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Introduction

Let F SL(2, Z). Let E stand for the euclidean matrix norm, so that if

A=[ ac db] F’
then

E(A)2 2 b2 2 d 2=a + +c +

In a previous paper [2] the author considered the problem of determining the
number of solutions N(F, x) of the inequality E(A)2< x, A F. It was
shown in [2] that N(F, x)--6x; that is, N(I’, x)/x approaches 6 as x
approaches c. This result also appears as Exercise 8, p. 267, of [3]. Further-
more, the following conjecture was made in [2]:

Conjecture. Let G be a subgroup of F of finite index/. Let N(G, x) be
the number of solutions of the inequality E(A)2 < x, A G. Then N(G, x)

(6/)x.

The purpose of this note is to prove the conjecture for all subgroups of F of
level 2; that is, for all subgroups of F containing the principal congruence
subgroup F(2), which consists of all matrices A I" such that A I mod 2.
F(2) is a normal subgroup of F of index 6, and F/I’(2) is isomorphic to the
symmetric group S3. Thus if G is any proper subgroup of F containing
F(2), G/F(2) is either the trivial group, the cyclic group C2, or the cyclic group
G.
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The principal analytic result required is a theorem of T. Estermann [1],
which we state as a lemma:

LEMMA 1 (Estermann). For any positive e and any positive integer k,

(1)

l<h<n

where

r(h)r(h + k)= Ckn + O(n"log#n), /12,/3 17/6 + e,

ck 8 E (-- 1)a+kd/k. (2)
dlk

Here r(n) is the number of representations of n as the sum of 2 squares, and
is the coefficient of x" in the power series for 02(x), where O(x) is the
theta-function 0(x) Y’._ ,2x We also require the function r*(n), which is
the coefficient of x" in the power series for 0(x)0(-x). This function satisfies

r*(n) O, n odd, -r(n), n 2mod4, r(n/4), n 0mod4. (3)

We also note that

r(4n) =r(n), r(4n+2) =r(2n+ 1), r(n) =0if n= 3mod4. (4)

The full error term of (1) will not be required; all that is needed is the fact that
it is o(n).

The theorem and its proof

We will prove:

THEOREM. Let G be a subgroup of F of level 2 and index Ix. Let N(G, x)
denote the number of solutions of E(A)2 < x, A G. Then N(G, x) (6/Ix)x.

Note that 6//, is the order of G/F(2).

Proof We break the proof up into cases, depending on the value of Ix. The
case/, 3 is the hardest, and depends (in part) on the case Ix 6, so this will
be done last.

(i) Ix 1. Then G F, and the theorem has already been proved in [2] for
this case.

(ii)/, 2. Then G/F(2) is isomorphic to C and G F2, the subgroup of F
generated by the squares of all elements of F. F2 is a normal subgroup of F
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(in fact, a fully invariant subgroup of F), and

1-‘2 + TF2 T [ 0 1
0

is a left coset decomposition for F modulo F2. If we now note that for any
matrix A F, E(A) E(TA), the result is a consequence of case (i), since
the number of solutions of E(A)2 < x, A 1-’2, is the same as the number of
solutions of E(A)2 < x, A TF2; and both together constitute the number
of solutions of E(A)2 < x, A F. It follows that

N(F, x) N(F, x)/2 3x,

the desired result.
(iii)/z 6. Then G I’(2). Let S(G, n) denote the number of solutions of

E(A)2 n, A G. Then S(I’(2), n) is just the number of solutions of

a 2 + b2 + C
2 + d2= n, ad- bc 1, b, c even.

As in [2], put A =a+d,D=a-d,B=b+c,C=b-c. Then

A2 + C2 n + 2, B 2 + D 2 n 2, A, B, C, D even. (6)

Conversely, if A, B, C, D satisfy (6) then

a= (A + D)/2, b= (B + C)/2, c= (B- C)/2, d= (A-D)/2

are integers satisfying (5). Since A, B, C, D are even, we may write

A =2Ao, B=2Bo,C=2Co,D=2Do,

so that

a=Ao+DO,b=Bo+ CO,c=Bo- CO,d=Ao-DO

Then (6) becomes

A + Co2 (n + 2)/4, Bo2 + Do2 (n- 2)/4,
Ao + DO odd.

Bo + CO even,

Thus for solutions to exist at all, n 4N + 2.
Since Ao + Do odd follows from the facts that Bo + Co is even and

A2o + Bg + C + Dg= n/2= 2N + 1,
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we need the number of solutions

A + CoZ N + I, Bg + D N, Bo=Comod2.

This is the coefficient of xv+ lyV in the power series

a2 + c2yb2 + dZ 1/2(1+( 1)b+)x
a, b, c, d

1/2{O2(x)O2(y) + O(x)O(-x)O(y)O(-y)}.

This readily implies that the number of solutions S(F(2), n) S(F(2), 4N + 2)
is given by

1/2 ( r(N + 1)r(N) + r*(N + 1)r*(N)}.

But r*(N + 1)r*(N)= 0, since one of N, N + 1 is odd (formula (3)). It
follows that the number of solutions is 1/2(r(N + 1)r(N)). Hence

NCF(2), x)= 1/2 E r(N + 1)r(N)
4N+2<x

1/2 E r(N + 1)r(N)
U<(x-2)/4

1/2CLX/4 + O(X)

by Lemma 1. This completes the proof in this case.
(iv) / 3. There are 4 subgroups of F of index 3; namely, F0(2),

F(2), K, F3. Here F0(2) is the subgroup consisting of all elements A [ ]
of F such that c 0 mod 2; F(2) is the subgroup consisting of all elements
A [ ba[ of Fsuchthatb=0mod2;Kisthe"theta subgroup", generated
by

and 1-‘3 is the fully invariant subgroup generated by the cubes of all elements
of F. However, I"3 does not contain F(2) as a subgroup, and so must be
omitted. The remaining 3 are conjugate groups. The proof for F(2) is
precisely similar to the proof for F0(2), and will be omitted. It is thus only
necessary to prove the result for F0(2) and K.



588 MORRIS NEWMAN

We start with K. K has the following coset decomposition modulo F(2):

K ’(2)+ rr(2), [Ol]
We now argue along the lines of case (ii). The number of solutions of
E(A)2 < x, A F(2), is the same as the number of solutions of E(A)2 <
x, A TF(2); and these together constitute the number of solutions of
E(A)2 < x, A K. Since N(F(2), x) x + o(x) by case (iii), it follows that

N(K, x) 2N(I’(2),x) 2x + o(x),

the desired result.
We now come to the last case: G 1"0(2). We first prove:

LEMMA 2.

E r(4n + 1)r(4n + 5) 8x + o(x).
n<(x-1)/4

Proof By Lemma 1, we have

f= E r(n)r(n + 4) c4x -I- o(x) 10x + o(x).

Considering n modulo 4, we find that f f0 + fl + f2 + f3, where_
r(4n + i)r(4n + + 4), i=0,1,2,3.

n<(x-i)/4

We have fo r(4n)r(4n + 4)= r(n)r(n + 1), because of (4).
n<x/4 n<,x/4

Hence fo clx/4 + o(x) 2x + o(x), by (1). Next, we have

E r(4n + 1)r(4n + 5),
n<(x-1)/4., r(an + 21r(4n + 6t
n < (x 2)/4
_

r(4n + 3)r(4n + 7).
n<(x-3)/4

E r(2n + 1)r(2n + 3),
n<(x-2)/4

But one of 2n + 1, 2n + 3 must be congruent to 3 modulo 4, and 4n + 3 is
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congruent to 3 modulo 4. Hence because of (4), f2 and f3 are both 0. Thus

f fo + fx, fx f fo= lOx + (x) {2x+o(x)} =8x+o(x).

This completes the proof of the lemma.

Now let S(Fo(2), n) be the number of solutions of E(A)2

This is just the number of solutions of
n, A 1-’o(2).

a 2 + b2 + c2 + d2= n, ad- bc 1, c even.

As before, set A =a+d,D=a-d,B=b+c,C=b-c, sothat

a= (A +D)/2, b= (B+ C)/2, c= (B- C)/2, d= (A-D)/2.

Then because a, d are odd and c is even, we have B C mod 4, and A and
D even. Then arguing as before, S(I’0(2), n) is just the number of solutions of

A2 + C2 n + 2, B 2 + D2 n 2, B -= C mod 4, A, D even.

We note that C=n mod2. Put A =2Ao,D=2D0,sothat

4A2o + C2= n + 2, B2 + 4D02 n 2.

There are 2 cases"

Case 1. n even. Then C 2C0, B 2Bo,

A+ Cff= (n+2)/4, Bo2+Do2= (n-2)/4, Bo= Comod2.

Thus n 4N 2 and

A+ Co2=N, Bo2+Do2=N- 1, Bo=- Comod2.

The number of solutions is

1 Z (1 + (-1)+)
a2 +c2-. N, b2 +d2=N-1

1/2(r(N)r(N- 1) + r*(N)r*(N- 1)} 1/2r(N)r(N- 1),

since one of N, N 1 is odd.
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Case 2. n odd. Then B and C are odd, which implies that n 4N- 1.
As before, put A 2A0, D 2D0. We have

4A+ C:z=4N+ 1, B:+4Dg=4N-3, B-- Cmod4. (7)

We note that

i2t i3ta{1 + + + } =1 ift=0mod4

0 otherwise

Using this, the number of solutions of (7) becomes

1

4a2 +c2--4N+ l,
b + 4d 4n 3

(l + b-c + 2(b-c) + 3(b-c) )

a(fo +fl +f2 + f3), say

We have

4a2+c2=4N+ l,
bZ + 4d2 =4N-

1 1/4r(4N + 1)r(4N- 3),

since

E 1=1/2 E 1.
4u+v2=2M+1 u+v=2M+1

Next,

fl E ib-c E ib E i-c"
4a2+c=4N+l, b2+4d2=4N-3 4a2+c=4N+l
b + 4d 4N- 3

Since b is odd, it is readily seen that the contributions to the first factor for b
positive and for b negative are negatives of each other, which implies that it is
0. Thus fl 0 as well. A similar argument shows that f3 is also 0. As for f2,
we have

k E
4aZ +c2--4N+ l,
b + 4d 4N- 3

E (-1) E
b + 4d 4n 4a + c 4N+

1/4r(4N- 3)r(4N + 1),
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since b and c are both odd. Hence f 1/4( f0 + f2) -r(4N- 3)r(4N + 1).
Putting together cases 1 and 2, we finally get that the desired sum is

1 1_, r(N)r(N- 1) +
N<(x+2)/4

_, r(4N- 3)r(4N + 1);
N<(x+l)/4

and by Lemmas 1 and 2, this becomes

1/2.8x/4 + - 8x + o(x) 2x + o(x),

the desired result. This completes the proof.
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