STRICTLY (CO)SINGULAR OPERATORS, THE MEYER-KÖNIG ZELLER PROPERTY, AND SUMS OF BANACH SPACES¹

BY

A.K. SNYDER

1. Introduction

Let Y be a subspace of a Banach space Z. The present work examines theorems of the following two related types: (i) X = Z whenever X + Y = Zwith X an appropriate subspace of Z; (ii) $W \cap Z$ is closed in W whenever $W \cap Z \subset Y$ with W an appropriate subspace of a universe containing Z. An example of a type (i) theorem is a result of Bennett [2, Theorem 16]: If l_1 is compactly embedded in the BK space Z and if X is a separable FK space containing $\{\delta^n\}$ and satisfying $X + l_1 = Z$, then X = Z. The Meyer-König and Zeller theorem ([5] and [6]) is a theorem of type (ii): If W is an FK space such that $W \cap l_{\infty} \subset c_0$, then $W \cap l_{\infty}$ is closed in W. Further examples of type (i) results were given by the author in [9] and [10], and additional type (ii) theorems were established by Bennett in [1]. The two types were shown to be dual in a very special setting by the author in [10].

The principal goal of the following is to relate type (i) theorems to strictly cosingular operators, to connect type (ii) theorems with w^* strictly singular operators, and to thereby conclude the duality of the types in a general setting. Some old results, obtained frequently using gliding humps techniques, are established using Banach space theory. For instance the Meyer-König and Zeller theorem follows from the fact that c_0 contains no infinite dimensional w^* -closed subspace of l_{∞} .

© 1989 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received January 15, 1987.

¹Presented at the 826-th meeting of the American Mathematical Society, Indianapolis, Indiana, April 12, 1986.

A.K. SNYDER

2. Preliminaries

Let *H* be a vector space with a Hausdorff (not necessarily linear) topology. A *BH space* is a subspace *X* of *H* which is a Banach space such that the injection of *X* into *H* is continuous. Details about *BH* spaces may be found in [12]. The closed graph theorem shows that if *X* and *Y* are *BH* spaces with $X \subset Y$, then the topology of *X* contains the relative topology of *Y*. Thus, *BH* topologies are unique. Also, *X* is closed in *Y* if and only if their norms are equivalent on *X*.

Let ω denote the space of all complex sequences with the topology of pointwise convergence. A *BK space* is a *BH* space with $H = \omega$.

If X and Y are BH spaces, then X + Y is a BH space under

$$||z||_{X+Y} = \inf\{||x||_X + ||y||_Y : x \in X, y \in Y, z = x + y\}.$$

Details about sums of BH spaces may be found in [12].

The following familiar BK spaces will occur in the sequel:

$$l_{p} = \left\{ x: \|x\|_{p}^{p} = \sum |x_{k}|^{p} < \infty \right\}, \quad 1 \le p < \infty.$$

$$l_{\infty} = \left\{ x: \|x\|_{\infty} = \sup |x_{k}| < \infty \right\}.$$

$$c = \left\{ x: \lim x_{k} \text{ exists} \right\} \text{ with norm of } l_{\infty}.$$

$$c_{0} = \left\{ x: \lim x_{k} = 0 \right\} \text{ with norm of } l_{\infty}.$$

$$bs = \left\{ x: \|x\|_{bs} = \sup_{n} \left| \sum_{k=1}^{n} x_{k} \right| < \infty \right\}.$$

$$cs = \left\{ x: \lim_{n} \sum_{k=1}^{n} x_{k} \text{ exists} \right\} \text{ with norm of } bs.$$

$$bv = \left\{ x: \|x\|_{bv} = |x_{1}| + \sum_{k=1}^{\infty} |x_{k+1} - x_{k}| < \infty \right\}.$$

$$bv_{0} = bv \cap c_{0}.$$

Let ϕ devote the span of $\{\delta^n\}$ in ω where $\delta^n_k = 0$ for $k \neq n$, $\delta^n_n = 1$.

If X is a BK space containing ϕ , let $X^f = \{\{g(\delta^n)\}: g \in X^*\}$. Then X^f is a BK space with appropriate norm. If ϕ is dense in X, then X^f is just the dual of X.

For $x, y \in \omega$ and $W \subset \omega$, let $xy = \{x_n, y_n\}$ and $xW = \{xw: w \in W\}$.

All maps between Banach spaces will be assumed to be bounded and linear. If $\{x_n\}$ is a sequence in a Banach space, let $[x_n]$ denote the closed linear span. Let Y and Z be Banach spaces and let $T: Y \rightarrow Z$. Following Kato, T is called *strictly singular* if T is an isomorphism into Z on no infinite dimensional closed subspace of Y. Following Pelczynski, T is *strictly cosingular* if the existence of surjections A and B of Y and Z respectively onto a Banach space E with A = BT implies that dim $E < \infty$. The required properties of strictly (co)singular maps may be found in [7] and [11]. In particular, T is strictly cosingular if and only if T^* is w^* strictly singular; i.e., T^* is a w^* -isomorphism on no infinite dimensional w^* -closed subspace of Z^* .

3. Sums of Banach spaces and strictly cosingular operators

Let Y and Z be BK spaces with $\phi \subset Y \subset Z$. Following [10] let the relation Y < Z indicate that X = Z whenever X is a BK space containing ϕ such that X + Y = Z. Theorem 1 in [9] shows that $c_0 < l_{\infty}$ and Theorem 3 in [8] shows that $l_1 < Z$ if l_1 is weakly compactly embedded in Z. The principal result of the present section establishes the equivalence of Y < Z and the fact that the natural injection of Y into Z is strictly cosingular. First a red herring in the definition of Y < Z is removed. The removal allows an easy extension to the setting of Banach spaces, permits a perturbation theory argument, and yields Banach space proofs of many of the results of [10] without resorting to a primitive version of Section 4.

3.1 LEMMA. Let Y and Z be BK spaces with $Y \subset Z$ and ϕ dense in Y. The following are equivalent:

- (i) X = Z whenever X is a BK space containing ϕ such that X + Y = Z.
- (ii) dim $Z/X < \infty$ whenever X is a BK space such that X + Y = Z.

Proof. (ii) \Rightarrow (i). X is closed in Z since dim $Z/X < \infty$. The closure of ϕ in Y is then contained in the closure of ϕ in X so $Y \subset X$.

(i) \Rightarrow (ii). There exists $z \in \omega$ with $z_n \neq 0$ for all *n* such that $zl_1 \subset Z$ and the natural injection is compact. Now $\phi \subset X + zl_1$ so $X + zl_1 = Z$ by hypothesis. The proof of Lemma 6(i) in [10] shows that dim $Z/X < \infty$.

DEFINITION. Let Z be a Banach space and let Y be a BZ space. Then Y < Z if dim $Z/X < \infty$ whenever X is a BZ space such that X + Y = Z. Clearly, Z < Z if and only if dim $Z < \infty$.

3.2 THEOREM. Let Y and Z be Banach spaces and let T be a map from Y into Z. The following are equivalent:

- (i) T is strictly cosingular.
- (ii) The natural injection of TY into Z is strictly cosingular.
- (iii) TY < Z.

Proof. The equivalence of (i) and (ii) is known and easy.

(i) \Rightarrow (iii). Assume that X + TY = Z. Let B denote the unit ball of Z. A constant M may be selected such that for each $b \in B$ there exists $x(b) \in X$ and $y(b) \in Y$ satisfying x(b) + Ty(b) = b and $||x(b)||_X \le M$, $||y(b)||_Y \le M$. Define operators A, B, C from $l_1(B)$ into Z by

$$A\lambda = \sum \lambda(b)x(b), \quad B\lambda = \sum \lambda(b)Ty(b), \quad C\lambda = \sum \lambda(b)b.$$

Then A + B = C, C is a surjection, and B is strictly cosingular. A result of Vladimirskii [11, Corollary 1] establishes that the range of A has finite codimension in Z. But $Al_1(B) \subset X$.

(iii) \Rightarrow (i). Assume that P and Q are surjections of Y and Z respectively onto a Banach space E and that P = QT. If TY < Z, then one observes easily that QTY < QZ. Thus, E = PY = QTY < QZ = E. According to the remark following the definition of <, dim $E < \infty$.

3.3 COROLLARY. (i) [10, Corollary 7(i)] $l_p < l_q$ for $1 \le p < q \le \infty$.

(ii) [9, Theorem 1] $c_0 < l_{\infty}$.

(iii) [8, Theorem 3] If Z is a BK space containing l_1 and the injection of l_1 into Z is weakly compact, then $l_1 < Z$.

(iv) [10, Corollary 5] $l_1 < cs$.

Proof. (i) The natural injection of l_p into l_q is strictly cosingular because, for instance, its adjoint is strictly singular.

(ii) The injection map is strictly cosingular according to a result of Pelczynski [7, Proposition 5].

Observe that the injection of c_0 into l_{∞} is " w^* strictly singular". For instance, suppose that $S \subset c_0$ is infinite dimensional and w^* -closed in l_{∞} . Then S is closed in c_0 so S contains a copy of c_0 . But then S contains a copy of l_{∞} , contradicting the separability of S.

If Z satisfies the hypothesis of (iii) or if Z = cs, then ϕ may be assumed dense in Z. Now $Z^f \subset c$, so the injection of Z^f into l_{∞} is w^* strictly singular. Therefore, the injection of l_1 into Z is strictly cosingular.

Observe that the *BK* hypothesis in 3.3(iii) cannot be dropped. It is easy to find a weakly compact non strictly cosingular injection of l_1 into a Banach space.

4. The Meyer-König Zeller property and strictly singular operators

A direct dualization of the condition Y < Z yields a property which arose in summability theory. For instance, assume that X, Y, and Z are BK spaces with basis $\{\delta^n\}$, X + Y = Z, and dim $Z/X = \infty$. Then $Z^f = X^f \cap Y^f$. It follows that Z^f is not closed in X^f , for otherwise X = Z. Therefore, the injection of Z^f into Y^f violates the following condition.

DEFINITION. Let U be a subspace of a Banach space Z. The injection of U into Z has the Meyer-König Zeller property (abbreviated $U \rightarrow Z$ has MKZ) if $W \cap Z$ is closed in W for each Hausdorff vector space H for which Z is a BH space and for each BH space W satisfying $W \cap Z \subset U$.

The Meyer-König Zeller theorem [5], [6] states that if W is an FK space such that $W \cap l_{\infty} \subset c_0$, then $W \cap l_{\infty}$ is closed in W. This is essentially the assertion that $c_0 \rightarrow l_{\infty}$ has MKZ.

The main results of the present section relate the MKZ property to w^* strictly singular operators in the context of adjoints of maps in separable spaces and thus to strictly cosingular operators. Theorem 4.3 substantially generalizes a result of the author [10, Theorem 2]. Technical lemmas designed for enhancing convergence in certain Hausdorff vector spaces H to dual BH spaces are required.

The first lemma is a simple consequence of compactness of the ball in finite dimensional spaces.

4.1 LEMMA. Assume that Y is a separable Banach space with $[y_n] = Y$ and that S is a finite dimensional subspace of Y*. There exists a positive integer r such that for each $g \in S$,

$$\sup\{|g(y)|: ||y|| \le 1, y \in [y_1, \dots, y_r]\} \ge \frac{1}{2} ||g||_{Y^*}.$$

4.2 LEMMA. Assume that Y is a separable Banach space with $[y_n] = Y$ and that $\{g_n\} \subset Y^*$ satisfies $g_n(y_i) = 0$ for i < n. Then $\{g_n\}$ has a subsequence $\{h_n\}$ with the following property:

If $\{t_k\} \in \omega$ and if there exists $h \in Y^*$ such that

$$h(y_n) = \sum_{k=1}^n t_k h_k(y_n) \left(= \sum_{k=1}^\infty t_k h_k(y_n) \right) \quad \text{for all } n,$$

then the series $\sum t_k h_k$ has bounded sections in Y^* and hence is ω^* -convergent.

Proof. Let $h_1 = g_1$, $r_1 = 1$, and assume h_n and a positive integer r_n have been chosen. Using 4.1, choose a positive integer $r_{n+1} > r_n$ such that

(1)
$$\sup\{|h(y)|: ||y|| \le 1, y \in [y_1, \dots, y_{r_{n+1}}]\} \ge \frac{1}{2} ||h||_{Y^*}$$

for all $h \in [h_1, \dots, h_n]$. Let $h_{n+1} = g_{r_{n+1}+1}$.

Assume that the inductively defined subsequence $\{h_n\}$ does not have the desired property. This means that there exists $\{t_k\} \in \omega$ and $h \in Y^*$ such that

$$h(y_n) = \sum_{k=1}^n t_k h_k(y_n) \quad \text{for all } n$$

and $\sum t_k h_k$ fails to have bounded sections in Y^* .

Choose $s_n \uparrow \infty$ such that

(2)
$$\left\|\sum_{k=s_n+1}^{s_{n+1}} t_k h_k\right\| > 2^n \left\|\sum_{k=1}^{s_n} t_k h_k\right\| > 2^n$$

for all n. Using (1), choose

$$z_n \in \left[y_1, \dots, y_{r_{s_{n+1}+1}} \right]$$

with $||z_n|| \le 1$ such that

(3)
$$\left|\sum_{k=s_{n}+1}^{s_{n+1}} t_{k} h_{k}(z_{n})\right| \geq \frac{1}{3} \left\|\sum_{k=s_{n}+1}^{s_{n+1}} t_{k} h_{k}\right\|$$

Now let $u_n = \sum_{k=1}^n z_k / k^2$ so

$$u_n \in \left[y_1, \ldots, y_{r_{s_{n+1}+1}} \right].$$

Note that $k > s_{n+1}$ implies that $h_k = g_{r_k+1} = 0$ on $[y_1, \ldots, y_{r_k}]$ and that $r_k \ge r_{s_{n+1}+1}$. Thus

(4)
$$h_k(u_n) = 0 \text{ for } k > s_{n+1}.$$

Also, i < n implies

$$z_i \in \left[y_1, \ldots, y_{r_{s_n+1}} \right].$$

Furthermore, $k \ge s_n + 1$ implies that $r_k + 1 > r_{s_n+1}$, so $h_k(z_i) = g_{r_k+1}(z_i) = 0$. Therefore,

(5)
$$h_k(u_n) = h_k\left(\frac{1}{n^2}z_n\right) \text{ for } k \ge s_n + 1.$$

Applying (2), (3), (4), and (5),

$$\begin{aligned} |h(u_n)| &= \left| \sum_{k=1}^{\infty} t_k h_k(u_n) \right| \\ &= \left| \sum_{k=1}^{s_{n+1}} t_k h_k(u_n) \right| \\ &\geq \left| \sum_{k=s_n+1}^{s_{n+1}} t_k h_k(u_n) \right| - \left| \sum_{k=1}^{s_n} t_k h_k(u_n) \right| \\ &= \left| \sum_{k=s_n+1}^{s_{n+1}} t_k h_k \left(\frac{1}{n^2} z_n\right) \right| - \left| \sum_{k=1}^{s_n} t_k h_k(u_n) \right| \\ &\geq \frac{1}{3n^2} \left\| \sum_{k=s_n+1}^{s_{n+1}} t_k h_k \right\| - \|u_n\| \left\| \sum_{k=1}^{s_n} t_k h_k \right\| \\ &\geq \left(\frac{2^n}{3n^2}\right) - \sum_{k=1}^n \frac{1}{k^2} \right) \left\| \sum_{k=1}^{s_n} t_k h_k \right\| \\ &\to \infty \quad \text{as } n \to \infty. \end{aligned}$$

The latter contradicts the fact that $\{u_n\}$ is bounded in Y.

4.3 THEOREM. Let Y be a separable Banach space with $[y_n] = Y$ and let U be a subspace of Y*. The following two conditions are equivalent:

(i) $U \rightarrow Y^*$ has MKZ;

(ii) U contains no infinite dimensional w^* -closed subspace of Y^* .

If in addition U is a dual Banach space w^* -continuously embedded in Y^* , then (i) and (ii) are equivalent to:

(iii) The injection of U into Y^* is strictly singular.

Proof. (ii) \Rightarrow (i). Assume that Y^* and W are *BH* spaces with $W \cap Y^* \subset U$ and $W \cap Y^*$ is not closed in W.

Observe first that there exists $\{f_n\} \subset W \cap Y^*$ such that $||f_n||_{Y^*} = 1$, $||f_n||_W = O(2^{-n})$, and $\{f_n\}$ is w*-basic in Y*. For instance, the BH space

$$U_n = \{ f \in W \cap Y^* : f(y_i) = 0 \text{ for } i < n \}$$

has finite codimension in $W \cap Y^*$ and hence is a *BH* space with the norm of $W \cap Y^*$ and is not closed in *W*. Thus, there exists $g_n \in U_n$ such that $\|g_n\|_{U_n} = 1$ and $\|g_n\|_W < 2^{-n}$. But $\{g_n\}$ is bounded away from zero in Y^* since $g_n \to 0$ in *W*. Also, $g_n \to 0$ w* in *Y**, so a subsequence $\{f_n\}$ is w*-basic

according to a result of Johnson and Rosenthal [4, Theorem III.1]. Appropriate normalization establishes the claim.

Now assume that $\sum t_n f_n$ converges w^* in Y^* . Then since $\sum t_n f_n$ is sectionally bounded,

$$\begin{aligned} |t_n| &= \|t_n f_n\|_{Y^*} \\ &\leq \left\|\sum_{k=1}^n t_k f_k\right\|_{Y^*} + \left\|\sum_{k=1}^{n-1} t_k f_k\right\|_{Y^*}, \end{aligned}$$

so $t \in l_{\infty}$. Therefore, $\sum t_n f_n \in W \cap Y^* \subset U$, so U contains the w*-closed span of $\{f_n\}$. The latter is clearly infinite dimensional.

(i) \Rightarrow (ii). Suppose that S is w*-closed in Y*, $S \subset U$, and dim $S = \infty$. There exists $\{f_n\} \subset S$ such that $||f_n|| = 1$ and $f_n(y_i) = 0$ for i < n. Let $\{h_n\}$ be a subsequence of $\{f_n\}$ guaranteed by 4.2.

Now Y* may be considered a BK space by identifying $f \in Y^*$ with the scalar sequence $\{f(y_i)\}$. Let W be the space of all sequences $w = \{w_i\}$ of the form

$$w_i = \sum_k k t_k h_k(y_i)$$

where $t \in l_{\infty}$. Then W is a BK space under an obvious identification as a quotient of l_{∞} . For each k let $v_k = \{h_k(y_i)\}$. In W, $||v_k|| \le 1/k$, so $W \cap Y^*$ is not closed in W.

Finally, suppose that $w \in W \cap Y^*$ where $w_i = \sum_k kt_k h_k(y_i)$ with $t \in l_{\infty}$. According to 4.2, $\sum_{k=1}^n kt_k h_k$ is bounded in Y^* , hence w^* -convergent. Therefore, $w \in S \subset U$, so $W \cap Y^* \subset U$. It follows that $U \to Y^*$ is not MKZ.

The implication (iii) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii). Assume that $S \subset U \subset Y^*$, S is closed in Y^* , and dim $S = \infty$. There exists $\{f_n\} \subset S$ such that $||f_n||_{Y^*} = 1$ and $f_n \to 0$ w* in Y*. Again using [4, Theorem III.1] one may assume that $\{f_n\}$ is w*-basic in Y*.

Suppose that $\sum t_n f_n$ is w*-convergent in Y*. Then $\{\sum_{k=1}^n t_k f_k\}$ is bounded in Y*, hence in S, hence in U. Assume that $f \in U$ is a w*-cluster point in U. Then f is a w*-cluster point in Y*, so $\sum_{k=1}^n t_k f_k \to f$ w* in Y*. Therefore, U contains the w*-closed span of $\{f_n\}$ in Y*.

4.4 COROLLARY. (i) (Meyer-König and Zeller, [5] and [6]) If W is a BK space with $W \cap l_{\infty} \subset c_0$, then $W \cap l_{\infty}$ is closed in W.

(ii) (Devos [3]) For $1 \le p < q \le \infty$, if W is a BK space with $W \cap l_q \subset l_p$, then $W \cap l_q$ is closed in W.

Proof. As observed in the proof of 3.3, c_0 contains no infinite dimensional w^* -closed subspace of l_{∞} , so (i) is established. The injection of l_p into l_q is actually strictly singular, so (ii) follows.

One should note that the Meyer-König and Zeller theorem for instance holds in the context of FK spaces. According to [10, Lemma 4], 4.4 and 4.6 below extend easily to the FK space setting.

Further applications are obtained by the following variation on part of 4.3.

4.5 THEOREM. Let Y be a separable Banach space and let U be a subspace of Y^* . If U contains no infinite dimensional closed subspace of Y^* , then the injection of U into the closure of U in Y^* has MKZ.

Proof. As in the first part of the proof of 4.3, one may arrange $W \cap \overline{U} \subset U$ and $W \cap \overline{U}$ not closed in W. The same sequence $\{f_n\}$ is basic in Y^* . If $\sum t_n f_n$ converges in Y^* , then $\sum t_n f_n \in W \cap \overline{U} \subset U$, so U contains $[f_n]$. The latter is infinite dimensional.

Note that "closed" may not be replaced by "w*-closed" in 4.5. For instance, c_0 contains no infinite dimensional w*-closed subspace of l_{∞} , but $c_0 \rightarrow c_0$ is surely not MKZ.

4.6 COROLLARY (Bennett [1]). (i) If W is a BK space with $W \cap cs \subset l_1$, then $W \cap cs$ is closed in W.

(ii) If W is a BK space with $W \cap c_0 \subset bv_0$, then $W \cap c_0$ is closed in W. (iii) If W is a BK space with $W \cap c_0 \subset \bigcup_{p \ge 1} l_p$, then $W \cap c_0$ is closed in W.

Proof. The injection of l_1 into $bs(=bv_0^*)$ is strictly singular because l_1 and cs have no isomorphic closed infinite dimensional subspaces. Thus, $l_1 \rightarrow \tilde{l}_1(=cs)$ has MKZ. Part (ii) follows similarly.

To prove (iii) it suffices to show that $\bigcup_{p\geq 1}l_p$ contains no infinite dimensional closed subspace of l_{∞} . Suppose $S \subset \bigcup_{n=1}^{\infty}l_n$ and S is closed in l_{∞} . Now $S = \bigcup_{n=1}^{\infty}l_n \cap S$, so $S = l_n \cap S$ for some n, i.e. $S \subset l_n$. But S is closed in c_0 , hence in l_n , and c_0 and l_n have no isomorphic infinite dimensional closed subspaces. Thus, dim $S < \infty$.

Note that it is possible but awkward to consider an MKZ property which depends on the particular universe H. For instance, let $Z = l_{\infty}$. If W is a BZ space, then $W \subset Z$, so certainly $W \cap Z$ is closed in W. Thus, $Z \to Z$ has an MKZ property relative to H = Z but certainly not relative to $H = \omega$. In the context of 4.3 one can show without difficulty that the MKZ property with respect to a universe H implies the MKZ property, if no infinite dimensional w^* -closed subspace of Y^* is closed in H.

Finally, the known duality between strictly cosingular and w^* strictly singular operators yields the following. Theorem 2 in [10] is a very special case.

4.7 THEOREM. Let T be a map from the separable Banach space Y into Z with dense range. The following conditions are equivalent:

- (i) T is strictly cosingular.
- (ii) TY < Z.
- (iii) T^* is w^* strictly singular.
- (iv) $T^*Z^* \rightarrow Y^*$ has MKZ.
- (v) T* is strictly singular.

Proof. The equivalence of (i) and (ii) is 3.2, and (i) is known to be equivalent to (iii). Since T^* is an injection, the equivalence of (iii), (iv), and (v) follows from 4.3.

The assumption that T has dense range (and hence that Z is separable) is required for the implication (iii) \rightarrow (iv). For instance, let T be the injection of c_0 into l_{∞} . Then T is strictly cosingular but T^* is a surjection. A counterexample with Z separable may be found in Orlicz sequence spaces.

REFERENCES

- 1. G. BENNETT, The gliding humps technique for FK-spaces, Trans. Amer. Math. Soc., vol. 166 (1972), pp. 285–292.
- 2. ____, A new class of sequence spaces with applications in summability theory, J. Reine Angew. Math., vol. 266 (1974), pp. 49-75.
- 3. R. DEVOS, Distinguished subsets and matrix maps between FK spaces, Ph.D. dissertation, Lehigh University, 1971.
- 4. W.B. JOHNSON and H.P. ROSENTHAL, On w*-basic sequences and their applications to the study of Banach spaces, Studia Math., vol. 43 (1972), pp. 77–92.
- 5. W. MEYER-KÖNIG and K. ZELLER, Lückenumkehrsätze und Lückenperfektheit, Math. Z., vol. 66 (1956), pp. 203–224.
- 6. _____, FK-Räume und Lückenperfektheit, Math. Z., vol. 78 (1962), pp. 143-148.
- A. PELCZYNSKI, On strictly singular and strictly cosingular operators, I, II Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., vol. 13 (1965), pp. 31-41.
- M. SCHAFFER and A.K. SNYDER, Properties of sequence spaces in which l₁ is weakly compactly embedded, Math. Z., vol. 192 (1986), pp. 569-574.
- 9. A.K. SNYDER, A property of the embedding of c_0 in l_{∞} , Proc. Amer. Math. Soc., vol. 97 (1986), pp. 59-60.
- 10. _____, An embedding property of sequence spaces related to Meyer-König and Zeller type theorems, Indiana Univ. Math. J., vol. 35 (1986), pp. 669-679.
- 11. JU. N. VLADIMIRSKII, Strictly cosingular operators, Soviet Math. Dokl., vol. 8 (1967), pp. 739-740.
- 12. A. WILANSKY, *Topics in functional analysis*, Lecture Notes in Math., no. 45, Springer, New York, 1967.

Lehigh University Bethlehem, Pennsylvania