AN ASYMPTOTIC RESULT FOR SUBGROUPS OF SL(2, Z) OF LEVEL 2

BY
Morris Newman
\section*{In memoriam Irving Reiner}

Introduction

Let $\Gamma=S L(2, Z)$. Let E stand for the euclidean matrix norm, so that if

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma,
$$

then

$$
E(A)^{2}=a^{2}+b^{2}+c^{2}+d^{2}
$$

In a previous paper [2] the author considered the problem of determining the number of solutions $N(\Gamma, x)$ of the inequality $E(A)^{2} \leq x, A \in \Gamma$. It was shown in [2] that $N(\Gamma, x) \sim 6 x$; that is, $N(\Gamma, x) / x$ approaches 6 as x approaches ∞. This result also appears as Exercise 8, p. 267, of [3]. Furthermore, the following conjecture was made in [2]:

Conjecture. Let G be a subgroup of Γ of finite index μ. Let $N(G, x)$ be the number of solutions of the inequality $E(A)^{2} \leq x, A \in G$. Then $N(G, x)$ $\sim(6 / \mu) x$.

The purpose of this note is to prove the conjecture for all subgroups of Γ of level 2 ; that is, for all subgroups of Γ containing the principal congruence subgroup $\Gamma(2)$, which consists of all matrices $A \in \Gamma$ such that $A \equiv I \bmod 2$. $\Gamma(2)$ is a normal subgroup of Γ of index 6 , and $\Gamma / \Gamma(2)$ is isomorphic to the symmetric group S_{3}. Thus if G is any proper subgroup of Γ containing $\Gamma(2), G / \Gamma(2)$ is either the trivial group, the cyclic group C_{2}, or the cyclic group C_{3}.

Received July 6, 1987.

The principal analytic result required is a theorem of T. Estermann [1], which we state as a lemma:

Lemma 1 (Estermann). For any positive ε and any positive integer k,
(1)

$$
\sum_{1 \leq h \leq n} r(h) r(h+k)=c_{k} n+O\left(n^{\alpha} \log ^{\beta} n\right), \quad \alpha=11 / 12, \beta=17 / 6+\varepsilon
$$

where

$$
\begin{equation*}
c_{k}=8 \sum_{d \mid k}(-1)^{d+k} d / k \tag{2}
\end{equation*}
$$

Here $r(n)$ is the number of representations of n as the sum of 2 squares, and is the coefficient of x^{n} in the power series for $\theta^{2}(x)$, where $\theta(x)$ is the theta-function $\theta(x)=\sum_{-\infty}^{\infty} x^{n^{2}}$. We also require the function $r^{*}(n)$, which is the coefficient of x^{n} in the power series for $\theta(\mathrm{x}) \theta(-\mathrm{x})$. This function satisfies

$$
\begin{equation*}
r^{*}(n)=0, n \text { odd }, \quad-r(n), n \equiv 2 \bmod 4, \quad r(n / 4), n \equiv 0 \bmod 4 \tag{3}
\end{equation*}
$$

We also note that

$$
\begin{equation*}
r(4 n)=r(n), \quad r(4 n+2)=r(2 n+1), \quad r(n)=0 \text { if } n \equiv 3 \bmod 4 \tag{4}
\end{equation*}
$$

The full error term of (1) will not be required; all that is needed is the fact that it is $o(n)$.

The theorem and its proof

We will prove:
Theorem. Let G be a subgroup of Γ of level 2 and index μ. Let $N(G, x)$ denote the number of solutions of $E(A)^{2} \leq x, A \in G$. Then $N(G, x) \sim(6 / \mu) x$.

Note that $6 / \mu$ is the order of $G / \Gamma(2)$.
Proof. We break the proof up into cases, depending on the value of μ. The case $\mu=3$ is the hardest, and depends (in part) on the case $\mu=6$, so this will be done last.
(i) $\mu=1$. Then $G=\Gamma$, and the theorem has already been proved in [2] for this case.
(ii) $\mu=2$. Then $G / \Gamma(2)$ is isomorphic to C_{3} and $G=\Gamma^{2}$, the subgroup of Γ generated by the squares of all elements of $\Gamma . \quad \Gamma^{2}$ is a normal subgroup of Γ
(in fact, a fully invariant subgroup of Γ), and

$$
\Gamma=\Gamma^{2}+T \Gamma^{2}, \quad T=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

is a left coset decomposition for Γ modulo Γ^{2}. If we now note that for any matrix $A \in \Gamma, E(A)=E(T A)$, the result is a consequence of case (i), since the number of solutions of $E(A)^{2} \leq x, A \in \Gamma^{2}$, is the same as the number of solutions of $E(A)^{2} \leq x, A \in T \Gamma^{2}$; and both together constitute the number of solutions of $E(A)^{2} \leq x, A \in \Gamma$. It follows that

$$
N\left(\Gamma^{2}, x\right)=N(\Gamma, x) / 2 \sim 3 x
$$

the desired result.
(iii) $\mu=6$. Then $G=\Gamma(2)$. Let $S(G, n)$ denote the number of solutions of $E(A)^{2}=n, A \in G$. Then $S(\Gamma(2), n)$ is just the number of solutions of

$$
\begin{equation*}
a^{2}+b^{2}+c^{2}+d^{2}=n, \quad a d-b c=1, b, c \text { even. } \tag{5}
\end{equation*}
$$

As in [2], put $A=a+d, D=a-d, B=b+c, C=b-c$. Then

$$
\begin{equation*}
A^{2}+C^{2}=n+2, \quad B^{2}+D^{2}=n-2, \quad A, B, C, D \text { even. } \tag{6}
\end{equation*}
$$

Conversely, if A, B, C, D satisfy (6) then

$$
a=(A+D) / 2, \quad b=(B+C) / 2, \quad c=(B-C) / 2, \quad d=(A-D) / 2
$$

are integers satisfying (5). Since A, B, C, D are even, we may write

$$
A=2 A_{0}, B=2 B_{0}, C=2 C_{0}, D=2 D_{0}
$$

so that

$$
a=A_{0}+D_{0}, b=B_{0}+C_{0}, c=B_{0}-C_{0}, d=A_{0}-D_{0}
$$

Then (6) becomes

$$
\begin{aligned}
A_{0}^{2}+C_{0}^{2}=(n+2) / 4, \quad B_{0}^{2}+D_{0}^{2}= & (n-2) / 4, \quad B_{0}+C_{0} \text { even } \\
& A_{0}+D_{0} \text { odd }
\end{aligned}
$$

Thus for solutions to exist at all, $n=4 N+2$.
Since $A_{0}+D_{0}$ odd follows from the facts that $B_{0}+C_{0}$ is even and

$$
A_{0}^{2}+B_{0}^{2}+C_{0}^{2}+D_{0}^{2}=n / 2=2 N+1
$$

we need the number of solutions

$$
A_{0}^{2}+C_{0}^{2}=N+1, \quad B_{0}^{2}+D_{0}^{2}=N, \quad B_{0} \equiv C_{0} \bmod 2
$$

This is the coefficient of $x^{N+1} y^{N}$ in the power series

$$
\begin{aligned}
& \sum_{a, b, c, d} \frac{1}{2}\left(1+(-1)^{b+c}\right) x^{a^{2}+c^{2}} y^{b^{2}+d^{2}} \\
& \quad=\frac{1}{2}\left\{\theta^{2}(x) \theta^{2}(y)+\theta(x) \theta(-x) \theta(y) \theta(-y)\right\} .
\end{aligned}
$$

This readily implies that the number of solutions $S(\Gamma(2), n)=S(\Gamma(2), 4 N+2)$ is given by

$$
\frac{1}{2}\left\{r(N+1) r(N)+r^{*}(N+1) r^{*}(N)\right\} .
$$

But $r^{*}(N+1) r^{*}(N)=0$, since one of $N, N+1$ is odd (formula (3)). It follows that the number of solutions is $\frac{1}{2}(r(N+1) r(N))$. Hence

$$
\begin{aligned}
N(\Gamma(2), x) & =\frac{1}{2} \sum_{4 N+2 \leq x} r(N+1) r(N) \\
& =\frac{1}{2} \sum_{N \leq(x-2) / 4} r(N+1) r(N) \\
& =\frac{1}{2} c_{1} x / 4+o(x) \\
& =x+o(x)
\end{aligned}
$$

by Lemma 1. This completes the proof in this case.
(iv) $\mu=3$. There are 4 subgroups of Γ of index 3 ; namely, $\Gamma_{0}(2)$, $\Gamma^{0}(2), K, \Gamma^{3}$. Here $\Gamma_{0}(2)$ is the subgroup consisting of all elements $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ of Γ such that $c \equiv 0 \bmod 2 ; \Gamma^{0}(2)$ is the subgroup consisting of all elements $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ of Γ such that $b \equiv 0 \bmod 2 ; K$ is the "theta subgroup", generated by

$$
T=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] \quad \text { and } \quad S^{2}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

and Γ^{3} is the fully invariant subgroup generated by the cubes of all elements of Γ. However, Γ^{3} does not contain $\Gamma(2)$ as a subgroup, and so must be omitted. The remaining 3 are conjugate groups. The proof for $\Gamma^{0}(2)$ is precisely similar to the proof for $\Gamma_{0}(2)$, and will be omitted. It is thus only necessary to prove the result for $\Gamma_{0}(2)$ and K.

We start with $K . \quad K$ has the following coset decomposition modulo $\Gamma(2)$:

$$
K=\Gamma(2)+T \Gamma(2), \quad T=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

We now argue along the lines of case (ii). The number of solutions of $E(A)^{2} \leq x, A \in \Gamma(2)$, is the same as the number of solutions of $E(A)^{2} \leq$ $x, A \in T \Gamma(2)$; and these together constitute the number of solutions of $E(A)^{2} \leq x, A \in K$. Since $N(\Gamma(2), x)=x+o(x)$ by case (iii), it follows that

$$
N(K, x)=2 N(\Gamma(2), x)=2 x+o(x)
$$

the desired result.
We now come to the last case: $G=\Gamma_{0}(2)$. We first prove:

Lemma 2.

$$
\sum_{n \leq(x-1) / 4} r(4 n+1) r(4 n+5)=8 x+o(x)
$$

Proof. By Lemma 1, we have

$$
f=\sum_{n \leq x} r(n) r(n+4)=c_{4} x+o(x)=10 x+o(x)
$$

Considering n modulo 4 , we find that $f=f_{0}+f_{1}+f_{2}+f_{3}$, where

$$
f_{i}=\sum_{n \leq(x-i) / 4} r(4 n+i) r(4 n+i+4), \quad i=0,1,2,3 .
$$

We have $f_{0}=\sum_{n \leq x / 4} r(4 n) r(4 n+4)=\sum_{n \leq x / 4} r(n) r(n+1)$, because of (4). Hence $f_{0}=c_{1} x / 4+o(x)=2 x+o(x)$, by (1). Next, we have

$$
\begin{aligned}
f_{1} & =\sum_{n \leq(x-1) / 4} r(4 n+1) r(4 n+5) \\
f_{2} & =\sum_{n \leq(x-2) / 4} r(4 n+2) r(4 n+6)=\sum_{n \leq(x-2) / 4} r(2 n+1) r(2 n+3), \\
f_{3} & =\sum_{n \leq(x-3) / 4} r(4 n+3) r(4 n+7)
\end{aligned}
$$

But one of $2 n+1,2 n+3$ must be congruent to 3 modulo 4 , and $4 n+3$ is
congruent to 3 modulo 4 . Hence because of (4), f_{2} and f_{3} are both 0 . Thus

$$
f=f_{0}+f_{1}, \quad f_{1}=f-f_{0}=10 x+o(x)-\{2 x+o(x)\}=8 x+o(x)
$$

This completes the proof of the lemma.
Now let $S\left(\Gamma_{0}(2), n\right)$ be the number of solutions of $E(A)^{2}=n, A \in \Gamma_{0}(2)$. This is just the number of solutions of

$$
a^{2}+b^{2}+c^{2}+d^{2}=n, \quad a d-b c=1, c \text { even. }
$$

As before, set $A=a+d, D=a-d, B=b+c, C=b-c$, so that

$$
a=(A+D) / 2, \quad b=(B+C) / 2, \quad c=(B-C) / 2, \quad d=(A-D) / 2
$$

Then because a, d are odd and c is even, we have $B \equiv C \bmod 4$, and A and D even. Then arguing as before, $S\left(\Gamma_{0}(2), n\right)$ is just the number of solutions of

$$
A^{2}+C^{2}=n+2, B^{2}+D^{2}=n-2, \quad B \equiv C \bmod 4, A, D \text { even } .
$$

We note that $C \equiv n \bmod 2$. Put $A=2 A_{0}, D=2 D_{0}$, so that

$$
4 A_{0}^{2}+C^{2}=n+2, \quad B^{2}+4 D_{0}^{2}=n-2
$$

There are 2 cases:
Case 1. n even. Then $C=2 C_{0}, B=2 B_{0}$,

$$
A_{0}^{2}+C_{0}^{2}=(n+2) / 4, \quad B_{0}^{2}+D_{0}^{2}=(n-2) / 4, \quad B_{0} \equiv C_{0} \bmod 2
$$

Thus $n=4 N-2$ and

$$
A_{0}^{2}+C_{0}^{2}=N, \quad B_{0}^{2}+D_{0}^{2}=N-1, \quad B_{0} \equiv C_{0} \bmod 2
$$

The number of solutions is

$$
\begin{aligned}
& \frac{1}{2} \sum_{a^{2}+c^{2}=N, b^{2}+d^{2}=N-1}\left(1+(-1)^{b+c}\right) \\
& =\frac{1}{2}\left\{r(N) r(N-1)+r^{*}(N) r^{*}(N-1)\right\}=\frac{1}{2} r(N) r(N-1)
\end{aligned}
$$

since one of $N, N-1$ is odd.

Case 2. n odd. Then B and C are odd, which implies that $n=4 N-1$. As before, put $A=2 A_{0}, D=2 D_{0}$. We have

$$
\begin{equation*}
4 A_{0}^{2}+C^{2}=4 N+1, \quad B^{2}+4 D_{0}^{2}=4 N-3, \quad B \equiv C \bmod 4 \tag{7}
\end{equation*}
$$

We note that

$$
\begin{aligned}
\frac{1}{4}\left\{1+i^{t}+i^{2 t}+i^{3 t}\right\} & =1 & & \text { if } t \equiv 0 \bmod 4 \\
& =0 & & \text { otherwise }
\end{aligned}
$$

Using this, the number of solutions of (7) becomes

$$
\begin{aligned}
f & =\frac{1}{4} \sum_{\substack{4 a^{2}+c^{2}=4 N+1, b^{2}+4 d^{2}=4 n-3}}\left\{1+i^{b-c}+i^{2(b-c)}+i^{3(b-c)}\right\} \\
& =\frac{1}{4}\left(f_{0}+f_{1}+f_{2}+f_{3}\right), \text { say. }
\end{aligned}
$$

We have

$$
f_{0}=\sum_{\substack{4 a^{2}+c^{2}=4 N+1, b^{2}+4 d^{2}=4 N-3}} 1=\frac{1}{4} r(4 N+1) r(4 N-3),
$$

since

$$
\sum_{4 u^{2}+v^{2}=2 M+1} 1=\frac{1}{2} \sum_{u^{2}+v^{2}=2 M+1} 1
$$

Next,

$$
f_{1}=\sum_{\substack{4 a^{2}+c^{2}=4 N+1, b^{2}+4 d^{2}=4 N-3}} i^{b-c}=\sum_{b^{2}+4 d^{2}=4 N-3} i^{b} \sum_{4 a^{2}+c^{2}=4 N+1} i^{-c} .
$$

Since b is odd, it is readily seen that the contributions to the first factor for b positive and for b negative are negatives of each other, which implies that it is 0 . Thus $f_{1}=0$ as well. A similar argument shows that f_{3} is also 0 . As for f_{2}, we have

$$
\begin{aligned}
f_{2} & =\sum_{\substack{4 a^{2}+c^{2}=4 N+1, b^{2}+4 d^{2}=4 N-3}}(-1)^{b-c} \\
& =\sum_{\substack{b^{2}+4 d^{2}=4 n-3}}(-1)^{b} \sum_{4 a^{2}+c^{2}=4 N+1}(-1)^{c} \\
& =\frac{1}{4} r(4 N-3) r(4 N+1),
\end{aligned}
$$

since b and c are both odd. Hence $f=\frac{1}{4}\left\{f_{0}+f_{2}\right\}=\frac{1}{8} r(4 N-3) r(4 N+1)$. Putting together cases 1 and 2, we finally get that the desired sum is

$$
\frac{1}{2} \sum_{N \leq(x+2) / 4} r(N) r(N-1)+\frac{1}{8} \sum_{N \leq(x+1) / 4} r(4 N-3) r(4 N+1) ;
$$

and by Lemmas 1 and 2, this becomes

$$
\frac{1}{2} \cdot 8 x / 4+\frac{1}{8} \cdot 8 x+o(x)=2 x+o(x)
$$

the desired result. This completes the proof.

References

1. T. Estermann, An asymptotic formula in the theory of numbers, Proc. London Math. Soc., Vol. 34 (1932), pp. 280-292.
2. M. Newman, Counting modular matrices with specified euclidean norm, J. Combin. Theory Ser. A, to appear.
3. A. Terras, Harmonic analysis on symmetric spaces and applications I, Springer-Verlag, New York, 1985.

Santa Barbara, California

