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1. Introduction and statement of main result

Let K be a quadratic extension of the field of rational numbers Q. Let Cr
be the 2-class group of K in the narrow sense. Then it is a classical result that
rank Cr 1, where is the number of primes that ramify in K/Q. Let RK
be the 4-class rank of K in the narrow sense; i.e.,

Rr rankCK2=dimv2( 2 4

Here F2 is the finite field with two elements, and C2K/C4K is an elementary
abelian 2-group which we are viewing as a vector space over F2. In [6] we have
presented results which specify how likely it is for RK 0,1, 2,..., both for
imaginary quadratic extensions of Q and for real quadratic extensions of Q.

Suppose now we replace the base field Q by an imaginary quadratic field F
whose class number is odd, and suppose K is a quadratic extension of F. We
let CK denote the 2-class group of K. Then rank CK 1 r, where is
the number of primes that ramify in K/F, and fl 0 or 1. (See Equation 3.5
for more details.) We let RK denote the 4-class rank of K, and we ask the
following question: how likely is RK 0,1, 2,... ? Since the 2-class groups of
both F and Q are trivial, and since the groups of units in the tings of integers
of F and Q are finite cyclic groups, there is a reasonable expectation that the
4-class ranks of quadratic extensions of F will exhibit a behavior similar to the
4-class ranks of quadratic extensions of Q.
To make the situation more precise, we introduce some notation. We let t

denote the ring of integers of F. For a nonzero ideal I of F, we let N(I)
denote the absolute norm of I. Equivalently N(I) [0F: I]. For a quadratic
extension K of F, we let DK/F denote the relative discriminant. For each
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positive integer t, each nonnegative integer j, and each positive real number x,
we define

(1.2)
(1.3)

A (quadratic extensions K of F with exactly primes

of F ramified in K },
,; ( A,. v(),)

_
x},

At, j; x ( K At; x" Rr=j).

We then define the density dr, j by

[At, j;xl(1.4) dt’ j x--,olim iAt; xl

where SI denotes the cardinality of a set S, and we define the limit density
d,, by

(1.5) doo,j lim dr, j.

Our main result is the following theorem.

THEOREM 1.1. Let F be an imaginary quadratic field with odd class number,
and let K be a quadratic extension of F. Let Rr be the 4-class rank ofK, and let
N(Dr/F) be the absolute norm of the relative discriminant of K/F. Let j be a
nonnegative integer, and let the density doo j be defined by (1.5). (Also see (1.1)
through (1.4).)

(i) If F =/= Q(vr- 1 ), then

2-J(J+ ) I-I (1 2-k)
k=l forj O,1 2

( - I-I (1 -k--1 k--1

In particular,

doo,o .577576, doo,1 .385051, doo,2 .036672, doo,3 .000699.

(ii) /f F Q(/- 1 ), then

2 -J(J+ 3)/2

doo,j-’-oo

[fi ]forj=O, 1,2,
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In particular,

doo,0 .629134, d, .314567, d,2 .052428, doo,3 .003745.

Remark. The formula for d, j when F 4= Q(fZ_ 1 ) is the same formula
that occurs when one considers real quadratic extensions K of Q (cf. (1.6) and
Theorem 5.11 in [6]). When F Q(v/- 1 ), the formula for d, j is the same
general type of formula that occurs when one considers the 3-part of the
principal genus in cyclic cubic extensions of Q(’), where ’ is a primitive cube
root of unity (cf. [8], Corollary 3.2).

Remark. A recent paper of Cohen and Martinet [5] presents numerical
heuristics for class groups of number fields, extending earlier conjectures of
Cohen and Lenstra [4]. Now in our Theorem 1.1, the Galois closure of K is
typically an extension of Q of degree 8 with dihedral Galois group. Thus our
extension K/F corresponds to the extension K/k on p. 133 in [5]. Although
Cohen and Martinet exclude the 2-class group (Cr in our notation) from their
heuristics in case (6.1) on p. 133 in [5], it is interesting to observe that our
formula in Theorem 1.1(i) is the formula one would expect if the Cohen-
Martinet heuristics were extended to the calculation of the rank of Cr2. So
although the Cohen-Martinet heuristics would not apply to Cr because the
rank of Cr must be large if many primes ramify in K/F, it is possible that
the Cohen-Martinet heuristics could be extended to Cr2 when the imaginary
quadratic field F has odd class number and F 4= Q(Vt- 1 ). The calculation of
the rank of C when F--- Q(v/- 1 ) is different essentially because Q(’-1 )
contains a fourth root of unity (compare Case 4 with Cases 1, 2, and 3 in the
next section).

2. Preliminary results

Let notation be the same as in Section 1. Since we are assuming F is an
imaginary quadratic field with odd class number, then F Q(f-z_ 1 ), Q(v/- 2 ),
or Q(L-), where p is a rational prime with p-= 3 (mod 4). Let a be a
nonunit in 0F. We shall specify a particular method for choosing a generator
for the principal ideal aOF. In our subsequent applications, aOF will be some
odd power of a prime ideal that does not lie above the rational prime 2.

Case 1. F= Q(x/-p ) with p--7 (mod8). Then 2 splits in 0F; i.e.,
20F .lAa2, where .o and Ae2 are distinct prime ideals in 0F. For a .’,
we have a + 1 (rood Aa2). We let fl + a so that fl 1 (rood Ae2). Then
floe aOv, and /3 is the generator that we shall use in subsequent applica-
tions.
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Case 2. F Q(v/-p ) with p-- 3 (mod8). Then 2QF is a prime ideal,
and 0F/20r is the finite field with four elements. We let " 0e so that the
images of 0, 1, ’, and .2 in 0r/20r are the four distinct elements of 0F/20r.
For a 20, we have a3 --- 1 + 2c (mod 40), where cl 0, 1, ’, or .2. We
let fl + a3 so that/3 -= 1 + 2dr (mod 40) with dt 0 or ’. In this case we
are actually specifying a certain generator fl for the ideal a30e rather
than aOF.

Case 3. F Q(-2 ). For a -2 0F, we have

a -= 1 + cx-2 + c2(-’--)2 + c3(-&--) (mod4Ov)

with cj 0 or 1 for 1 < j < 3. Alternatively we note that

a-= -t-(1 + vcL---) J’ (mod40e)

with j 0, 1, 2, or 3. We choose fl + a so that

fl=-(l+C-L--) (mod

with j 0, 1, 2, or 3.

Case 4. F Q(v/- 1 ). We let v/- 1, and we note that I + is a prime
dement of Oe dividing 2. For a (1 + i)0F,

a-= 1+c(1+i) +c2(1 +i)2+c3(1 +i)3 (mod40e)

with c 0 or 1 for 1 < j < 3. Alternately we note that

a =- ik(1 + (1 + i)3) (mod40e)

with k 0, 1, 2, or 3 and l 0 or 1. We choose fl ima with rn 0, 1, 2, or
3 such that

fl (1 + (1 + i)3) (mod40r)

with 1 0 or 1.
We now describe some properties of Hilbert symbols and power residue

symbols (cf. [2], Chapter 12, and [3], pp. 348-354). Let F be an imaginary
quadratic field of the form specified above. For nonzero elements a and b of
0F and a prime ideal/ of 0F, we define the Hilbert symbol (a, b) { + 1)
by

(a, K/F)/ (a, b)
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where K F(v-) and (a, K/F)# is the norm residue symbol. We suppose
adF =fl(1 and btOF =p2, where fll and fi2 are distinct prime ideals of t9F
that do not lie above 2, and Jl and J2 are positive odd integers. In the
following discussion we assume a and b have the same form as fl in cases 1
through 4 above. Our goal is to indicate the relationship between (a, b)A and
(a, b)# in the four cases. In each case we start with the product formula
Fl (a, b) 1, and we note that (a, b)# 1 for all fi not lying above 2 and
different from fl and )2"

Case 1 We start with (a, b)(a, b)2(a, b)a,x(a, b)a, 1. By assumption
a b (mod .,2). So (a, b). 1. Also (a, b)a, 1 unless a b -1
(mod .oq’2). So

(2.1) (a,b)A=el(a,b),=
with

(2.2) I
if a-= l(mod .oq22)or b-- l(mod .’22)
if a b-= -l(mod .’22).

Case 2. We start with (a, b)A(a’ b)_:(a, b) (2) 1 Now (a, b) (2) 1 if
a -= 1 (mod 4t9) or b 1 (mod 4t9). Otherwise a -= -= 1 + 2 (mod 4(.0e).
In general

(a, a)2)( 1, a)2) ( a, a)2) 1.

So (a, a) 2) ( 1, a) 2). The product formula ( 1, a) 2)( 1, a)l 1 im-

plies (- 1, a)2) (- 1, a):. Now (- 1, a)x (- 1)(Na-1)/2 1 since

Na= (1 +2’)(1 +2"2) -1 (modn(.0F).

Hence when a -= b 1 + 2" (mod 4dgF) we have

(a, b)2) (a, a)2) ( 1, a)2) ( 1, a

So

(2.3) (a,b)A=e2(a,b)_
with

1
(2.4) e2 -1

if a 1 (mod4tPF)or b 1 (mod4tPF)
if a b --- 1 + 2’ (mod 4tPF).

Case 3. We start with (a, b),(a, b):(a, b)) 1. Since

a (1 + -)j (mod 4dgF) with Ja 0, 1, 2, or 3,
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and since

b (1 + --)j (mod 4OF) with Jb 0, 1, 2, or 3,

then (a, b)(/)= (1 + v/- 2, 1 + v/- 2 ){oJ(s/. If either L or Jb is even,
then (a, b)(-)= 1. So suppose Ja and Jb are odd. Then by the procedures
used in case 2,

(1 + x/- 2,1 + x/--L---) J’/2) ( a, a)(/-) ( 1, a

(-1, a),x -1.

So with

a (1 + f-L--)Ja (mod 40F) with Ja 0, 1, 2, or 3,

and with

b =- (1 + /-S--) J (mod 40F) with Jb 0, 1, 2, or 3,

we have

(2.5)

with

(a, b),l e3(a, b),2

1
(2.6) e3

if L or Jb is even
if both Ja and Jb are odd.

Case 4. We start with (a, b)l(a, b)2(a, b) (1 + i) 1. We recall that

a (1 + (1 + i)3)’o (mod40e) with 0 or 1,

and

b-- (l+(l+i)3)’(mod4Ov) withlb=Oorl.

If I 0 or b

Then
O, then clearly (a, b) (1 + i) 1. So suppose 1 and b

(a, b){l+i)= (a, a)(l+i)= (-1, a)o+i (i2, a)(l+,)= 1.

So (a,

(2.7)

1 even when b 1. Hence

(a, b) (a, b),.
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In Cases 1 through 4, we note that (a, b) (b/fit), where (b//q) is the
quadratic residue symbol which satisfies

(b/l) { 1

-1

if splits in F(v/)/F
if , is inert in F(Vr)/F.

Similarly (a, b),= (a/)k2). Then (2.1)-(2.7) are the quadratic reciprocity
laws for the fields F considered in Cases 1 through 4. We note that the form of
the quadratic reciprocity law for the fields F in Cases 1, 2, and 3 is analogous
to the form of the quadratic reciprocity law for Q. In Case 4, however, the
quadratic reciprocity law has the simpler form given by (2.7).

3. Proof o| the theorem

Let notation be the same as in Sections I and 2. Since the proof of Theorem
1.1 uses many of the ideas used in [6], we shall indicate in this section the
appropriate modifications of the arguments in [6] and refer the reader to [6] for
more details. First we note that the absolute norm of the relative discriminant
of a quadratic extension K of F has the form

N(D:/) 2N(fi... fig)

where the integer e > 0, and ill,-.., fig are distinct prime ideals of F that do
not lie above 2. If exactly primes of F ramify in K, then g if e 0, and
g=t-life>0. Since

l{2N(#x #,_) _< x }l ol{ N(#t ,) < x }l as x +

it suffices to consider the fields K with

(3.1) DI/F 1. fit

when calculating dt, j in Equation 1.4. Now let h denote the class number of
F. Then for 1 < j < t, fi) is a principal ideal in 0F. We let aj be the generator
of fijh. chosen by the rules specified in Cases 1 through 4 in Section 2. (Actually
in Case 2, aj is a generator of 3h/i ") Then we see that K F(V/--) with

(3.2) /, at... a t.

In Cases 1, 2, and 3, we let Mr be the (t 1) x (t + 1) matrix with entries
in the finite field F2 specified as follows:

(3.3) MK= [mk], mjkeF9_, 1 <j<t--1, 0<k<t,
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where

(3.4) (-1) ’’ { (-1,(ak,/X)j
for 1 <j < 1 and k 0

forl<j<t-landl<k<t.

If a is a generator of Gal(K/F), we note that C-= C. Then using the
results in Section 1 of [9], we see that the 2-class rank of K is given by

(3.5) rr 1 rank[column 0 of MK ],

and the 4-class rank of K is given by

(3.6) Rr t- 1 rank Mr

except perhaps when each ak 1 (mod4tPF) for 1 _< k _< t. If each ak =- 1
(mod 4dF), then h,..., th may not generate all of 2Cr, where 1,-.., t
are the prime ideals in the ring of integers of K above ill,...,/t, and where
2CK is the subgroup of Cr generated by the elements of order 2 in Cr. Hence
we might need another column in our matrix Mr in Equation 3.3, correspond-
ing to another generator for 2Cr However the probability that ak 1
(mod4dgF) for all k with 1 _< k _< goes to zero as o. So when we
compute d, j in (1.5), the possible error will go to zero. So it suffices to use
Mr specified by (3.3) and (3.4) when we compute Rr in (3.6).
Now from (3.2), I al a t, and from properties of Hilbert symbols,

(-/x,/)$j 1 for each j. So from (3.4) we see that the sum of the entries in
each row of Mr is zero. So we may discard any column of MK without
changing the rank. Since the quadratic reciprocity law in F in cases 1, 2, and 3
(see (2.1)-(2.6)) has the same form as the quadratic reciprocity law in Q, then
we see that by discarding a column from MK (which does not change the
rank) and by rearranging the rows and columns, we get the same type of
matrix as the matrix M in Equation 5.7 of [6]. We can now follow the same
procedures used in Section 5 of [6] to get the same limit density given by
Theorem 5.11. This is precisely the limit density that we have specified in
Theorem 1.1 of this paper when F Q(/-1 ).
For Case 4, we define Mr by (3.3) and (3.4) except with (x/LT,/)t

replacing (-1,/) in (3.4). Since the quadrat__ic reciprocity law in Case_4 is
given by (2.7), we get the following matrix Mr instead of the matrix M of
Equation 5.7 of [6]:

(3.7) Mr
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where Ht_ F2t- is the vector with each component equal to 1; Ot-t is the
zero vector in F-t; and M is a (t- 1) (t- 1) symmetric matrix with
entries in F2. We now must determine the appropriate Markov process that
arises from the above matrices.

Let k and n be positive integers with k < n. Let M be an n (n + 1)
matrix of the form

(3.8) A

where J is a vector in F with exactly k components equal to 1, and A is an
n n symmetric matrix with entries in F2. Let

(3.9) M2=[J1 B
B

where B F’, Br is the transpose of B, and d F2.

LEMMA 3.1. Let M and M2 be specified by (3.8) and (3.9). Suppose
rank M r. Of all possible M2,

(i) 2"+1 2r+l have rank M r + 2;
(ii) 3.2- have rankM2=r+l;
(iii) 2r- have rank M2 r.

Proof Let c(M1) denote the column space of M1. Then rank M2 r + 2
if and only if B c(M1). Since rank M r, then there are 2"- 2 choices
for B q c(M1). Since d can be arbitrary, then there are two choices for d.
Thus there are 2"+1- 2+1 matrices M2 with rank M2 r + 2. So (i) is
proved. Now suppose rank M2 r. Let

S= {VF" VrJ =I} and So {VF’Vrj =0}.
Then S V + SO for a fixed V $1. Now if rank M2 r, then BT= VTA
for some V S. Write V Vx + V2 with V2 S0. Then Br= VrA + V2rA,
and the number of possible vectors B equals l{ V2TA: V2 So }l. Since
v2T[J A]---[0 V2rA],then

dimF2{v2r[J A]" V2 So} dimF2{V2rA" V2 So).
Since rank[J A] r and dime,S0 n 1, then

diml,_{V2r[J A]’Va So} r or r- 1.

Since the first entry in some row of[J
V2T[J A] is 0, then

A] is 1, but the first entry in each

dim{Vf[J A]" VSo} =r-1.
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So the number of possible vectors B is 2r-t. If V S and VrA Br, we also
need d VrB. If W St such that WrA Br, then W V + V0 for some
Vo S0, and 0 WrA VrA VorA. Then

WB VB + V’B VB + Vo(AV)= VB.

So for each B, the dement d is uniquely determined. So the number of
matrices M2 with rank M2 r is 2r- 1. So (iii) is proved. Finally (ii) is proved
by subtracting the numbers in (i) and (iii) from 2"+.

Remark. Lemma 3.1 is also true if the last entry in the first column of M2

is 0 instead of 1. Note that Lemma 3.1 is valid for each choice of k,
1 < k < n, where k represents the number of components of J equal to 1.

To get the transition matrix of the associated Markov process, we divide
each term in (i) through (iii) of Lemma 3.1 by 2"+1 (recall that 2n+l is the sum
of the terms in (i) through (iii) of Lemma 3.1), and we let n + 1,
j n- rank Mx, and 1 n + 1- rank M. Then we have the following
Markov process in Case 4, which is used in place of Markov process D’ in
Appendix III of [6]:
The Markov process has states Yt, with 2, 3, 4,..., and j 0,1, 2,

Let

Y, (Y,,0, Yt, Y, ).

Then Yt+l YtQ, where

Q [qjl] with j 0,1,2,... 0,1,2,...;

qjl

1 2 -j if =j- 1

3.2 -j-9- ifl=j

2 -j- - if j + 1
0 otherwise.

We let Y (Yo, Yt, Y2,.-. ) denote limt_.ooYt, which is the invariant probabil-
ity vector for the Markov process. Then doo, Y for j 0,1, 2,..., and
hence we need to calculate y for each j. We can apply Lemma 1.5 of [7] to get

2-J-1
(3.10) YJ 1 2 -jyj-1

for j 1,2,3,
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Using the recurrence relation (3.10) and the fact that Ej%0Yj 1, we get

or equivalently

(3.12)
/

y to- [ 1 2
2 -J(J+ 3)/2

j

I-I (1 2 -k)
k=l

where

(3.13)
o 2 -J(J+ 3)/2

o=1+ j
j--1 ]--I (1 2 -k)

k-’l

By Corollary 2.2 in [1],

(3.14) to I-I (1 + 2 -z-j) l-I (1 + 2-J).
j--0 j=2

Since doo j =yj for j 0,1, 2,..., then the formula for d, j in part (ii) of
Theorem 1.1 follows from Equations 3.12 and 3.14.
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