 3, which turn out to form a basis for the Chow group
A3(Hilb3(p2)). The same threefolds will also appear in the description of a set
of generators for A(Hilbd(P2))o.
We keep the notations and the conventions used above in part 2. This is the

list"

T1 := [W U Y] where W U Y is a closed subscheme of length d inside a line
moving in the pencil of centre P0 having the property that length W d- 2
and support(W) Po.
T2 ,= [Q t2 P Q(d- 2)] where Q is a point which varies in L, P is a

point which varies in p2.

T3 .’= [W P Q(d- 3)] where W is a varying closed subscheme of
length 2 supported at P0, P is a point which varies in p2.

T4 := [Pt P2 LI P3 U Q(d- 3)] where Pi are varying points of L.
T5 .’= [P Y Q(d- 3)] where P varies in L, Y is a closed not reduced

subscheme of length 2 for which the supporting point varies in a line M.
T6 .’= [Y t3 Q(d- 3)] where Y is a varying closed subscheme of length 3

supported at P0.

Using the computations outlined below we find the table for the degrees in
the case of Hilb3(p2); see Fig. 4. Since E0 is the direct image of the structure
sheaf of the universal family there is a splitting map tVHilb E0; hence
c3Eo 0 in our case and we have omitted the corresponding row. In the table
we have computed instead the degrees on c3E which we shall need in some
computations. The cycles K are defined below in (3.1.6).
The determinant of the submatrix obtained by deleting rows 2, 3, 4, 9,10 and

the last three columns is -3, while the determinant of the submatrix obtained
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3

c32

c33

(IE1)

(1E2 )3

(:o)(xx)

( c2 Eo ) ( ci E2 )

(c ) ( c )

(:EI)(I:)

(::)()

(c:E:)(clE)

Degrees for Hilb

0 0 0

0 0 0

0 0 0

0

K2

4

20

6 -3 -5 -1 -5 -9 0

0 9 4 0 22 18 8

3 0 -2 -1 -2 -6 0

g

1

84

0

3 0 -2 0 -2 -3 2 6

1 -1 -1 0 0 0 0 0

0 0 0 0 3 3 0 3

0 0 0 0 6 6 0 6

0 4 2 0 12 9 6 36

Fo. 4

by deleting rows 3, 6, 7, 9,10 and the last three columns is 4. Since 3 and 4 are
coprime the Chem monomials generate a lattice L of rank 6, with the property
that the matrix of intersection of L with the lattice generated by the T is
unimodular. Using Poincar6’s duality we see that L is exactly A3(Hilb3(p2)).

(3.1.1) Geometry on Tx. In the following we simply write T instead of Tx.
Recall that T is the subvariety of Hilbd which parametrizes dosed subschemes
Z with the following properties.

(1) Z is a dosed subscheme of a line moving in the pencil of centre P0.
(2) There is a dosed subscheme X Z with length X d- 2 supported

at Po.
We start from some useful considerations. Let L be the line at infinity in the

plane, so that L is also the parameter space for the lines through the origin.
Let A L p2 be the incidence correspondence; if (a, fl) are coordinates on
L and (x, y, z) are coordinates in p2, then A is the divisor of the equation
ax + fly 0. We write f" A L, the projection. The surjection 3 ...} )L

OL(1), induced from (a, fl): O2 OL(1), corresponds to the closed im-
mersion A L p2. Therefore A P(E), where E .’= OL OL(1)" We let
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be the class of the pull back to A of 0,2(1) (so that X 0,<)(1)) and
h cxOz(1), then A’(A)= Z[h, A]/(h, 2_ hA).

Since f,Oa(1)= E, the variety V := P(SymZ(E v)) parametrizes the sub-
schemes of length 2 supported on the fines in the pencil through P0, the origin.
Let v CtOv(1); then A’(V)= Z[h, v]/(h 2, v + 3hv2).
More generally we define W P(Syma(E v)); W parametrizes the sub-

schemes of length d supported on the lines in the pencil through P0.
Our variety T is a subvariety of W and it is isomorphic to V. More precisely

is a direct summand of Symd(E v) and this gives an isomorphic embedding of
V in W, the image being T; equivalently we have

V= T.’= P(Sym2(E v) (R) dL(2 d)) c P(Symd(E v)).

Let z CtSv(1); then

A’(W) Z[h, z]/(h 2, zd+ + (d(d + 1)/2)zdh)

and the pull back to V of z is z w v + (2 d)h.
The incidence family I c W x p2 is a divisor in M == W x LP(E), and M

is a divisor in W x p2. Since M P(Ew) then Pic(M) Zh ZX, Zz.
The divisor ! is the zero locus of the composite map

(w(-1) Syma(E) d(d).

Hence class I dh + z, equivalently the ideal sheaf of I is dg(- 1) (R) da(- d),

O "--* (Pw(-1) (R) d).4(-d) --) d)M--) d)i--) O.

Taking tensor products with da(n) one has

0 --) d,(- 1) (R) d,(- d + n) CM(n) --) d,(n) --) O.

Pushing down via f: W x LP(E) ") W the sequence gives

0 --) d(-1) (R) Rf,tA(-d + n) ---) Sym(E)
(pw(-1)

(R)dg(-1) (R) Rf,(9(-d + n) (R) dg(1)) O.

Noting that the relative canonical divisor for M W is KM/W d)A(--2)
(R) det E (see [8, Example 8.4]), we compute using the relative duality isomor-
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phism

as follows.
d 2. We have

ct(’(V, dgr,(0)) (1 (o + h)t), ct(e(V dgv(1)) (1 + ht),
c,(’(V, d)v2(2))

(1 + (3h)t)(1 + ot + v2t 2 + o3t 3) (1 + (3h + v)t + (02 + 3ho)t 2)
d 3. We have

ct(’(W, dgr,,(0))= (1 (z + h)t)(1 -(z + 2h)t),
ct(’(W, $v2(1))= (1 + ht)(1 -(z + h)t),
ct((W, dgv2(2))= (1 + (3h)t).

d=4and n<2. Wehave

0 -o Sym’(E) #(W, dv(n))
-o d,(-1) (R) dg(-1) (R) Syma-’-Z(e v) 0.

d 3. We obtain

c,(e(r, (1 vt)(1 (v + h)t),
c,(e(T, dgv(1)) (1 vt)(1 + ht),
ct((T, dv(2))= (1 + (3h)/)

and we compute the first column of degrees in the diagram of Hilb3.
d 4. We obtain

ct(e(T, dv(0)) (1 + (h v/))(1 v/)(1 (v + h)t)
1 3ot + 302t 2 + 3hv2t

ct((T, dgv-(1)) (1 + ht)(1 + (-o + h)t)(l vt)
1 + 2(h- v)t + (v2- 3hv)t 2 + hv2t,

ct(d’(T, dgv(2)) (1 + (3h)t)(1 + (h v)t) 1 + (4h v)t- 3hvt 2.

d >_ 4, n >_ O. In this more general case we have

ct((T, d)v(n)) (1 4- (1/2n(n + 1)h)t)(1 (v 4- (3 d)h)t)
(1 (v + (4- d)h)t)...(1 (v- (n 1)h)t).
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For any integer s > 0 let

g(s) (1 (o sh)t)(1 (v + (1 s)h)t)... (1 (v lh)t),

and let g(0) 1. Then in A(V) we compute

g(s) (1 vt) + (1/2)s(s + 1)ht(1 vt)-)

1 sot + 1/2s(s + 1)ht + 1/2s(s- 1)v2t2-

+ 2)(, + 3)hv:t

Therefore we can express the total Chern class as a polynomial in d:

195

1/2s(s- 1)(s + 1)hvt 2

ct(#(T, Ol,:(O)) (1 (v + h)t)(1 vt)g(d- 3),

ct(t(T p2(1)) (1 + ht)(1 vt)g(d- 3),

c,(o#(T, Opt(2)) (1 + 3ht)g(d- 3).

The process to determine the degrees is now elementary; according to the
computer we obtain the following expressions for the degrees on Tt"

zx := degree of c3E0
z2 := degree of c3E
z3

:-- degree of c3E2
z4 := degree of (ClE1)3

z5
:= degree of (ClE2)3

z6 .’= degree of (c2Eo)(ctEt)

z7
:= degree of (c2Eo)(cxE2)

z8
.’= degree of (c2Et)(cxEx)

z9 :----" degree of (c2Et)(cIE2)

Zto := degree of (c2E2)(ctEx)

ztt := degree of (c2E2)(ctE2)

zt2 .’= degree of (ctEt)(cxEz) 2

Z13 :"" degree of (cIEI)2(cIE2)

1/4(d4- 8d 3 + 23d2- 28d + 12),

1/4(d4- lOd + 37d 2 60d + 36),

&4(d4- 12d + 53d2- 102w + 72),

1/2(3d4- 21d 3 + 60d2- 84d + 48),

1/2(3d4- 27d + 99d2- 189d + 162),

1/4(3d4- 20d + 51d2- 58d + 24),

1/4(3d4- 22d + 63d2- 80d + 36),

1/4(3d4- 24d + 75d2- llOd+ 64),

1/4(3d4- 26d + 89d2- 146d + 96),

1/4(3d4- 28d + 101d2- 172d + 120),

1/4(3d4- 30d + 117d2- 222d + 180),

1/4(6d4- 50d + 170d 2 294d + 216),

1/4(6d4- 46d 3 + 144d 2 224d + 144).
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For the sake of completeness we also record"

cxEo (2 + 1/2(-5d + d2))h + (1 d)o,

cxE (4 + 1/2(-5d + d2))h + (2 d)o,

cxE (6 + 1/2(-Sd + d))h + (3 d)v,

cEo 1/2(8 14d + 7d- d)hv + 1/2(2 3d + d)v,
c2Ex }(22 23d + 8d2- d3)hv + 1/2(6 5d + d2)o2,

c2E2 1/2(42 32d + 9d d3)ho + 1/2(12 7d + d2)o.
(3.1.2) Geometry on T2. T2 is the closure of the subset in Hilbd which

parametrizes the subschemes of the type Z Q u P tA Q(d- 2), where Q
moves in L and P varies in p2 (L Q(d- 2)). T2 has a natural desin-
gularization W which we describe as follows.

Let P/ be the blow up of p2 at Q(d- 2), let E be the exceptional line
mapping to Qi. Let M be the diagonal in L L c L P+; the desingulariza-
tion W is the blow-up of L x P+ along M. We let g" W P+ and f" W L
be the natural projections, D the exceptional divisor in W, Q the divisors
L E. Note that for x L, P+,= f-l() is the blow-up of p2 at Q(d- 2)

(x }. We let Ex be the exceptional divisor for P+ P+.
A general point z of W represents a subscheme Z as above, g(z) P, f(z)
Q. When P comes to coincide with a Q then g(Z) E represents the

tangent direction determined by the scheme of length 2 supported at Q. When
P becomes a point ex Of L then g(Z)= P1 and f(Z)= Q; if Q and Px
coincide in x then they determine tangent directions parametrized by E c

P+ W.
The Chow ring A’(W) is computed easily. Let

h cdgp2(1), z ClOL(1), class(D), q, class(Q).

From the standard theory of the Chow ring of a blowing-up it follows that
A(W) is a quotient of Z[h, z, qi, 8]. There are the obvious relations hq--
0; qjq 0, j; z 2 0; h 0; h28 0; 8q 0; zh8 0; q3 0; q2
-class(L (point}); degree(h2z)= 1; degree(q/2z)= -1. In order to com-
pute powers of 8 we need to determine the Chern classes of the normal
bundle, say .A/’, of the diagonal L M in L P/. Looking at the inclusions
M c L L c L P+, we see that cl(.W’) 3z. It follows that degree 83

3 and further that degree(8 2z) 1 and degree(8 2h) 1.
Let I be the universal family in W p2, p. I --, W the projection, q" I

p2.
I decomposes in components as I C u B A t2 UAd_2, where

q(Ai) Qi, q(B) L, q(C) p2. Note that Ai -- B -- C; A N B ; A
n C L E Q, by definition, B t C D.
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The composition of I corresponds to a Majer-Vietoris sequence

Tensoring with q*(cld)i,2(n)) gives

We have abused notations here by writing tPc(nh) to mean the pull-back of
tgp(n), and tOn(m ), tOz)(nz ) to mean the pull-back of tgL(n ). Pushing down
via p,, (a) yields

0 #(W, tPp(n)) --) d)w(nh ) d)w(nZ ) (itPw)
-, ,o(,z), o.

Noting that d)D(nz ) -- d)D(nh ) we obtain

(1 + nzt)(1 qlt) (1 q(a_2)t). (1 + (nh )t)
1 + (n(z + h)- 8- (q +’" +q(d_2b)))t
+(nz(nh- -(ql + +q(a-2b)))) t2.

Note that c3(de(W p2(tl)) 0, c2(d’(W, p2(0)) 0.
Elementary computations give

degree(cx(d’(W, dgl,,(n)) ) c((W, tPv:(m))), cx(o(W, dgp:(S))))
3nms + (n + m + s)(-2- (d- 2)) + 3,

degree(ct(d’(W dgp2(n))), c2(d’(W dgl,2(m))) m2n m (d- 2)m.

(3.1.3) Geometry on the variety T3. T3 is the subvariety of Hilbd(P2), d >_ 3,
which is the closure of the set of points parametrizing subschemes of p2 of the
type Z W t2 P t2 Q(d- 3), where W is a varying scheme of length 2
supported at Po and P varies in p2 (( P0 } (A Q(d- 3)).

Let P be the blown-up of p2 at Q(d- 3), and let R, 1 _< (d- 3), be
the exceptional line in P over Q. R represents naturally the family of
subschemes of length 2 supported at Q. Let A be the fibre of the variety F
of first order data over P0 (see (i.4)); so A represents naturally the family of
subschemes of length 2 supported at Po. We write W to denote the subscheme
of length 2 parametrized by x A. There is a natural birational correspon-
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dence between T and A P. In A P the correspondence is not defined
along A (P0 }. In T the correspondence is not defined along D:, the
surface of "triple points" at P0; see (2.2).
We produce below a desingularization E T3, and E is in fact the closure

of the graph of the correspondence in T x (A P). Let a:E .--> A be the
induced map, x A; then Ex

.’= a-:(x) is a surface which is a desinguladza-
tion of the surface D .’= (Z T3:W"x C Z). More precisely E, is obtained
by blowing up P twice, first along P0, and next along the point on the
exceptional fibre over P0 which represents the tangent direction determined by
x. D is then obtained by blowing down the proper transform of the first
exceptional line, which is contracted to the point which represents the "big
point", see (1.4).
We construct E by the following process. Let P/ be the blown-up of P at

the origin P0, let R0 be the exceptional line. There is a natural identification
Ro---A. Let N be the diagonal in A R0CA P/. E is obtained by
blowing up A P/ along N. We shall let T be the exceptional divisor in E,
and M the proper transform of M+.’= A R0; for brevity we write M .’= A
Ri, 1 <i<(d-3).
Via E -o T3 the divisor T maps onto the surface D and M is contracted to

a point.
The Chow ring of E is computed using the standard theory of blow-ups.

The following divisorial classes are generators for the ring:

class(T), class(M),
c:gv (1)
class(Mi), 1 < < ( d 3).

It is easy to establish the following set of relations"

0 h z 2
#ih #h zh #i =/# ##j, for #= j;

1 degree( h :z) degree( ,/z) degree((/,)z).
This set of relations is not complete yet. To complete it we need to compute
the Chern class of the conormal sheaf vg" of N in A P/. This is done using
the inclusion of divisors N c M+c A P/; it gives ct(l/’) -#, where p is
the class of a point in N. Therefore A’(T) Z[O, o]/(p:, o : + po), where o
is the tautological class in T P(vl). Using the well known isomorphism
ge(T) (R) gr-- dr(-1), we obtain the relations" degree(3) degree((- o))

-1. We have also (r +/)3 0, because (r +/) is the pull-back to E of
the class of M+ in A P/ and M/ is the pull-back to A P+ of the divisor
R 0 in the surface P4. The same argument gives ( + #)2 0. Since class(M/)
restricts to p in A (N), we have

degree( z 2( z + # )) degree(( p )( o )) 1.
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Therefore

degree(,3) 1, degree(#,2) 2, degree(,/z2) 3, degree(/z3) 4,

and also

degree(/z) 1, degree(z2z) 1, degree(z/2) 2.

In order to compute the Chem classes of the secant bundles we need to
control the incidence family I c E x p2 with the projections p" I ---, E, q" I
_..) p2. ! decomposes as I X t3 Y (J Zt t3 t3 Z(d_3) where q(X)=
p2, q(y) Ro q(Zi) Qi.

If z is a general point in E then p-l(z)o X P, the varying point in
p2, p-l(z) N Y W the scheme of length 2 supported on P0. This means
that p" Y E is just the pull-back to E of the universal fami’ly on A, and
therefore p,tV,= tVe (re(z), where tVe(z) denotes the pull-back to E of
(,(1).

Clearly E = X. Using this identification the components of E intersect in
this way: X o Y S, X 3 Z Mi, Y o Z where S is a subscheme of
cod 1 in E. Via E -- X T3, S maps to D1, the surface described in (2.2).
The decomposition of ! corresponds to the Mayer-Vietoris sequence

which yields (tensoring first with q*tPi,2(n ) and then projecting via p,)

--) d)s (R) (gE(nh) --) O,

where e(nh) denotes the pull back to E of tgl,2(n ).
To compute ct(d’(n E)) we need only determine the class of the divisor S

in E; in fact d)s (R) E(nh) (9s because q(S) is supported in P0. It is enough
to compute on Hilb3. In particular we have

(a) c(d(0, E)) z class(S), c(d(1, E)) z + h class(S).

To compute class(S) we remark first that S is supported on M U T, so that
class(S) a, + flbt, where a and /3 are non negative integers, to be de-
termined. To do this we restrict everything to the fibre of E A, which we
called E,. This surface represents the family of subschemes of the type

Z= P t3 t3 Q(d- 3).

Ex is obtained by blowing up P+ along the point x of R0 which corresponds
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to the chosen tangent direction. Let L be the proper transform of R0 in Ex,

let L2 be the exceptional divisor over x. We have M. Ex L1, T. E L2;
(a) gives

cx(d’(0, E))= -(a(class(L2)) + fl(class(Lx))).
Now the curve Lx is contracted under the map Ex Hilbd(P2), so that

c((0, e)). o;

hence 2/3 a. On the other hand the same map sends L2 to the family of
"triple points" supported at P0 with fixed tangent direction x. Using our
(incompatible) notations of (1.4) this is the fibre of S F. From our compu-
tations in part 1 it follows that degree(c(d(0, L2))= 1, so fl-a-- -1.
Therefore class(S) 2, +/.

Standard computations give the following table for the degree of the Chern
monomials taken in the order used for the matrix of degrees in Hilba. Let
a=3b, b= -(d-3):

000 (-5 + a) (4 + a) (-2 + b) (-2 + b) (-1 + b) (0 + b)
(0 + b)(2 b)(a)(-3 + a).

(3.1.4) Geometry on the variety T4. T4 is just the variety of schemes of
length 3 on P; i.e. T4 is Hilb3(P), the third symmetric product of P. In other
words T4 is isomorphic with p3. Let a, fl be coordinates for P and let
x, y, z, w be coordinates for p3. Then

xa + yot2fl + ZOt 2 + W3-’ 0

is the equation for the incidence family I P1 x pa, so I is a divisor of type
(3,1). Using the exact sequence

o - (-1) (R) (n 3) -,,(n) -, i (R) () - 0

we have

and

c,(e(T4, tPl,2(0)) c,(tVv,(-1))2, c,(d’(T4, tVv2(1))

Note that if n > 3,

ct((T4, d9,(2)) 1.

the coeflciem of in G(OI,(-1))(-’/2.
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(3.1.5) Geometry on the variety T. T is isomorphic with the variety of
"triple points" supported on L; hence a natural desingularization of T is the
restriction, say R, to L of the variety of second order data S (see part 1). The
Chow ring of R is obtained by adding to A’(S) the further relation O2 0.
Elementary computations based on (1.8) yield the following degrees on T6:

degree caE 1, degree c3E2 2, degree caEa 3,

degree(ClE1)a= -9, degree(ClEE)a=18, degree(CEEo)(ClE1)=-6,

degree(cEEo)(ClE2) 3, degree(c2E1)(ClE1) O,
degree(c2Ex)(cxE2) 3,

degree(c2E2)(cE1) 6, degree(c2E2)(cE2) 9.

(3.1.6) Geometry on the variety T5. It is enough to compute the degree of
the monomials for the case of T in Hilb3(p2), since all Ts are isomorphic and
the associated secant bundles differ only for trivial factors when d varies.

Instead of working directly on T5 we find more convenient to express
class(Ts) as a linear combination with rational coefficient of T4, T6 and K2,

this last denoting the subvariety of Hilb3(P2) which parametrizes the sub-
schemes of length 3 supported on a general conic C.
More generally we let Kn be the subvariety of Hilb3(P2) which parame-

trizes the subschemes of length 3 supported on a general curve Cn of degree n.
Note that K T4. The computation of the degrees of the monomials of the
secant bundles on the K is a standard exercise in the theory of symmetric
product of curves; indeed K is the third symmetric product of C, and one
can copy Lemma (2.5) in VIII of [1]. In particular, identifying K2 with Pa,
and letting a class(Ova(I)), we have

ct((K2, l,(n))) (1 at)2-3.
We note:

LEMMA. Class(Kn) c3(d’(Hilb3(P2), tPl,2(n)) in A’(Hilb3(P2)).

Proof. This is an application of Porteous formulas [7]. On Hilb3(P2) there
is a natural free bundle F of rank (" / 2) with basis the set of monomials of
degree n in the plane, and there is a natural surjection

F d’(Hilb3(P2), dgp2(n));
at a point z parametrizing a subscheme Z this is just evaluation of the
monomials. To give a curve C amounts to fixing a section tp of F, hence a
section of

f(Hilb3 (P2), p:(n));
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K, is exactly the locus where the section vanishes. It is also easy to verify that
the section vanishes with multiplicity 1 on K, for instance by restricting
everything to T4 if n > 3 and to K3 for n 1, 2.

Therefore we can compute

degree(Kn K,,)= (7)’
which we need only for 1 < n < rn < 3. In particular Kt, K2, K3 are linearly
independent in A3(Hilb3(p2)). Now one can easily see that:

(1) K1, K2, K3 are orthogonal to T1, T2, T3;
(2) degree(Tn T,,) 0 for n 3 and rn 2, for n 3 and m 3;
(3) degree(T T,,) > 0 for n 3 and rn 1, for n 2 and m 2.
This means that Tt, T2, T3 are linearly independent and that the lattice

generated by Tt, T2, T3 is orthogonal to the lattice generated by Kt, K2, K3.
Since A3(Hilb3(P2)) is a free group of rank 6 then Kt, K2, Ka, Tt, T2, T3
generate

a3(Hilb3(P2)) (R) Q.

Since T5 is orthogonal to Tx, T2, T we have

T5 aK + bK2 + cK3,
and similarly

T6=eK +fK2+gK3,

as elements of A3(Hilb3(p2))(R) Q. The coefficients a,..., g are found by
computing the numbers degree(T, Kin), 1 < rn < 3, 5 < n < 6. The case n
6 is done in (3.1.5); degree(T6 Km) m.
To compute degree(T5. Kin) we remark first that Ts is birational to the

product D L, where D denotes the surface which is the fibre of the variety
F over the line M; and in fact T5 and D x L are locally isomorphic on the
open subset of the points which parametrize the subschemes of p2 of the type
Z P u Y with P = L t3 M 4= supp(Y), P L, Y D. The intersections
T5 63 K,. are contained in this open set if the curve C,, is general enough with
respect to L and M; in this case we see by local considerations that the
intersections are in fact transversal. The computation of the number of points
in T5 3 K,, is elementary, and gives

degree(T5 Kx) 1, degree(T5 K2) 4, degree(T5 K3) 9.

We obtain

2T6 18Kx- 9K2 + 2K3, T5 5Kx --4K2 + K3,

hence

2T5 2T6 8K K2.
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We find the degrees of the monomials on Ts using the computations done
for Tt, K T4, K2.

(3.2) List of generators for Aa(Hilb4(P2)). We propose the following set of
10 generators for the Chow group A3(Hilb4(P2)): Tt, T2,..., Tt, T7, T8, Tg, Tto.
The generators Tt, T2,..., T6, have been described in (3.1); there it is also
indicated how to compute their intersection degree with the monomials in the
Chern classes of the secant bundles. We describe the new generators TT,..., Tto,
as threefolds in Hilbd(P2).

T7 := [Y t3 W], where W is a varying closed subscheme of length 2 sup-
ported at Po, and Y is parametrized by Dz Hilba_ z(P2).
Ts := [Y t3 W], where W is a varying dosed subscheme of length 2 sup-

ported at Po, and Y is parametrized by D3 Hilba_z(PZ).
T9 := [P t W], where W is parametrized by the surface Dt c Hilba_x(P-),

and P varies in L.
Tto := [W U Q(d 4)] where W is a varying closed subscheme of length 4

supported at Po. Note that C Tto is a desingularization, where C is the
fibre over Po of the variety T of third order data introduced in (1.5).

The computation of the degrees of intersection is simple; note that the
degrees do not vary with d.
The Chow ring of the desingularization C of Tt0 is obtained from the ring

A "(T) by adding the further relation a 0 hence

A’(C) Z[p, o, ]/(p2, oz + qo, eu + 2q0 q0o).

The class of a point is q0o; hence

degree(’3) 1, degree(o, 2) 2,

degree(o2,r) -1, deee(p,r2) 0, degree(qo 2) 0.

The secant bundles #(Tto, Orb(n)) are all isomorphic to the restriction, say
N, of #(T, $r(0))= .A/" to C. We compute c,(N) by chasing through the
exact sequences which produce .,’ in (1.5). From (1.5.14),

,(w’) c,(X)(1 ,.t) -, c,(X) ,()(1 + (3, + x + o)t);

from (1.5.6) it follows that

c,(N) (1 -t)-t(1 + (2p + o)t)(1 + 2q0t)

(1 ,t)-*(1 + (4, + o)t + 2,ot)
(1 + ,t + (,o 2,,)t + ,o,.t)( + (4, + o)t + 2,ot)
(1 + (4, + o + ,)t + (3,o + 2,, + o,.)t + (,o,.)t).
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Therefore

dgrc((o, ()) .
Also

) (o + ,) + (o + ,)(c(d’(To, dg,(n)))) (4 + o + 12p

24o, + 3o2"r + 3o’r 2 + ’r 3 16qo,.

Therefore

degree((c(d’(T0, $l,,(n))))3) 16.

Similarly

cxcg_ (4q + o + ,)(3po + 2q0, + o,) 60,,

80

degree((cl(d’(T10 ,(n))))(c2((To, ,(m))))) 6.

The varieties T7, T8, T9, are products; in fact T7 U2 x D2, T8 U: x
D3, T9 D X U. We use the computations done for the factors in order to
compute the new degrees, which we write in Fig. 5.
On T7,

c,(t(r, ,,(,))) c,(t(v, ,,_(,)))c,((o, (n))).

Therefore

ct(e(T7, dg,(0))) (1 + zt)(1 ht), ct(e(T7, 91,(1))) (1 + zt),

ct(c(T7, (9,x(2))) (1 + zt)(1 + ht + h2t2),

where z is the class of a point in U2 pX and h is the class of a line in

D2 p2.
Similarly on T8,

ct(c(Ts, p2(?l)) ct((e2, )p2(gl)))ct(c(h3,

Proceeding as before we note that on T9 D U,

ct((T9, ,(n))) ctd’(D1, ,2(n))(1 + nzt),

and we use the desingularization B x Ux of T9 to compute the degrees.
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c3Eo

c3 Ex

c3E2

(q)3

(q2)

(c2Eo)(cxE) 24

(c2Eo)(cE2) 21

Degrees for I’Iilb4

0 0 0 0 0 0 0

I 0 0 0 I I 0 I I

0 0 0 0 4 2 1 2 2

48 -6 -8 -1 -5 -9 0 3 9

15 3 1 0 22 18 3 15 18

0 -3 -1 -2 -6 0 -1 1

0 -3 0 -2 -3 -1 1 2

(c2E)(cE) 14 -2 -2 0 0 0 0 2 4

(%EI)(cxE) 10-1-1 0 3 3 0 4 5

( c2 E2 ) (cEx ) 6 -2 -1 0 6 6

()(q_) 3 2 0 x2 9

(clE1)(IE2) 24-5-3 0 9 9

(cxE)2(cxE2) 36-7-6 0 0 0

1 5 7

2 7 8

1 II 15

0 7 12

1

16

16

6

6

6

6

6

6

16

16

205

FIG. 5

(3.3) List of generators for A3(Hilb5(P2)) and A3(Hilbd(p2)). We propose
the following set of 12 generators for the Chow group A3(Hilbs(P2)):
T, T2,..., T6, T7,..., T0, Tn, Tx2. The generators Tx, T2,..., To, have been
described above and it was shown how to compute their intersection degree
with the monomials in the Chem classes of the secant bundles. The new
generators Tx, T12 are."

Txx .’= [P U Y], where P is a varying point of L and Y is parametrized by
p2 Do c Hilbd_x(P2); i.e. Y is a subscheme of length d- 1 supported at
the origin of the type described in (2.2).

Tx2 := [W U Y], where W is a varying closed subscheme of length 2
supported at Po, and Y is parametrized by Dx Hilbd_2(P2).

Using the previous computations we have

ct(((T11 i)1}2(/’/))) ct((Do, d,z(n))(1 + nzt) (1 + ht)(1 + nzt),
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cEo 18 0 0

9 0

(1E1) 189 6

(ClE2)3 96 27

(c2Eo)(clE1) 96 0

Degreesfor Hilb

T4 T T6

0 0 0

0 1 1

0 0 4 2

-11 -1 -5 -9

-2 0 22 18

-4 -1 -2 -6

(caEo)(clE_) 84 0 -4 0 -2 -3

(c2E1)(clE1) 66 2 -3 0 0 0

(c2E1)(clE2) 54 3 -2 0 3 3

( c2 e2 ) ( cl E1) 40 6 -2 0 6 6

0 0 0 1 0 1

0 1 1

1 2 2

0 3 9

3 15 18

0 -1 1

1 0 1

1 0 1

16 3 9

16 6 9

6 0 4

-1 1 2 6 0 4

0 2 4 6 1 4

0 4 5 6 1 4

1 5 7 6 2

(c2E2)(clE2) 30 10 0 0 12 9 2 7 8 6 2 4

(cIE1)(clE2) 124 15 -6 0 9 9 1 11 15 16 5 9

(qE1)2(clE2) 156 9 -9 0 0 0 0 7 12 16 4 9

FIG. 6

where h is the class of a line in DO
p2 and z is the class of a point in L. We

get the degrees on Tn by easy computations.
Similarly

ct((T12, v(n))) ctd’(D1, dgl,(n))(1 + zt),

where z is the class of a point in U2 p1.
We add to the previous list the following threefold T13 ill Hilbd(P2), d > 6,

T13 := [W t3 Y], where W is as in T12, and Y is as in Tn. Therefore

ct((T13, Pe2(n))) (1 + ht)(1 + zt),

where z is as in Tx2 and h is as in Txt.
In the table for Hilbs(P2) we have replaced the second column with the

column of the degrees on the cycle T2 T2 + 5Tn. Similarly in the table for
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Degrees for Hilbd

c Eo z 0 0 0 0 0 0 0 0 1 0 1 0

c3E z 0 0 0 1 1 0 1 1 1 0 1 0

c3 E2 z 0 0 0 4 2 1 2 2 1 0 1 0

(ClE1) Z4 6 -5 -1 -5 -9 0 3 9 16

27 4 0 22 18 3 15 18 16

0 -2 -1 -2 -6 0 -1 1 6

(CLE2) z

(c2Eo)(ClE1) Z6

3 9 3

6 9 3

0 4 1

(c2Eo)(cxE2) z 0 -2 0 -2 -3 -1 1 2 6 0 4

(c2Ex)(cxE1) z 2 -1 0 0 0 0 2 4 6 1 4 1

3 0 4 5 6 1 40 3(ex)(cxe:) z9 3 o

(c2E:)(ciEi) Zxo 6 0 0 6 6 1 5 7 4

1

6 2 1

(c2E2)(clE2) gll 10 2 0 12 9 2 7 8 6 2 4 1

(cxE)(cxE2)2
z2 15 0 0 9 9 1 11 15 16 5 9 3

(clEI)2(ClE2) z3 9 -3 0 0 0 0 7 12 16 4 9 3

FXO. 7
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Hilbd(P2) we have replaced the second column with the column of the degrees
on the cycle T2 T2 + d Ttx, and the third column with the column of the
degrees on T3 T3 + (d- 3)T13.
The z in the first column have been computed above in (3.1.1) and we recall

that they are polynomials of degree 4 in d.
Now according to the computer the determinant of the intersection matrix

(see Fig. 7) of Hilbd(P2), d > 6, is -1.
By Poincar6 duality it follows that Tx,..., T3 are a basis of A3(Hilbd) and

that the 13 Chem monomials of weight 3 which appear in the table are in fact
a basis of Aa(Hilbd), d 6.
The cases d 4 and d 5 reduce to the computation for d > 6. Indeed we

can see the tables of intersection as giving vectors Tt,..., Tt3 in the lattice Zt3.
From T4 to T3 the vectors do not depend on d, and the vectors T2 T2 +
d Txx and T3 T3 + (d 3)T3 are also constant (this is also true for d 4, 5
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where, if undefined, we define Tit, Tt2, Tt3 to be the vectors in the table of
Hilbt). Therefore for all d > 4 we have a set of 13 vectors Tt, T,
T, T4,..., T3 in the lattice Zt3, and only T varies, its coordinates being
polynomials of degree 4 in d. Since the determinant is the constant -1, then
also for d---4, Tt, T, T, T4,..., Tt form a basis of Zt, so the 13 Chem
monomials form a bails of the dual lattice. Now for d 4 (and for all d) the
lattice M, say, spanned by T, T2, T, T4,..., Tt0, is a direct summand of Z3;
therefore the 13 Chem monomials also generate the dual lattice of M. By
duality it follows that T,..., Tt0, are a basis of A3(Hilb4) and that the 13
Chem monomials of weight 3 generate A3(Hilb4). The proof for Hilb is based
on the same argument.

(3.4) The degrees of monomials of weight 6 on Hilba(p2). I have been
informed by Prof. Kldman that several people have computed the Chow ring
of Hilba(P2) (see [6], [4]). Our computations and Poincar6 duality would allow
us to do this once more; we only indicate how to compute the degrees of the
monomials of weight 6 on Hilba(p2). In (3.1.6) we have noted that T, T2, T
generate a lattice orthogonal to the lattice generated by T4, T, T6. The
intersection matrix on Aa(Hilba(P2)) is

-1 1 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 1 1

0 0 0 1 -2 0

0 0 0 1 0 3

The table for T, Ts, T6, has been obtained by using the corresponding table
for the K. The degrees of intersection of T, Tz, T3 can be computed by
remarking:

(1) the determinant of the first 3 3 block is unimodular, by Poincar
duality;

(2) the intersection of the T is clearly empty where we have put a 0;
(3) T Tz is a point and one can check by local considerations that the

intersection is transversal;
(4) in Hilb3(Pz) the divisor A of the subschemes of P which are sub-

schemes of some line has class ctEt (use Porteous formulas).
T A and two copies of T intersect transversally in A along a line l Pt
which parametrizes triples { P, Qt, Q}, where P varies in the line [Qt, Qz];
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hence by the excess intersection formula [7],

degree(T T1)b degree,(cxEi) 1.

Using the table of the degrees over the T’s we find the components of the
Chem monomials in the basis of the T’s. We use row notation and the
ordered basis Tx,..., T.

c3E (0,0,0,1,0,0), c3E2 (0,0,0,8,2,-2),
(cxEx)3= (-5,2,-1,-3,1,-2),

(cE2)3--- (4,5,-1,30,4,-4), (-,,-1,0,1,-2),
(c2Eo)(cxE2) (-2,2,-1,0,1,-1), (c2Ex)(cxEt) (-1,0,0,0,0,0),

(0,0,0,3,0,0), (0,0,0,6,0,0),
(c2E2)(cte2) (2, 2, 0,18, 3, 3).

Note that

(C2/1)(clE2) 3C3E1, (c2E2)(clEx) 6c3ex.
We also know that

c3Eo O, (cE)(cez) 3czex.
The intersection table for the T’s allows us to compute the degree of all

monomials of weight 6, but for possibly the degree of (e2Eo)a(e2E2)b, a + b
3. In Part 2 we saw that the class of the image of the variety of third order

data S in Hilb3 is 3c2E0, and we computed the degrees on S of
(c2Eo)"(c2E2)b, a + b 2 in (1.8.3) above; it follows that in Hilb3,

degree(czEo)3 5, degree(cg_eo)(cze2) 3, degree(czEo)(c9_E2)2 5.

We can reduce the computation of the degree of (c2E2) to the other
numbers. The bundle E2 in Hilb3(P2) is a quotient of the free bundle F of
rank 6, which has basis the monomials of degree 2. The 4-th Chem class of the
kernel of F --, E2 is 0; hence

2(cxe2)(c3e2) + (c2E2)- 3(cE:):(c2E2) + (cxe:)4 0.

Therefore

degree(ce_)3 -degree( c:e:)(2(ce:)(c3Ez)
3(cxE212(c2E2) + (cxE2)4)

-9.
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