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1. Introduction

Let Y be a subspace of a Banach space Z. The present work examines
theorems of the following two related types: (i) X Z whenever X + Y Z
with X an appropriate subspace of Z; (ii) W c Z is closed in W whenever
W N Z c Y with W an appropriate subspace of a universe containing Z. An
example of a type (i) theorem is a result of Bennett [2, Theorem 16]: If is
compactly embedded in the BK space Z and if X is a separable FK space
containing {Sn} and satisfying X + 11 Z, then X Z. The Meyer-Ktinig
and Zeller theorem ([5] and [6]) is a theorem of type (ii): If W is an FK space
such that W N 1oo c c0, then W loo is closed in W. Further examples of type
(i) results were given by the author in [9] and [10], and additional type (ii)
theorems were established by Bennett in [1]. The two types were shown to be
dual in a very special setting by the author in [10].
The principal goal of the following is to relate type (i) theorems to strictly

cosingular operators, to connect type (ii) theorems with w* strictly singular
operators, and to thereby conclude the duality of the types in a general setting.
Some old results, obtained frequently using gliding humps techniques, are
established using Banach space theory. For instance the Meyer-K6nig and
Zeller theorem follows from the fact that co contains no infinite dimensional
w*-closed subspace of
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2. Preliminaries

Let H be a vector space with a Hausdorff (not necessarily linear) topology.
A BH space is a subspace X of H which is a Banach space such that the
injection of X into H is continuous. Details about BH spaces may be found in
[12]. The closed graph theorem shows that if X and Y are BH spaces with
X c Y, then the topology of X contains the relative topology of Y. Thus, BH
topologies are unique. Also, X is closed in Y if and only if their norms are
equivalent on X.

Let to denote the space of all complex sequences with the topology of
pointwise convergence. A BK space is a BH space with H to.

If X and Y are BH spaces, then X + Y is a BH space under

Ilzllx+- inf(llxllx + IlYll r" x X, y Y, z x + y ).

Details about sums of BH spaces may be found in [12].
The following familiar BK spaces will occur in the sequel:

lp--" {X" [[x[[Pp [Xk[p "(0), 1 <_ p < o.

loo- (x: Ilxlloo--suplxl <

c ( x" lim xk exists) with norm of lo.
co ( x: lim xk 0 } with norm of loo.

bs ( x" Ilxllb supn Xk <

cs x" lim xk exists with
n k--1

norm of bs.

bv x" Ilxllbo- Ixl + IXk/- Xkl < O
’k--1

bvo bv co.

Let devote the span of { i n } in to where 8 0 for k n, i, 1.
If X is a BK space containing , let Xy= ((g(Sn)}: g X*}. Then Xf is

a BK space with appropriate norm. If is dense in X, then Xf is just the
dual of X.
For x, y to and W c to, let xy {x,,y,,} and xW {xw: w W}.
All maps between Banach spaces will be assumed to be bounded and linear.

If (x, } is a sequence in a Banach space, let [x,] denote the closed linear span.
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Let Y and Z be Banach spaces and let T: Y Z. Following Kato, T is
called strictly singular if T is an isomorphism into Z on no infinite dimen-
sional closed subspace of Y. Following Pelczynski, T is strictly cosingular if
the existence of surjections A and B of Y and Z respectively onto a Banach
space E with A BT implies that dim E < . The required properties of
strictly (co)singular maps may be found in [7] and [11]. In particular, T is
strictly cosingular if and only if T* is w* strictly singular; i.e., T* is a
w*-isomorphism on no infinite dimensional w*-closed subspace of Z*.

3. Sums of Banach spaces and strictly cosingular operators

Let Y and Z be BK spaces with c Y c Z. Following [10] let the relation
Y < Z indicate that X Z whenever X is a BK space containing such that
X + Y Z. Theorem 1 in [9] shows that co < lo and Theorem 3 in [8] shows
that 11 < Z if 11 is weakly compactly embedded in Z. The principal result of
the present section establishes the equivalence of Y < Z and the fact that the
natural injection of Y into Z is strictly cosingular. First a red herring in
the definition of Y < Z is removed. The removal allows an easy extension to
the setting of Banach spaces, permits a perturbation theory argument, and
yields Banach space proofs of many of the results of [10] without resorting to a
primitive version of Section 4.

3.1 LEMMA. Let Y and Z be BK spaces with Y Z and k dense in Y. The
following are equivalent:

(i) X Z whenever X is a BK space containing k such that X + Y Z.
(ii) dim Z/X < o whenever X is a BK space such that X + Y Z.

Proof. (ii) (i). X is closed in Z since dim Z/X < o. The closure of ,
in Y is then contained in the closure of , in X so Y X.

(i) (ii). There exists z to with zn : 0 for all n such that zl Z and
the natural injection is compact. Now X + zlt so X + zlt Z by hypoth-
esis. The proof of Lemma 6(i) in [10] shows that dim Z/X < . m

DEFINITION. Let Z be a Banach space and let Y be a BZ space. Then
Y < Z if dim Z/X < o whenever X is a BZ space such that X + Y Z.

Clearly, Z < Z if and only if dim Z < o.

3.2 THEOREM. Let Y and Z be Banach spaces and let T be a map from Y into
Z. The following are equivalent:

(i) T is strictly cosingular.
(ii) The natural injection of TY into Z is strictly cosingular.
(iii) TY < Z.
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Proof. The equivalence of (i) and (ii) is known and easy.
(i) = (iii). Assume that X + TY Z. Let B denote the unit ball of Z. A

constant M may be selected such that for each b B there exists x(b) X
and y(b) Y satisfying x(b) + Ty(b) b and IIx(b)llx <- M, Ily(b)llY <-
M. Define operators A, B, C frbm ll(B ) into Z by

Ah ZX(b)x(b), BX EX(b)Ty(b), C? E?(b)b.

Then A + B C, C is a surjection, and B is strictly cosingular. A result of
Vladimirskii [11, Corollary 1] establishes that the range of A has finite
codimension in Z. But AII(B) c X.

(iii) (i). Assume that P and Q are surjections of Y and Z respectively
onto a Banach space E and that P QT. If TY < Z, then one observes easily
that QTY < QZ. Thus, E PY QTY < QZ E. According to the remark
following the definition of <, dim E < o.

3.3 COROLLARY. (i) [10, Corollary 7(i)] l; < lq for 1 < p < q <_ o.
(ii) [9, Theorem 1] co < 1.
(iii) [8, Theorem 3] If Z is a BK space containing l and the injection of l

into Z is weakly compact, then 11 < Z.
(iv) [10, Corollary 5] < cs.

Proof (i) The natural injection of 1, into q is strictly cosingular because,
for instance, its adjoint is strictly singular.

(ii) The injection map is strictly cosingular according to a result of
Pelczynski [7, Proposition 5].

Observe that the injection of co into lo is "w* strictly singular". For
instance, suppose that S c co is infinite dimensional and w*-closed in lo.
Then S is closed in co so S contains a copy of c0. But then S contains a copy
of loo, contradicting the separability of S.

If Z satisfies the hypothesis of (iii) or if Z cs, then may be assumed
dense in Z. Now zf c, so the injection of zf into lo is w* strictly singular.
Therefore, the injection of into Z is strictly cosingular. 1

Observe that the BK hypothesis in 3.3(iii) cannot be dropped. It is easy to
find a weakly compact non strictly cosingular injection of into a Banach
space.

4. The Meyer-K6nig Zeller property and strictly singular operators

A direct dualization of the condition Y < Z yields a property which arose
in summability theory. For instance, assume that X, Y, and Z are BK spaces
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with basis (6n), X+ Y=Z, and dimZ/X= oo. Then Zf=Xff3 Y. It
follows that ZY is not dosed in X, for otherwise X Z. Therefore, the
injection of Z into YY violates the following condition.

DEFINITION. Let U be a subspace of a Banach space Z. The injection of U
into Z has the Meyer-K6nig Zeller property (abbreviated U -> Z has MKZ) if
W N Z is closed in W for each Hausdorff vector space H for which Z is a BH
space and for each BH space W satisfying W N Z c U.

The Meyer-Ktinig Zeller theorem [5], [6] states that if W is an FK space
such that W c3 1oo c Co, then W c3 Ioo is closed in W. This is essentially the
assertion that co loo has MKZ.
The main results of the present section relate the MKZ property to w*

strictly singular operators in the context of adjoints of maps in separable
spaces and thus to strictly cosingular operators. Theorem 4.3 substantially
generalizes a result of the author [10, Theorem 2]. Technical lemmas designed
for enhancing convergence in certain Hausdorff vector spaces H to dual BH
spaces are required.
The first lemma is a simple consequence of compactness of the ball in finite

dimensional spaces.

4.1 LEMMA. Assume that Y is a separable Banach space with [Yn] Y and
that S is a finite dimensional subspace of Y*. There exists a positive integer r
such that for each g S,

sup(Ig(Y)l: llYll 1, y [y,..., y]) > 1/211gllY*.

4.2 LEMMA. Assume that Y is a separable Banach space with [yn] Y and
that (g# } c Y* satisfies gn( Yi ) 0 for < n Then (g } has a subsequence
( h ) with the following property:

If ( k ) o and if there exists h Y* such that

h(y) tkhk(yn) V tkh(y) for all n,
k=l k--1

then the series Y’.tgh has bounded sections in Y* and hence & to*-convergent.

Proof. Let h gl, rl 1, and assume h and a positive integer r have
been chosen. Using 4.1, choose a positive integer r+ > rn such that

(1) sup(Ih(y)l" llYll 1, y [Yt,.--, Y+x]} > 1/211hilt.

for all h [ht,..., h]. Let h+t
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Assume that the inductively defined subsequence (h n) does not have the
desired property. This means that there exists (t) o and h Y* such that

k==l

for all n

and tkhk fails to have bounded sections in Y*.
Choose sn ’ o such that

(2) tkhk >2 _, tkhk
k-sn+ k==l

for all n. Using (1), choose

with IIz=ll < 1 such that

(3)
Sn+

ksn+
tkhk(Z)

Sn+l

k--s+l
tkhk

Now let u Zfk_lZ,/k 2 so

Note that k > s.+l implies that hk
rk > r,.++l. Thus

g,+ 0 on [yx,..., Yr,] and that

(4) hk(Un) =0 fork>sn+ 1.

Also, < n implies

zi [Y
Furthermore, k > s
O. Therefore,

+ 1 implies that rk + 1 > ’sn+l SO h,(zi) gr,+(zi)

hk(Un) h,( Lz,)n 2 fork>s+l.
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Applying (2), (3), (4), and (5),

]h(u,,) I- , tkh(u)

_, tkhk(Un)
k=l

E tkhk(Un)

E t/,h/(u)
kl

unll E tkhk
k=l

tkh
=1

The latter contradicts the fact that { u. } is bounded in Y.

4.3 TH.OM. Let Y be a separable Banach space with [Yn] Y and let U
be a subspace of Y*. The following two conditions are equioalent:

(i) U Y* has MKZ;
(iJ) U contains no infinite dimensional w*-closed subspace of Y*.
If in addition U is a dual Banach space w*-continuously embedded in Y*, then

(i) and (ii) are equioalent to:
(iii) The injection of U into Y* is strictly singular.

Proof. (ii) (i). Assume that Y* and W are BH spaces with W :3 Y* c
U and W :3 Y* is not closed in W.
Observe first that there exists (fn } c W :3 Y* such that IIf.II Y, 1, IIf.II w
O(2-"), and (f } is w*-basic in Y*. For instance, the BH space

U= {f W:3 Y*" f(Yi)=0 for/<n}

has finite codimension in W :3 Y* and hence is a BH space with the norm of
W :3 Y* and is not closed in W. Thus, there exists g U, such that
IIg II t: 1 and II g= II w < 2-". But { gn } is bounded away from zero in Y*
since g ---) 0 in W. Also, g --) 0 w* in Y*, so a subsequence { f, } is w*-basic
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according to a result of Johnson and Rosenthal [4, Theorem III.1]. Appropri-
ate normalization establishes the claim.
Now assume that _,tnfn converges w* in Y*. Then since Z,tnf is sectionally

bounded,

< tkfk
1 y. k=l y,

so loo. Therefore, Y’.t,fn W N Y* c U, so U contains the w*-closed span
of (f.). The latter is clearly infinite dimensional.

(i) (ii). Suppose that S is w*-closed in Y*, S c U, and dim S-- .
There exists (f } c S such that IILII 1 and fn(Yi) 0 for < n. Let { h }
be a subsequence of { f } guaranteed by 4.2.
Now Y* may be considered a BK space by identifying f Y* with the

scalar sequence { f(Yi)). Let W be the space of all sequences w { wi) of the
form

w _,ktkhk(Yi)
k

where lo. Then W is a BK space under an obvious identification as a
quotient of loo. For each k let vk (hk(Yi)). In W, IlVkl[ < l/k, so W N Y*
is not closed in W.

Finally, suppose that w W Y* where w kktkhk(Yi) with lo.
According to 4.2, ,nk=lktkh k is bounded in Y*, hence w*-convergent. There-
fore, w S U, so W Y* c U. It follows that U --* Y* is not MKZ.
The implication (iii) = (ii) is obvious.
(ii) (iii). Assume that S U c Y*, S is closed in Y*, and dim S o.

There exists (f) c S such that IIfll r, 1 and f, 0 w* in Y*. Again using
[4, Theorem III.1] one may assume that (fo } is w*-basic in Y*.

Suppose that Y’.tnfn is w*-convergent in Y*. Then {E=ltkf } is bounded in
Y*, hence in S, hence in U. Assume that f U is a w*-cluster point in U.
Then f is a w*-cluster point in Y*, so 5".k=tf ---, f w* in Y*. Therefore, U
contains the w*-closed span of (f, } in Y*.

4.4 COROLLARY. (i) (Meyer-Kgnig and Zeller, [5] and [6]) If W is a BK
space with W N loo c Co, then W loo is closed in W.

(ii) (Devos[3]) For1 <_p < q <_ o, ifWisaBKspacewith W(3 lq C lp,
then W tq lq is closed in W.

Proof. As observed in the proof of 3.3, co contains no infinite dimensional
w*-closed subspace of loo, so (i) is established. The injection of lp into q is
actually strictly singular, so (ii) follows, m
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One should note that the Meyer-K/Snig and Zeller theorem for instance
holds in the context of FK spaces. According to [10, Lemma 4], 4.4 and 4.6
below extend easily to the FK space setting.

Further applications are obtained by the following variation on part of 4.3.

4.5 THEOREM. Let Y be a separable Banach space and let U be a subspace of
Y*. If U contains no infinite dimensional closed subspace of Y*, then the
injection of U into the closure of U in Y* has MKZ.

Proof. As in the first part of the proof of 4.3, one may arrange W q U c U
and W tq U not closed in W. The same sequence (fn } is basic in Y*. If Etnf
converges in Y*, then Etf W U c U, so U contains [f]. The latter is
infinite dimensional, m

Note that "closed" may not be replaced by "w*-closed" in 4.5. For instance,
co contains no infinite dimensional w*-closed subspace of loo, but co co is
surely not MKZ.

4.6 COROLLARY (Bennett [1]). (i) If W is a BK space with W
then 1 cs is closed in IV.

(ii) If 14/" is a BK space with W co c boo, then W f3 co is closed in W.
(iii) If W is a BK space with W co C. Up>_ll,, then W (3 co is closed

in W.

Proof. The injection of 11 into bs(= bye) is strictly singular because and
cs have no isomorphic closed infinite dimensional subspaces. Thus, l
(= cs) has MKZ. Part (ii) follows similarly.
To prove (iii) it suffices to show that Ue >_l contains no infinite dimen-

sional closed subspace of 1oo. Suppose S c Unxl and S is closed in loo. Now
S U__ln n S, so S N S for some n, i.e. S c n. But S is closed in Co,
hence in In, and co and have no isomorphic infinite dimensional closed
subspaces. Thus, dim S < o. m

Note that it is possible but awkward to consider an MKZ property which
depends on the particular universe H. For instance, let Z loo. If W is a BZ
space, then W c Z, so certainly W Z is closed in W. Thus, Z Z has an
MKZ property relative to H Z but certainly not relative to H 0. In the
context of 4.3 one can show without difficulty that the MKZ property with
respect to a universe H implies the MKZ property, if no infinite dimensional
w*-closed subspace of Y* is closed in H.

Finally, the known duality between strictly cosingular and w* strictly
singular operators yields the following. Theorem 2 in [10] is a very special case.
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4.7 TnEOREbi. Let T be a map from the separable Banach space Y into Z
with dense range. The following conditions are equioalent:

(i) T is strictly cosingular.
(ii) rr z.
(iii) T* is w* strictly singular.
(iv) T’Z* - Y* has MKZ.
(v) T* is strictly singular.

Proof. The equivalence of (i) and (ii) is 3.2, and (i) is known to be
equivalent to (iii). Since T* is an injection, the equivalence of (iii), (iv), and (v)
follows from 4.3. m

The assumption that T has dense range (and hence that Z is separable) is
required for the implication (iii) ---, (iv). For instance, let T be the injection of
co into 1oo. Then T is strictly cosingular but T* is a surjection. A counterexam-
pie with Z separable may be found in Orlicz sequence spaces.

]FERENCES

1. G. BENNETT, The gliding humps technique for FK-spaces, Trans. Amer. Math. Soc., vol. 166
(1972), pp. 285-292.

2. A new class of sequence spaces with applications in summability theory, J. Reine
Angew. Math., vol. 266 (1974), pp. 49-75.

3. R. DEVOs, Distinguished subsets and matrix maps between FK spaces, Ph.D. dissertation,
Lehigh University, 1971.

4. W.B. JOHNSON and H.P. ROSENTHAL, On w*-basic sequences and their applications to the study
of Banach spaces, Studia Math., vol. 43 (1972), pp. 77-92.

5. W. MEYER-KONIG and K. ZELLER, Liickenumkehrstitze und Liickenperfektheit, Math. Z., vol.
66 (1956), pp. 203-224.

6. FK-Rtiume und Lickenperfektheit, Math. Z., vol. 78 (1962), pp. 143-148.
7. A. PELCZYNSKI, On strictly singular and strictly cosingular operators, I, H Bull. Acad. Polon.

Sci. Ser. Sci. Math. Astronom. Phys., vol. 13 (1965), pp. 31-41.
8. M. SCHAFFER and A.K. SNYDER, Properties of sequence spaces in which is weakly compactly

embedded, Math. Z., vol. 192 (1986), pp. 569-574.
9. A.K. SNYDER, A property of the embedding of co in lo, Proc. Amer. Math. Soc., vol. 97 (1986),

pp. 59-60.
10. An embedding property of sequence spaces related to Meyer-Kinig and Zeller type

theorems, Indiana Univ. Math. J., vol. 35 (1986), pp. 669-679.
11. Jo. N. VLADIMIRSKII, Strictly cosingular operators, Soviet Math. Dokl., vol. 8 (1967), pp.

739-740.
12. A. WILANSKY, Topics in functional analysis, Lecture Notes in Math., no. 45, Springer, New

York, 1967.

LEHIGH UNIVERSITY
BETHLEHEM, PENNSYLVANIA


