THE COMPARABILITY OF THE KOBAYASHI APPROACH REGION AND THE ADMISSIBLE APPROACH REGION

BY
Gerardo Aladro ${ }^{1}$

1. Introduction

Given a domain $\Omega \subseteq \mathbf{C}^{n}$, we denote by $F_{K}^{\Omega}(z, \xi)$ the infinitesimal form of the Kobayashi metric for Ω at z in the direction of the vector ξ. In [1] we have estimated the boundary behavior of the metric when ξ is fixed and z is allowed to approach a strongly pseudoconvex point P in the boundary of Ω. As a consequence of the work done in [1] we obtained the following estimate:

$$
\begin{equation*}
F_{K}^{\Omega}(z, \xi) \approx c \frac{\left|\xi_{N_{P}}\right|}{\delta_{\Omega}(z)}+c \frac{\left|\xi_{T_{P}}\right|}{\sqrt{\delta_{\Omega}(z)}} \quad \text { for all } z \in U \cap \Omega \tag{*}
\end{equation*}
$$

where U is a neighborhood of P where the eigenvalues of the Levi form at P are bounded from zero, and for any $\xi \in \mathbf{C}^{n}, \xi_{N_{P}}$ is the complex normal component of ξ at P and $\xi_{T_{P}}$ is the complex tangential component of ξ at P, and $\delta_{\Omega}(z)$ is the distance from z to the boundary.

N . Siboney in [10] has proven the inequality

$$
F_{K}^{\Omega}(z, \xi) \geq c \frac{\left|\xi_{N_{p}}\right|}{\delta_{\Omega}(z)}+c \frac{\left|\xi_{T_{p}}\right|}{\sqrt{\delta_{\Omega}(z)}}
$$

for the Kobayashi metric on strongly pseudoconvex (and other) domains, but it is not the precise asymptotic formula which is found in [1].

By means of the estimate (*), it is possible to solve the following problem:

[^0]Let $\Omega \subseteq \mathbf{C}^{n}$ be a pseudoconvex domain and $P \in \partial \Omega$ be strongly pseudoconvex point. For $\alpha>1$, define the admissible approach region of Stein to be

$$
\mathfrak{A}_{\alpha}(P)=\left\{z \in \Omega:|z-P|^{2}<\alpha \delta_{P}(z) ;\left|\left\langle z-P, \nu_{P}\right\rangle\right|<\alpha \delta_{P}(z)\right\}
$$

where $\delta_{P}(z)=\min \left\{\delta_{\Omega}(z) ; \operatorname{dist}\left(z, T_{P}(\partial \Omega)\right)\right\}$ and $T_{P}(\partial \Omega)$ is the tangent space to $\partial \Omega$ at P.

Also, define the Kobayashi approach region to be

$$
\mathscr{K}_{\beta}(P)=\left\{z \in \Omega: K_{\Omega}\left(z,-\nu_{P}\right)<\beta\right\} \quad \text { with } \beta>0
$$

where K_{Ω} represents the Kobayashi distance from z to $-\nu_{P}$.
Then our main result is:

Theorem 1. Under the above conditions, given $\alpha>1$ there are two constants $B=B(\alpha)$ and $C=C(\alpha)$ which depend on Ω and the eigenvalues of the Levi form at P, and are functions of α, and there exists an open neighborhood U of P such that

$$
U \cap \mathscr{K}_{B(\alpha)} P \subseteq U \cap \mathfrak{U}_{\alpha}(P) \subseteq U \cap \mathscr{K}_{C(\alpha)}(P)
$$

While our result is local, in the case that Ω is strongly pseudoconvex domain then $B(\alpha)$ and $C(\alpha)$ are uniform constants for all $P \in \partial \Omega$.

The theorem allows us give an invariant form of Fatou's Theorem [11].
By Fefferman's Theorem [6], biholomorphic maps of smooth strongly pseudoconvex domain extend smoothly, hence in particular C^{1}, to the boundary. Theorem 1 then yields immediately that Kobayashi approach regions are a biholomorphically invariant concept, hence so are admissible approach regions. An invariant metric approach to boundary behavior of holomorphic functions is explored in great detail in [7].

In the second part of this paper we want to discuss the following problem:
Given a pseudoconvex domain Ω of finite type in \mathbf{C}^{n}, Nagel, Stein and Wainger [8] introduced a family of balls on the boundary of Ω which is intimately linked to the complex geometry of Ω with respect to \mathbf{C}^{n}. They define approach regions in terms of these balls. The approach regions are denoted by \mathscr{A}_{σ}. By means of some estimates obtained by Catlin [3] for the Kobayashi metric on domains of finite type in \mathbf{C}^{2}, it is possible to show that the approach regions $\mathscr{A}_{\boldsymbol{\sigma}}$ are comparable to Kobayashi approach regions \mathscr{K}_{β}.

Again we get an invariant form of Fatou's Theorem for pseudoconvex domains of finite type in \mathbf{C}^{2}.

I would like to thank Steven G. Krantz for all his help and good advice.

1. Notations and definitions

Definition 1.1. If $e_{1}=(1+0 i, 0, \ldots, 0)$ then the infinitesimal form of the Kobayashi metric for Ω at z in the direction of ξ is

$$
F_{K}^{\Omega}(z, \xi)=\inf \left\{\frac{|\xi|}{\left|\left(f_{*}(0)\right)\left(e_{1}\right)\right|}: f: B \rightarrow \Omega \text { is holomorphic, } f(0)=z\right.
$$

$$
\text { and } \left.\left(f_{*}(0)\right)\left(e_{1}\right) \text { is a constant multiple of } \xi\right\} .
$$

Definition 1.2. The Kobayashi distance between the points $z, w \in \Omega$ can be defined as

$$
K_{\Omega}(z, w)=\inf _{\gamma} \int_{0}^{1} F_{K}^{\Omega}\left(\gamma(t), \gamma^{\prime}(t)\right) d t
$$

where the infimum is taken over C^{1} curves $\gamma:[0,1] \rightarrow \Omega$ such that $\gamma(0)=z$ and $\gamma(1)=w$.

Remark 1.3. Royden [9] has shown that the infimum can be taken over all piece-wise differentiable curves.

For details about the metric and pseudoconvex domains see [6].
The following theorem has been proven in [1] and is a basic tool for our future calculation.

Theorem 1.4. Let $\Omega \subset \subset \mathbf{C}^{n}$ be a pseudoconvex domain with C^{n+1} boundary. Suppose $P \in \partial \Omega$ is a strongly pseudoconvex point and W is a neighborhood of P on which the eigenvalues of Levi form are bounded from zero by some number $\varepsilon>0$. Let us assume without lost of generality that z_{1} is the normal complex direction at P. Let ρ be a defining function for Ω such that $\left|\nabla_{Z} \rho(w)\right|$ $=1$ for all $w \in \partial \Omega$. Let Q be a unitary operator which diagonalized the Levi form at P, and let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of the Levi form at P where the corresponding eigenvectors have respectively the directions z_{1}, \ldots, z_{n}. Let $z \in \Omega$ and S be the projection of z into $\partial \Omega$. Given $\xi \in \mathbf{C}^{n}$, let $\xi_{N_{S}}$ be the complex normal component of ξ at S and $\xi_{T_{s}}$ the complex tangential component of ξ at S. Define

$$
\eta(z)=\sqrt{2} \delta_{\Omega}(z) \xi_{N_{s}}+\sqrt{\delta_{\Omega}(z)} H\left(Q \xi_{T_{s}}\right)
$$

where H is diagonal matrix with entries $\lambda_{i}^{-1 / 2}$. Then

$$
\lim _{\Omega \ni z \rightarrow P} F_{K}^{\Omega}(z, \eta(z))=\frac{1}{\sqrt{2}}|\xi|
$$

As a consequence of the theorem we obtain the estimate

$$
F_{K}^{\Omega}(z, \xi) \approx c \frac{\left|\xi_{N_{P}}\right|}{\delta_{\Omega}(z)}+c \frac{\left|\xi_{T_{P}}\right|}{\sqrt{\delta_{\Omega}(z)}} \quad \text { for all } z \in U \cap \Omega
$$

where P is a strongly pseudoconvex point in the boundary of a pseudoconvex domain Ω, U is a neighborhood of P where the eigenvalues of the Levi form at P are bounded from zero and for any $\xi \in \mathbf{C}^{n}, \xi_{N_{P}}$ is the complex normal component of ξ at P and $\xi_{T_{P}}$ is the complex tangential component of ξ at P.

Definition 1.5. If $\Omega \subset \subset \mathbf{C}^{n}$ with C^{2} boundary, $P \in \partial \Omega, z \in \Omega$, define

$$
\delta_{P}(z)=\min \left\{\delta_{\Omega}(z), \operatorname{dist}\left(z, T_{P}(\partial \Omega)\right\}\right.
$$

Then, for $\alpha>1$, let the admissible approach region at P with aperture α be

$$
\mathfrak{A}_{\alpha}(P)=\left\{z \in \Omega:|z-P|^{2}<\alpha \delta_{P}(z) ;\left|\left\langle z-P, \nu_{P}\right\rangle\right|<\alpha \delta_{P}(z)\right\} .
$$

$\mathfrak{A}_{\alpha}(P)$ is like a cone in the complex normal direction and like a paraboloid in the tangential direction. Notice that if Ω is convex, then $\delta_{\Omega}(z)=\delta_{P}(z)$. But $\delta_{P}(z)$ is used because near non-convex boundary points we still want $\mathfrak{U}_{\alpha}(P)$ to have the same shape.

Definition 1.6. Let $\Omega \subset \subset \mathbf{C}^{n}$ with C^{2} boundary, $P \in \partial \Omega$ and $\beta>1$. The \mathscr{K}-admissible (for Kobayashi admissible) approach region of aperture β at P is

$$
\mathscr{K}_{\beta}(P)=\left\{z \in \Omega: K_{\Omega}\left(z,-\nu_{P}\right)<\beta\right\}
$$

where ν_{P} denotes the unit outward normal and

$$
K_{\Omega}\left(z,-\nu_{P}\right)=\inf \left\{K_{\Omega}(z, w): w \in-\nu_{P}\right\}
$$

2. Proof of Theorem 1

Through our work we will use the symbol c to denote constants whose values change from line to line, but independent of the relevant parameter.

Theorem 1. Let $\Omega \subset \subset \mathbf{C}^{n}$ be a pseudoconvex domain with C^{n+1} boundary. Let $P \in \partial \Omega$ be a strongly pseudoconvex point. Then, given $\alpha>1$ there are two constants $B=B(\alpha)$ and $C=C(\alpha)$ which depend on Ω and the eigenvalues of the Levi form at P and are functions of α, and there exists an open neighborhood U of P such that

$$
U \cap \mathscr{K}_{B(\alpha)}(P) \subseteq U \cap \mathfrak{U}_{\alpha}(P) \subseteq U \cap \mathscr{K}_{C(\alpha)}(P)
$$

Proof. Let U be a neighborhood of P such that

$$
F_{K}^{\Omega}(z, \xi) \approx c \frac{\left|\xi_{N_{\rho}}\right|}{\delta_{\Omega}(z)}+c \frac{\left|\xi_{T_{\rho}}\right|}{\sqrt{\delta_{\Omega}(z)}} \quad \text { for all } z \in U \cap \Omega
$$

Part 1. Assume $z \in U \cap \mathfrak{U}_{\alpha}(P)$, we want to prove that $z \in U \cap \mathscr{K}_{C(\alpha)}(P)$. If $z \in U \cap \mathfrak{U}_{\alpha}(P)$ then

$$
\left|(z-P)_{N_{P}}\right|<\alpha \delta_{\Omega}(z)
$$

where $(z-P)_{N_{P}}$ is the projection of $(z-P)$ into \mathscr{N}_{P} (the complex normal space to $\partial \Omega$ at P) and

$$
\left|(z-P)_{T_{P}}\right|<\sqrt{\alpha \delta_{\Omega}(z)}
$$

where $(z-P)_{T_{P}}$ is the projection of $(z-P)$ into \mathscr{T}_{P} (the complex tangent space to $\partial \Omega$ at P). Let z^{*} be the projection of z into \mathscr{N}_{P} and z^{\prime} the projection of z into $-\nu_{P}$.

We have three possibilities:
(i) $z z^{\prime}$ is in \mathscr{T}_{P};
(ii) $z z^{\prime}$ is in \mathscr{N}_{P};
(iii) neither of the above.

Case (i). Here we have $\left|(z-P)_{T_{P}}\right|=\left|z-z^{\prime}\right|$. Consider the curve $\delta_{1}(t)=(1-t) z+t z^{\prime}, 0 \leq t \leq 1$. Then

$$
L_{K}^{\Omega}\left(\gamma_{1}\right)=\int_{0}^{1} F_{K}^{\Omega}\left(\gamma_{1}(t) ; \gamma_{1}^{\prime}(t)\right) d t
$$

where $\gamma_{1}^{\prime}(t)=\left(\gamma_{1}^{\prime}(t)\right)_{T_{P}}=z-z^{\prime} \in \mathscr{T}_{P}$. Since $\gamma_{1}(t) \in U$ it turns out that

$$
F_{K}^{\Omega}\left(\gamma_{1}(t) ; \gamma_{1}^{\prime}(t)\right) d t \approx \frac{c\left|\left(\gamma_{1}^{\prime}\right)_{T_{P}}(t)\right|}{\sqrt{\delta_{\Omega}\left(\gamma_{1}(t)\right)}}=\frac{c\left|z-z^{\prime}\right|}{\sqrt{\gamma_{\Omega}\left(\gamma_{1}(t)\right)}}
$$

but $\sqrt{\alpha \delta_{\Omega}(z)}>\left|(z-P)_{T_{P}}\right| \geq\left|z-z^{\prime}\right|$ and $\delta_{\Omega}(z) \leq \delta_{\Omega}\left(\gamma_{1}(t)\right)$ so

$$
F_{K}^{\Omega}\left(\gamma_{1}(t) ; \gamma_{1}^{\prime}(t)\right) \leq \frac{c\left|z-z^{\prime}\right|}{\sqrt{\delta_{\Omega}(z)}} \leq \frac{c \sqrt{\alpha \delta_{\Omega}(z)}}{\sqrt{\delta_{\Omega}(z)}}=c \sqrt{\alpha} .
$$

Hence

$$
K_{\Omega}\left(z,-\nu_{P}\right) \leq K_{\Omega}\left(z, z^{\prime}\right) \leq L_{K}^{\Omega}\left(\gamma_{1}(t)\right) \leq \int_{0}^{1} c \sqrt{\alpha} d t=c \sqrt{\alpha} .
$$

Case (ii) We have $z z^{\prime} \in \mathscr{N}_{P}$. Hence

$$
\left|z-z^{\prime}\right|=\left|\left(z-z^{\prime}\right)_{N_{P}}\right|<\alpha \delta_{\Omega}(z) .
$$

Consider the curve $\gamma_{2}(t)=(1-t) z+t z^{\prime}, 0 \leq t \leq 1$. Then

$$
L_{K}^{\Omega}\left(\gamma_{2}\right)=\int_{0}^{1} F_{K}^{\Omega}\left(\gamma_{2}(t) ; \gamma_{2}^{\prime}(t)\right) d t
$$

and

$$
\gamma_{2}^{\prime}(t)=\left(\gamma_{2}^{\prime}\right)_{N_{P}}(t)=z-z^{\prime} \in \mathscr{N}_{P} .
$$

Since $\gamma_{2}(t) \in U$ we have

$$
F_{K}^{\Omega}\left(\gamma_{2}(t) ; \gamma_{2}^{\prime}(t)\right) d t \approx \frac{c\left|\left(\gamma_{2}^{\prime}\right)_{N_{P}}(t)\right|}{\delta_{\Omega}\left(\gamma_{2}(t)\right)} \approx \frac{c\left|z-z^{\prime}\right|}{\delta_{\Omega}\left(\gamma_{2}(t)\right)} .
$$

Then

$$
F_{K}^{\Omega}\left(\gamma_{2}(t) ; \gamma_{2}^{\prime}(t)\right) \leq \frac{c \alpha \delta_{\Omega}(z)}{\delta_{\Omega}(z)}=c \alpha,
$$

so

$$
K_{\Omega}\left(z,-\nu_{P}\right) \leq K_{\Omega}\left(z, z^{\prime}\right) \leq L^{\Omega}\left(\gamma_{2}(t)\right) \leq \int_{0}^{1} c \alpha d t=c \alpha .
$$

Case (iii) $\quad z z^{\prime}=\left(z z^{\prime}\right)_{T_{P}}+\left(z z^{\prime}\right)_{N_{P}}=z z^{*}+z z^{\prime}$. Consider the curve

$$
\gamma_{3}(t)= \begin{cases}\gamma_{1}(t), & 0 \leq t \leq t_{0}, \\ \gamma_{2}(t), & t_{0} \leq t \leq 1,\end{cases}
$$

where $\gamma_{1}(t)$ is the segment connecting z with z^{*} and $\gamma_{2}(t)$ is the segment connecting z^{*} with z^{\prime}.

Since γ_{3} is a piece-wise differentiable curve joining z to z^{\prime}, according to Remark 1.3, we have

$$
K_{\Omega}\left(z,-\nu_{P}\right) \leq K_{\Omega}\left(z, z^{\prime}\right) \leq L_{K}^{\Omega}\left(\gamma_{3}\right)
$$

But

$$
L_{K}^{\Omega}\left(\gamma_{3}\right)=\int_{0}^{1} F_{K}^{\Omega}\left(\gamma_{1}(t) ; \gamma_{1}^{\prime}(t)\right) d t+\int_{t_{0}}^{1} F_{K}^{\Omega}\left(\gamma_{2}(t) ; \gamma_{2}^{\prime}(t)\right) d t
$$

so by the previous two cases we have

$$
L_{K}^{\Omega}\left(\gamma_{3}\right) \leq c \sqrt{\alpha}+c \alpha=C(\alpha)
$$

Therefore

$$
K_{\Omega}\left(z,-\nu_{P}\right) \leq C(\alpha)
$$

Part 2. Assume $z \in U \cap \mathscr{K}_{B(\alpha)}(P)$, let us prove $z \in U \cap \mathfrak{U}_{\alpha}(P)$.
Let us prove the contrapositive. Take α very large. Suppose $z \notin \mathfrak{A}_{\alpha}(P)$; we want to show that $z \notin \mathscr{K}_{B(\alpha)}(P)$. We need to prove $K^{\Omega}\left(z,-\nu_{P}\right) \geq B(\alpha)$.

Let γ be a curve parametrized with respect to Euclidean arc length which connects z to $-\nu_{P}$, and let t_{0} be the Euclidean length of γ. Fix two constants $D(\alpha)>0$ and $M(\alpha)>0$ such that $D(\alpha)$ is a small number and $M(\alpha)$ is a large number, to be selected. We have three possibilities:
(i) $\delta_{\Omega}(\gamma(t))<D(\alpha) \delta_{\Omega}\left(z^{\prime}\right)$ for some t;
(ii) $\delta_{\Omega}(\gamma(t))>M(\alpha) \delta_{\Omega}\left(z^{\prime}\right)$ for some t;
(iii) $D(\alpha) \delta_{\Omega}\left(z^{\prime}\right) \leq \delta_{\Omega}(\gamma(t)) \leq M(\alpha) \delta_{\Omega}\left(z^{\prime}\right)$ for all t.

Case (i) We have

$$
L_{K}^{\Omega}(\gamma) \approx c \int_{0}^{t_{0}} \frac{\left|\gamma_{N_{P}}^{\prime}(t)\right|}{\delta_{\Omega}(\gamma(t))} d t+c \int_{0}^{t_{0}} \frac{\left|\gamma_{T_{p}^{\prime}}^{\prime}(t)\right|}{\sqrt{\delta_{\Omega}(\gamma(t))}} d t
$$

Define the curve

$$
\mu(t)=z^{\prime}+\int_{0}^{t} \gamma_{\tilde{N}_{P}}^{\prime}(s) d s
$$

where $\gamma_{\hat{N}_{P}}^{\prime}$ is the projection of $\gamma_{N_{P}}^{\prime}(s)$ onto the real normal at P. We have

$$
\mu^{\prime}(t)=\gamma_{N_{P}}^{\prime}(t) \text { for all } t .
$$

Let $\gamma\left(t_{1}\right), t_{1} \in\left[0, t_{0}\right]$, be such that $\delta_{\Omega}\left(\gamma\left(t_{1}\right)\right)<D(\alpha) \delta_{\Omega}\left(z^{\prime}\right)$ and let w be the projection of $\gamma\left(t_{1}\right)$ into the real normal. Now

$$
L_{K}^{\Omega}(\gamma) \approx c \int_{0}^{t_{0}} \frac{\left|\mu^{\prime}(t)\right|}{\delta_{\Omega}(\mu(t))} d t \geq c \int_{0}^{t_{0}} \frac{\left|\hat{\mu}^{\prime}(t)\right|}{\delta_{\Omega}(\hat{\mu}(t))} d t
$$

where the curve $\hat{\mu}$ is gotten from μ by discarding overlaps. Then

$$
\begin{aligned}
L_{K}^{\Omega}(\gamma) & \geq c \int_{0}^{t_{1}} \frac{\left|\hat{\mu}^{\prime}(t)\right|}{\delta_{\Omega}(\hat{\mu}(t))} \\
& \geq c L_{K}^{\Omega}\left(\text { segment connecting } z^{\prime} \text { to } w\right) \\
& \geq c \int_{0}^{\delta_{\Omega}\left(z^{\prime}\right)-\delta_{\Omega}(w)} \frac{d t}{\delta_{\Omega}(w)+1} \geq\left. c \ln \left\{\delta_{\Omega}(w)+t\right\}\right|_{0} ^{\delta_{\Omega}\left(z^{\prime}\right)-\delta_{\Omega}(w)} \\
& \geq c \ln \frac{\delta_{\Omega}\left(z^{\prime}\right)}{\delta_{\Omega}(w)}
\end{aligned}
$$

But $\delta_{\Omega}(w) \leq D(\alpha) \delta_{\Omega}\left(z^{\prime}\right)$, hence

$$
L_{K}^{\Omega}(\delta) \geq c \ln \frac{\delta_{\Omega}\left(z^{\prime}\right)}{D(\alpha) \delta_{\Omega}\left(z^{\prime}\right)} \geq c \ln \frac{1}{D(\alpha)}
$$

Case (ii) Again

$$
L_{K}^{\Omega}(\gamma) \geq c \int_{0}^{t_{0}} \frac{\left|\gamma_{N_{P}}^{\prime}(t)\right|}{\delta_{\Omega}(\gamma(t))} d t
$$

As in case (i) we define the curve

$$
\mu(t)=z^{\prime}+\int_{0}^{t} \gamma_{\hat{N}_{P}^{\prime}}^{\prime}(s) d s
$$

Following the same argument as above, we get

$$
L_{K}^{\Omega}(\gamma) \geq c L_{K}^{\Omega}\left(\text { segment connecting } z^{\prime} \text { to } w\right)
$$

where w is the projection of $\gamma\left(t_{2}\right), t_{2} \in\left[0 ; t_{0}\right]$ onto the real normal and

$$
\delta_{\Omega}\left(\gamma\left(t_{2}\right)\right)>M(\alpha) \delta_{\Omega}\left(z^{\prime}\right)
$$

Then

$$
\begin{aligned}
L^{\Omega}(\gamma) & \geq c \int_{0}^{\delta_{\Omega}(w)-\delta_{\Omega}\left(z^{\prime}\right)} \frac{d t}{\delta_{\Omega}\left(z^{\prime}\right)+t} \geq\left. c \ln \left\{\delta_{\Omega}(w)+t\right\}\right|_{0} ^{\delta_{\Omega}(w)-\delta_{\Omega}\left(z^{\prime}\right)} \\
& =c \ln \frac{\delta_{\Omega}(w)}{\delta_{\Omega}\left(z^{\prime}\right)} \geq c \ln \frac{M(\alpha) \delta_{\Omega}\left(z^{\prime}\right)}{\delta_{\Omega}\left(z^{\prime}\right)}=c \ln M(\alpha)
\end{aligned}
$$

Case (iii) We have to divide this case into two subcases:
(a) $|z-P| \geq \sqrt{\alpha \delta_{\Omega}(z)}$;
(b) $\left|(z-P)_{N_{P}}\right| \geq \alpha \delta_{\Omega}(z)$.

Case (iii.a) We claim that if $|z-P| \geq \sqrt{\alpha \delta_{\Omega}(z)}$ then

$$
\left|z-z^{*}\right| \geq T(\alpha) \sqrt{\delta_{\Omega}\left(z^{\prime}\right)}
$$

Since

$$
|z-P|^{2}=\left|z-z^{*}\right|^{2}+\left|z^{*}-P\right|^{2}
$$

we have

$$
\left|z-z^{*}\right| \geq \sqrt{\alpha \delta_{\Omega}(z)}-\left|z^{*}-P\right|
$$

but

$$
\left|z^{*}-P\right| \leq k \sqrt{\delta_{\Omega}\left(z^{\prime}\right)}, \quad 0<k<1 \text { and } \delta_{\Omega}\left(z^{\prime}\right) \approx \delta_{\Omega}(z)
$$

so

$$
\left|z-z^{*}\right| \geq \sqrt{\alpha c \delta_{\Omega}\left(z^{\prime}\right)}-k \sqrt{\delta_{\Omega}\left(z^{\prime}\right)}=T(\alpha) \sqrt{\delta_{\Omega}\left(z^{\prime}\right)}
$$

and $T(\alpha)>0$ since we assume α very large.
Now

$$
L_{K}^{\Omega}(\gamma) \geq c \int_{0}^{t_{0}} \frac{\left|\gamma_{T_{P}}^{\prime}(t)\right|}{\sqrt{\delta_{\Omega}(\gamma(t))}} d t
$$

We define the curve

$$
\mu_{2}(t)=z+\int_{0}^{t} \gamma_{T_{P}}^{\prime}(s) d s
$$

We have $\mu_{2}^{\prime}(t)=\gamma_{T_{P}}^{\prime}(t)$ for all t. Then

$$
\begin{aligned}
L_{K}^{\Omega}(\gamma) & \geq c \int_{0}^{t_{0}} \frac{\left|\mu_{2}^{\prime}(t)\right|}{\sqrt{\delta_{\Omega}\left(\mu_{2}(t)\right)}} d t \geq c L^{\Omega}\left(\mu_{2}\right) \\
& \geq \frac{c\left|z-z^{*}\right|}{\sqrt{D(\alpha) \delta_{\Omega}\left(z^{\prime}\right)}} \geq \frac{c T(\alpha) \sqrt{\delta_{\Omega}\left(z^{\prime}\right)}}{\sqrt{D(\alpha) \delta_{\Omega}\left(z^{\prime}\right)}}=\frac{c T(\alpha)}{\sqrt{D(\alpha)}} .
\end{aligned}
$$

Case (iii.b) We claim that if $\left|(z-P)_{N_{P}}\right|>\alpha \delta_{\Omega}(z)$ then

$$
\left|z^{*}-z^{\prime}\right|>S(\alpha) \delta_{\Omega}(z)
$$

We have $\left|(z-P)_{N_{P}}\right|=\left|z^{*}-P\right|$ and $\left|z^{*}-P\right|^{2}=\left|z^{*}-z^{\prime}\right|^{2}+\left|z^{\prime}-P\right|^{2}$ so

$$
\left|z^{*}-z^{\prime}\right|>\alpha \delta_{\Omega}(z)-\left|z^{\prime}-P\right| .
$$

But

$$
\left|z^{\prime}-P\right|=\delta_{\Omega}\left(z^{\prime}\right) \quad \text { and } \quad \delta_{\Omega}\left(z^{\prime}\right) \approx \delta_{\Omega}(z)
$$

so

$$
\left|z^{*}-z^{\prime}\right|>\alpha c \delta_{\Omega}\left(z^{\prime}\right)-\delta_{\Omega}\left(z^{\prime}\right)=S(\alpha) \delta_{\Omega}(z)
$$

But since we assume α very large then $S(\alpha)>0$.
Now

$$
\begin{aligned}
L_{K}^{\Omega}(\gamma) & \geq c \int_{0}^{t_{0}} \frac{\left|\gamma_{N_{P}}^{\prime}(t)\right|}{\delta_{\Omega}(\gamma(t))} d t \\
& \approx c \int_{0}^{t_{0}} \frac{\left|\gamma_{N_{P}}^{\prime}(t)\right|}{D(\alpha) \delta_{\Omega}\left(z^{\prime}\right)} d t \geq \frac{c\left|z^{*}-z^{\prime}\right|}{D(\alpha) \delta_{\Omega}\left(z^{\prime}\right)} \geq \frac{c S(\alpha) \delta_{\Omega}\left(z^{\prime}\right)}{D(\alpha) \delta_{\Omega}\left(z^{\prime}\right)}=\frac{c S(\alpha)}{D(\alpha)}
\end{aligned}
$$

Then

$$
B(\alpha)=\sup \left\{c \ln M(\alpha) ; c \ln \frac{1}{D(\alpha)} ; \frac{c T(\alpha)}{\sqrt{D(\alpha)}} ; \frac{c S(\alpha)}{D(\alpha)}\right\}
$$

Then we have proved that if $z \notin \mathfrak{U}_{\alpha}(P)$ then $K\left(z, \nu_{P}\right)>B(\alpha)$, as desired.
Remark 2.1. The constants $B(\alpha)$ and $C(\alpha)$ hold for all $P^{\prime} \in \partial \Omega$ which are sufficiently near to P.

Remark 2.2. An alternative way to prove Theorem 1 would be the following:

If Ω is the unit ball in \mathbf{C}^{n}, then we can exploit the transitivity of the automorphism group to get a quick proof of the result. Now if Ω is strongly pseudoconvex domain then we can use the approximation ideas of Graham [3a] to get the full result.

3. Fatou's theorem on strongly pseudoconvex domains

As an application of Theorem 1 we can give a new statement of Fatou's theorem on strongly pseudoconvex domains in \mathbf{C}^{n}.

Let us recall the classical Fatou's theorem.

Definition 3.1. Let $\Omega \subset \subset \mathbf{C}^{n}$ be a domain with defining function ρ. Let $\Omega_{\varepsilon}=\left\{z \in \mathbf{C}^{n}: \rho(z)<-\varepsilon\right\}$. For $0<p<\infty$ we set

$$
\begin{aligned}
& H^{p}(\Omega)=\left\{f \text { holomorphic in } \Omega: \sup _{\varepsilon>0} \int_{\partial \Omega_{e}}|f(z)|^{p} d \mu_{\varepsilon}=\|f\|_{H^{p}}^{p}<\infty\right\} \\
& H^{\infty}(\Omega)=\left\{f \text { holomorphic in } \Omega: \sup _{z \in \Omega}|f|<\infty\right\}
\end{aligned}
$$

where $d \mu_{\varepsilon}$ is the area measure on $\partial \Omega_{\varepsilon}$.
We also define the Nevalinna class $N(\Omega)$ by

$$
N(\Omega)=\left\{f \text { holomorphic in } \Omega: \sup _{\varepsilon>0} \int_{\partial \Omega_{\varepsilon}} \log ^{+}|f(z)| d \mu_{\varepsilon}<\infty\right\}
$$

where $\log ^{+} u=\max \{0, \log u\}$.
Fatou's Theorem. Let $0<p \leq \infty$. Let $\alpha>1$. If $\Omega \subset \subset \mathbf{C}^{n}$ has C^{2} boundary and $f \in H^{p}(\Omega)$, then for almost every $P \in \partial \Omega$,

$$
\lim _{\mathfrak{N}_{\alpha}(P) \ni z \rightarrow P} f(z)
$$

exists.
For details see [11].
The results in the unit ball $B \subseteq \mathbf{C}^{n}$ and on certain other classical domains were obtained by Koranyi [5] and all the principal ideas for arbitrary bounded domains in \mathbf{C}^{n} with C^{2} boundary are due to Stein [11].

Now, given $\Omega \subset \subset \mathbf{C}^{n}$ a strongly pseudoconvex domain and using the fact that for all $P \in \partial \Omega, \mathscr{U}_{\alpha}(P) \approx \mathscr{K}_{\beta}(P)$, we obtain the following invariant form of Fatou's theorem:

Theorem 3.1. Let $\Omega \subset \subset \mathbf{C}^{n}$ be a strongly pseudoconvex domain with C^{2} boundary. Let $0<p \leq \infty$ and $\beta>1$. Let $f \in H^{p}(\Omega)$. Then for almost every $P \in \partial \Omega$,

$$
\lim _{\mathscr{K}_{\beta}(P) \ni z \rightarrow P} f(z)
$$

exists.
Also, Stein [11] got the analogue of Fatou's theorem for the Nevanlinna class. Therefore we have the following result:

Theorem 3.2. Let $\Omega \subset \subset \mathbf{C}^{n}$ be a strongly pseudoconvex domain with C^{2} boundary. Let $0<p \leq \infty$ and $\beta>1$. Let $f \in N(\Omega)$. Then for almost every $P \in \partial \Omega$,

$$
\lim _{\mathscr{\varkappa}_{\beta}(P) \ni z \rightarrow P} f(z)
$$

exists.

4. Pseudoconvex domains of finite type in $\mathbf{C}^{\mathbf{2}}$

Definition 4.1. Let Ω be a smoothly bounded domain in \mathbf{C}^{2} with defining function ρ. We define two holomorphic vector fields T_{1} and T_{2} by

$$
T_{1}=\frac{\partial \rho}{\partial z_{2}} \frac{\partial}{\partial z_{1}}-\frac{\partial \rho}{\partial z_{1}} \frac{\partial}{\partial z_{2}}
$$

and

$$
T_{2}=\frac{\partial \rho}{\partial \bar{z}_{1}} \frac{\partial}{\partial z_{1}}+\frac{\partial \rho}{\partial \bar{z}_{2}} \frac{\partial}{\partial z_{2}}
$$

Thus the vector fields T_{1} and T_{2} are respectively tangent and transverse to the boundary of Ω. For all $z \in \Omega$, we define the Levi function $\lambda(z)$ by

$$
\lambda(z)=\left\langle\partial \rho ;\left[T_{1}, \bar{T}_{1}\right]\right\rangle(z)
$$

where $\left[T_{1}, \bar{T}_{1}\right]=T_{1} \bar{T}_{1}-\bar{T}_{1} T_{1}$ (Lie bracket).
Let \mathscr{L}_{0} be the module spanned by T_{1} and \bar{T}_{1} over the C^{∞} functions and let \mathscr{L}_{k+1} be the module spanned by elements of \mathscr{L}_{k} and elements of the form [F, T_{1}] or $\left[F, \bar{T}_{1}\right]$ with $F \in \mathscr{L}_{k}$.

Definition 4.2. A point $P \in \partial \Omega$ is said to be of type $m(m \geq 1)$ if

$$
\langle\partial \rho(P), F(P)\rangle=0 \quad \text { for all } F \in \mathscr{L}_{m-1}
$$

while

$$
\langle\partial \rho(P), F(P)\rangle \neq 0 \quad \text { for some } F \in \mathscr{L}_{m}
$$

Definition 4.2. If $\Omega \subset \subset \mathbf{C}^{2}$ is a pseudoconvex domain and $P \in \partial \Omega$ is of type m, then we say that $\partial \Omega$ is pseudoconvex of type m at P.

Remark 4.3. If $P \in \partial \Omega$ is strongly pseudoconvex point, then P is of type 1.

Definition 4.4. Let $\left(i_{0}, i_{1}, \ldots, i_{m}\right)$ be an $(m+1)$-tuple of zeros and ones; we define the vector field $T_{1}^{\left(i_{0}, \ldots, i_{m}\right)}$ inductively by

$$
T_{1}^{(0)}=T_{1}, \quad T_{1}^{(1)}=\bar{T}_{1}
$$

and

$$
T_{1}^{\left(i_{0}, \ldots, i_{m}\right)}=\left[T_{1}, T_{1}^{\left(i_{0}, \ldots, i_{m-1}\right)}\right]
$$

Then

$$
\lambda^{\left(i_{0}, \ldots, i_{m}\right)}(P)=\left\langle\partial \rho ; T_{1}^{\left(i_{0}, \ldots, i_{m}\right)}\right\rangle(P)
$$

Remark 4.5. It can be proved, see [4], that the type of a given point P must be an odd integer if the boundary of Ω is pseudoconvex near P.

Remark 4.6. Let us define the function $C(z)=\left(T_{1} \bar{T}_{1}\right)^{k-1} \lambda(z)$. It is possible to show that when Ω is pseudoconvex near a point P in the boundary, then P is of type $2 m-1$ if and only if $C_{m}(z) \neq 0$ and $C_{k}(z)=0$ for all k, $1 \leq k<m$; for details see [4].

Definition 4.7. Let $X=a_{1} T_{1}+a_{2} T_{2}$ be a tangent vector of type $(1,0)$ at a point z in Ω. Define $M(z ; X)$ by

$$
M_{m}(z ; X)=\left|a_{2}\right||\rho(z)|^{-1}+\left|a_{1}\right| \sum_{k=1}^{m}\left|C_{k}(z)\right|^{1 / 2 k}|\rho(z)|^{-1 / 2 k}
$$

Now we can state a theorem due to Catlin which allows us to estimate the Kobayashi metric; for details see [3].

Theorem 4.8. Let Ω be smoothly bounded domain in \mathbf{C}^{2}. Let P be a given point in the boundary of Ω; assume that P is of type $2 m-1$. Then there exist a neighborhood U about P and positive constants c and C such that for every tangent vector $X=a_{1} T_{1}+a_{2} T_{2}$ at a point $z \in U \cap \Omega$,

$$
c M_{m}(z ; X) \leq F_{K}^{\Omega}(z ; K) \leq C M_{m}(z ; X)
$$

Following the ideas introduced by Nagel, Stein and Wainger [10], we can define balls on the boundary of a smoothly bounded domain in \mathbf{C}^{2}.

First, we consider a domain $\Omega \subseteq \mathbf{R}^{4}$ with smooth boundary and finite type m. Let U be a neighborhood in $\partial \Omega$. Let X_{1} and X_{2} be smooth real vector fields defined in U and T be a non-vanishing transverse vector field in U, so that X_{1}, X_{2} and T span the tangent space of each point of U.

Following Kohn [4], we define

$$
\Lambda_{k}(x)=\left(\sum\left\{\lambda^{i_{0} \cdots i_{n}}(x)\right\}^{2}\right)^{1 / 2}
$$

where the sum is over the set of generators of \mathscr{Y}_{k}, the ideal over $C^{\infty}(\Omega)$ generated by the functions $\lambda^{i_{0} \cdots i_{n}}$ with $n \leq k$. And let

$$
\Lambda_{\delta}(x)=\sum_{k=1}^{m} \delta^{k} \Lambda_{K}(x)
$$

assuming that Ω is of finite type m.
Definition 4.9. Let

$$
\begin{aligned}
C_{\delta}^{4}= & \{\varphi:[0,1] \rightarrow \partial \Omega / \varphi \text { is Lipschitz }, \\
& \varphi^{\prime}(t)=\sum_{j=1}^{2} a_{j}(t) X_{j}(\varphi(t))+b(t) T(\varphi(t)) \\
& \left.\left|a_{j}(t)\right| \leq \delta,|b(t)| \leq \Lambda_{\delta}(\varphi(t))\right\} \\
C_{\delta}^{5}= & \{\varphi:[0,1] \rightarrow \partial \Omega / \varphi \text { is Lipschitz } \\
& \varphi^{\prime}(t)=\sum_{j=1}^{2} a_{j} X_{j}(\varphi(t))+b T(\varphi(t)) \\
& \left.a_{j}, b \in \mathbf{R},\left|a_{j}\right| \leq \delta,|b(t)| \leq \Lambda_{\delta}(\varphi(0))\right\}
\end{aligned}
$$

In order to keep the notation in [8], we use $C_{\delta}^{4}, C_{\delta}^{5}$. The curves $C_{\delta}^{1}, C_{\delta}^{2}$ and C_{δ}^{3} will not be used in this work.

We can define corresponding distance and balls as follows.
DEFinition 4.10. Given $x_{0}, y_{0} \in \partial \Omega$ we say $\rho_{j}\left(x_{0}, y_{0}\right)<\delta, j=4$, 5, if there exists $\varphi_{j} \in C_{\delta}^{j}$ with $\varphi_{j}(0)=x_{0}, \varphi_{j}^{(1)}=y_{0}$.

Also we define $B_{j}\left(x_{0}, \delta\right)=\left\{y_{0} \in \partial \Omega: \rho\left(x_{0}, y_{0}\right)<\delta\right\}$.
It was proven in [8] that the balls B_{4} and B_{5} are equivalent.
From R. O. Wells [12], we have the following:

If V is a real vector space equipped with a complex structure J then V can be made into a complex vector space V_{J} by introducing the complex scalar multiplication

$$
(\alpha+i \beta) v=\alpha v+\beta J v, \quad \alpha, \beta \in \mathbf{R}, v \in V, i=\sqrt{-1}
$$

Alternatively, $V \otimes_{\mathbf{R}} \mathbf{C}$ is a complex vector space and J can be defined on $V \otimes_{\mathrm{R}} \mathbf{C}$ by

$$
J(v \otimes \alpha)=J(v) \otimes \alpha \quad \text { for } v \in V, \alpha \in \mathbf{C}
$$

This extended J has eigenvalues $+i$ and $-i$, since $J^{2}=-I$.
The $+i$ eigenspace is called $V^{1,0}$.
The $-i$ eigenspace is called $V^{0,1}$.
Observe that, in the setup where $V=\mathbf{R}^{2 n}$, then $V^{1,0}$ corresponds to span

$$
\left\{\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{n}}\right\}
$$

and $V^{0,1}$ corresponds to span

$$
\left\{\frac{\partial}{\partial \bar{z}_{1}}, \ldots, \frac{\partial}{\partial \bar{z}_{n}}\right\} .
$$

It can be checked that the complex vector space obtained from V by means of the complex structure J, denoted by V_{J} is \mathbf{C}-linearly isomorphic to $V^{1,0}$. This means we can canonically associate to any element of the "real" vector space a holomorphic vector space. This way we do it in the Euclidean space is by

$$
\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right) \rightarrow\left(a_{1}+i b_{1}\right) \frac{\partial}{\partial z_{1}}+\cdots+\left(a_{n}+i b_{n}\right) \frac{\partial}{\partial z_{n}}
$$

Let $\Omega \subset \subset \mathbf{C}^{2}$ be a domain and U be a neighborhood in $\partial \Omega$. Let X_{1} be any complex tangent vector field on U. Let $X_{2}=J X_{1}$. Let N be the vector field of unit outward normal vectors to $\partial \Omega$ on U and $T=-J N$.

Then, to the vector field $a_{1} X_{1}+a_{2} X_{2}+b T$ on U, where $a_{1}, a_{2}, b \in \mathbf{R}$, corresponds the holomorphic vector field

$$
a_{1} T_{1}+i a_{2} T_{2}+b T_{2}=\left(a_{1}+i a_{2}\right) T_{1}+b T_{2} \text { on } U
$$

Then we can define the curves C_{δ}^{4} and C_{δ}^{5} in terms of holomorphic vector fields by

$$
\begin{aligned}
C_{\delta}^{4}= & \{\varphi:[0,1] \rightarrow \partial \Omega / \varphi \text { is Lipschitz; } \\
& \varphi^{\prime}(t)=a_{1}(t) T_{1}(\varphi(t))+a_{2}(t) T_{2}(\varphi(t)) \\
& \left|a_{1}(t)\right|<\delta,\left|a_{2}(t)\right|<\Lambda_{\delta}(\varphi(t)\} \\
C_{\delta}^{5}= & \{\varphi:[0,1] \rightarrow \partial \Omega / \varphi \text { is Lipschitz; } \\
& \varphi^{\prime}(t)=a_{1} T_{1}(\varphi(t))+a_{2} T_{2}(\varphi(t)) \\
& a_{1}, a_{2} \in \mathbf{C},\left|a_{1}\right|<\delta,\left|a_{2}\right|<\Lambda_{\delta}(\varphi(0)\}
\end{aligned}
$$

So we have equivalent notations of distances and balls.
We can define approach regions in $\Omega \subset \subset \mathbf{C}^{2}$ in terms of the families of ball on $\partial \Omega$. By B we mean any of the equivalent balls.

Definition 4.11. Let $\tilde{\Omega}=\bar{\Omega} \cap$ (small neighborhood of $P \in \partial \Omega$). Let π be any smooth projection from Ω to $\partial \Omega$. For $z \in \Omega$ set

$$
D(z)=\inf _{1 \leq k \leq m-1}\left\{\frac{\delta_{\Omega}(z)}{\Lambda_{k}(\pi(z))}\right\}^{1 / k}
$$

Definition 4.12. Given $\sigma>0, P \in \partial \Omega$, then

$$
\begin{aligned}
\mathscr{A}_{\sigma}(P) & =\{z \in \tilde{\Omega}: \pi(z) \in B(P, \sigma D(z))\} \\
& =\left\{z \in \tilde{\Omega}: \rho(\pi(z), P)<\sigma \inf _{1 \leq k \leq m-1}\left\{\frac{\delta_{\Omega}(z)}{\Lambda_{k}(\pi(z))}\right\}^{1 / k}\right\}
\end{aligned}
$$

where ρ denotes any of the equivalent metrics ρ_{4} or ρ_{5} and B any of the equivalent balls B_{4} or B_{5}.

5. Comparability of the Kobayashi approach region and the approach region $\mathscr{A}_{\sigma}(P)$

Theorem 5.1. Let $\Omega \subset \subset \mathbf{C}^{2}$ be a pseudoconvex domain of finite type. Let P be a given point in the boundaray of Ω, and assume that P is of type $2 m-1$.

Then given $\sigma>1$ there are two positive constants, $B=B(\sigma)$ and $C=C(\sigma)$, which depend on Ω and are functions of σ, and an open neighborhood U of P such that

$$
U \cap \mathscr{K}_{C(\sigma)}(P) \subseteq U \cap \mathscr{A}_{\sigma}(P) \subseteq U \cap \mathscr{K}_{B(\sigma)}(P)
$$

Proof. Let U be a neighborhood of P where Catlin's estimates hold.
Part 1. Assume $z_{0} \in U \cap \mathscr{A}_{\sigma}(P)$; we want to prove $z_{0} \in U \cap \mathscr{K}_{B(\sigma)}(P)$.
If $z_{0} \in U \cap \mathscr{A}_{\sigma}(P)$, then $\pi\left(z_{0}\right) \in B\left(P, \sigma D\left(z_{0}\right)\right)$ and this implies there exists a curve $\beta:[0,1] \rightarrow \partial \Omega$, Lipschitz with $\beta(0)=P, \beta(1)=\pi\left(z_{0}\right)$ and

$$
\beta^{\prime}(t)=a_{1} T_{1}(\beta(t))+a_{2} T_{2}(\beta(t))
$$

where $\left|a_{1}\right|<\sigma D\left(z_{0}\right)$ and $\left|a_{2}\right|<\Lambda_{\sigma D\left(z_{0}\right)}(\beta(0))$.
Consider the curve in $\Omega \cap U$, defined by

$$
\hat{\beta}(t)=\beta(t)-\delta_{\Omega}(z) \nu_{\beta(t)} .
$$

Then, applying Catlin's estimates we have

$$
\begin{aligned}
K\left(z_{0},-\nu_{P}\right) \leq & L_{K}^{\Omega}(\hat{\beta}(t)) \\
= & \int_{0}^{1} F_{K}^{\Omega}\left(\hat{\beta}(t), \hat{\beta}^{\prime}(t)\right) d t \\
\leq & \int_{0}^{1} C M_{m}\left(\hat{\beta}(t) ; a_{1} T_{1}(\hat{\beta}(t))+a_{2} T_{2}(\hat{\beta}(t))\right) d t \\
\leq & C \int_{0}^{1}\left\{\left|a_{2}\right||\rho(\hat{\beta}(t))|^{-1}\right. \\
& \left.\quad+\left|a_{1}\right| \sum_{k=1}^{m-1}\left|C_{k}(\hat{\beta}(t))\right|^{1 / 2 k}|\rho(\hat{\beta}(t))|^{-1 / 2 k}\right\} d t
\end{aligned}
$$

where ρ is a defining function for Ω.
Since Ω is a domain of finite type, let us assume $\pi\left(z_{0}\right)$ is of type $2 s-1$ with $s \leq m$. Then $\alpha=\Lambda_{m}\left(\pi\left(z_{0}\right)\right) \neq 0$. Therefore

$$
\begin{aligned}
\left|a_{2}\right| & \leq \sum_{k=1}^{m-1}\left(\sigma D\left(z_{0}\right)\right)^{k} \Lambda_{k}(P) \leq \sum_{k=s}^{m-1}\left\{\sigma\left[\frac{\delta_{\Omega}\left(z_{0}\right)}{\alpha}\right]^{1 / s}\right\}^{k} \Lambda_{k}(P) \\
& \leq \sigma^{m} \Lambda_{m-1}(P) \sum_{k=s}^{m-1}\left[\frac{\delta_{\Omega}\left(z_{0}\right)}{\alpha}\right]^{k / s} \\
\left|a_{1}\right| & \leq \sigma\left[\frac{\delta_{\Omega}\left(z_{0}\right)}{\Lambda_{s}\left(\pi\left(z_{0}\right)\right)}\right]^{1 / s} \leq \sigma\left[\frac{\delta_{\Omega}\left(z_{0}\right)}{\alpha}\right]^{1 / s} .
\end{aligned}
$$

We also have $|\rho(\hat{\beta}(t))| \approx \delta_{\Omega}\left(z_{0}\right)$ for all t. Hence,

$$
\begin{aligned}
K\left(z_{0},-\nu_{P}\right) \leq & C \int_{0}^{1}\left\{\sigma^{m-1} \Lambda_{m-1}(P)\left[\sum_{k=s}^{m-1}\left[\frac{\delta_{\Omega}\left(z_{0}\right)}{\alpha}\right]^{k / s}\right] \delta_{\Omega}^{-1}\left(z_{0}\right)\right. \\
& \left.+\sigma\left[\frac{\delta_{\Omega}\left(z_{0}\right)}{\alpha}\right]^{1 / s}\left[\sum_{k=s}^{m-1}\left|C_{k}(\hat{\beta}(t))\right|^{1 / 2 k} \delta_{\Omega}^{-1 / 2 k}\left(z_{0}\right)\right]\right\} d t \\
\leq & C \frac{\sigma^{m}}{\alpha} \Lambda_{m-1}(P) \sum_{k=s}^{m-1} \delta_{\Omega}^{k / s-1}\left(z_{0}\right) \\
& +C \sigma \alpha^{-1 / s} \delta_{\Omega}^{1 / 2 s}\left(z_{0}\right) \int_{0}^{1} \sum_{k=s}^{m-1}\left|C_{k}(\hat{\beta}(t))\right|^{1 / 2 k} d t \\
\leq & C \frac{\sigma^{m}}{\alpha} \Lambda_{m-1}(P)+C \sigma \alpha^{-1 / s}=B(\sigma)
\end{aligned}
$$

Part 2. Assume $z_{0} \in U \cap \mathscr{K}_{C(\sigma)}(P)$; we want to prove $z_{0} \in U \cap \mathscr{A}_{\sigma}(P)$. Let us prove the contrapositive.
Assume $z_{0} \notin U \cap \mathscr{A}_{\sigma}(P)$; we will prove that $K\left(z_{0},-\nu_{P}\right)>C(\sigma)$.
If $z_{0} \notin U \cap \mathscr{A}_{\sigma}(P)$ then $\pi\left(z_{0}\right) \notin B\left(P, \sigma D\left(z_{0}\right)\right)$. Therefore for any curve $\varphi:[0,1] \rightarrow \partial \Omega$, Lipschitz with $\varphi(0)=P$ and $\varphi(1)=\pi\left(z_{0}\right)$ such that $\varphi^{\prime}(t)=a_{1} T_{1}(\varphi(t))+a_{2} T_{2}(\varphi(t))$ we have

$$
\left|a_{1}\right|>\sigma D\left(z_{0}\right) \quad \text { or } \quad\left|a_{2}\right|>\sum_{k=1}^{m-1} \sigma D\left(z_{0}\right)^{k} \Lambda_{k}(P)
$$

Take a curve $\gamma:[0,1] \rightarrow \Omega$ such that the Euclidean length of γ is t_{0} and it connects z_{0} with $-\nu_{P}$. Then the curve

$$
\Psi(t)=\gamma(t)+\delta_{\Omega}(\gamma(t)) \nu_{\pi(\gamma(t))}
$$

is a curve in $\partial \Omega$ such that $\Psi(0)=P$ and $\Psi\left(t_{0}\right)=\pi\left(z_{0}\right)$.
Fix two constants $N(\sigma)>0$ and $M(\sigma)>0$ such that $N(\sigma)$ is a small number and $M(\sigma)$ is a large number.

There are three possibilities:
(i) $\delta_{\Omega}(\gamma(t)) \approx \delta_{\Omega}\left(z_{0}\right)$ for all $t \in[0 ; 1]$;
(ii) $\delta_{\Omega}(\gamma(t))<N(\sigma) \delta_{\Omega}\left(z_{0}\right)$ for some t;
(iii) $\delta_{\Omega}(\gamma(t))>M(\sigma) \delta_{\Omega}\left(z_{0}\right)$ for some t.

Case (i) Since γ is parametrized with respect to Euclidean arc length then $\left|\gamma^{\prime}(t)\right|=1$ for all t and

$$
\Psi^{\prime}(t)=\gamma^{\prime}(t)+\delta_{\Omega}^{\prime}(\gamma(t)) \nu_{\pi(\gamma(t))}+\delta_{\Omega}(\gamma(t)) \nu_{\pi(\gamma(t))}^{\prime}
$$

Since $\delta_{\Omega}(\gamma(t)) \approx \delta_{\Omega}\left(z_{0}\right)$, the second and third terms of $\Psi^{\prime}(t)$ are negligible, so

$$
\begin{aligned}
L_{K}^{\Omega}(\gamma(t))= & \int_{0}^{t_{0}} F_{K}^{\Omega}\left(\gamma(t) ; \gamma^{\prime}(t)\right) d t \\
\geq & C \int_{0}^{t_{0}} M_{m-1}\left(\gamma(t) ; \gamma^{\prime}(t)\right) d t \\
= & C \int_{0}^{t_{0}}\left\{\left|a_{2}\right| \mid \rho\left(\left.\gamma(t)\right|^{-1}\right.\right. \\
& \left.\quad+\left|a_{1}\right| \sum_{k=1}^{m-1}\left|C_{k}(\delta(t))\right|^{1 / 2 k}|\rho(\gamma(t))|^{-1 / 2 k}\right\} d t
\end{aligned}
$$

Assume that $\pi\left(z_{0}\right)$ is a point of type $2 s-1$ with $s \leq m$. We have

$$
\left|a_{2}\right|>\sigma^{s} \frac{\delta_{\Omega}\left(z_{0}\right)}{\Lambda_{s}\left(\pi\left(z_{0}\right)\right)} \Lambda_{s}(P)
$$

or

$$
\left|a_{1}\right|>\sigma\left[\frac{\delta_{\Omega}\left(z_{0}\right)}{\Lambda_{s}\left(\pi\left(z_{0}\right)\right)}\right]^{1 / s}
$$

so

$$
\begin{aligned}
L_{K}^{\Omega}(\gamma(t)) & \geq C \int_{0}^{t_{0}} \sigma^{s} \frac{\delta_{\Omega}\left(z_{0}\right)}{\Lambda_{s}\left(\pi\left(z_{0}\right)\right)} \delta_{\Omega}^{-1}\left(z_{0}\right) \Lambda_{s}(P) d t \\
& =C \sigma^{s} \Lambda_{s}\left(\Pi\left(z_{0}\right)\right) t_{0} \Lambda_{s}^{-1}(P) \\
& =h(\sigma)
\end{aligned}
$$

or

$$
\begin{aligned}
L_{K}^{\Omega}(\gamma(t)) & \geq C \int_{0}^{t_{0}} \sigma \delta_{\Omega}^{1 / s}\left(z_{0}\right) \Lambda_{s}^{-1 / s}\left(\pi\left(z_{0}\right)\right)\left|C_{s}(\gamma(t))\right|^{1 / 2 s} \delta_{\Omega}^{-1 / 2 s}\left(z_{0}\right) d t \\
& =C \sigma \delta_{\Omega}^{1 / 2 s}\left(z_{0}\right) \int_{0}^{t_{0}}\left|C_{s}(\gamma(t))\right|^{1 / 2 s} d t \\
& =f(\sigma)
\end{aligned}
$$

Case (ii) We have

$$
\gamma^{\prime}(t)=c_{1} T_{1}(\gamma(t))+c_{2} T_{2}(\gamma(t))
$$

where

$$
\begin{gathered}
c_{2}=\left\langle\gamma^{\prime}(t) ; T_{2}(\gamma(t))\right\rangle \approx \gamma_{N_{P}}^{\prime}(t), \\
L_{K}^{\Omega}(\gamma(t))=\int_{0}^{t_{0}} F_{K}^{\Omega}\left(\gamma(t) ; \gamma^{\prime}(t)\right) d t \geq C \int_{0}^{t_{0}} M_{m-1}\left(\gamma(t) ; \gamma^{\prime}(t)\right) d t \\
=C \int_{0}^{t_{0}}\left|c_{2}\right||\rho(\gamma(t))|^{-1} d t \geq C \int_{0}^{t_{0}} \frac{\left|\gamma_{N_{P}}(t)\right|}{\delta_{\Omega}(\gamma(t))} d t
\end{gathered}
$$

Define the curve

$$
\mu(t)=z_{0}^{\prime}+\int_{0}^{t} \gamma_{\tilde{N}_{P}^{\prime}}(s) d s, \quad 0 \leq t \leq t_{0}
$$

where $\gamma_{\hat{N}_{P}}^{\prime}(s)$ is the projection of $\gamma_{N_{P}}^{\prime}(s)$ onto the real normal at P and z_{0} is the projection of z_{0} onto $-\nu_{P}$. We have $\mu^{\prime}(t)=\gamma_{\hat{N}_{P}}^{\prime}(t)$ for all t. Then

$$
L^{\Omega}(\gamma(t)) \geq C \int_{0}^{t_{0}} \frac{\left|\mu^{\prime}(t)\right|}{\delta_{\Omega}(\mu(t))} d t \geq \int_{0}^{t_{0}} \frac{\left|\hat{\mu}^{\prime}(t)\right|}{\delta_{\Omega}(\hat{\mu}(t))} d t
$$

where $\hat{\mu}$ is gotten from μ by discarding overlaps.
Let $\gamma\left(t_{1}\right)$ be such that $\delta_{\Omega}\left(\gamma\left(t_{1}\right)\right)<N(\sigma) \delta_{\Omega}\left(z_{0}\right)$ and m is the projection of $\gamma\left(t_{1}\right)$ onto the real normal.

Then

$$
\begin{aligned}
L_{K}^{\Omega}(\gamma(t)) & \geq C L_{K}^{\Omega}\left(\text { segment connecting } m \text { with } z_{0}^{\prime}\right) \\
& \left.\approx C \int_{0}^{\delta_{\Omega}\left(z_{0}^{\prime}\right)-\delta_{\Omega}(m)} \frac{d t}{\delta_{\Omega}(m)+t} \approx C \ln \left\{\delta_{\Omega}(m)+t\right\}\right|_{0} ^{\delta_{\Omega}\left(z_{0}^{\prime}\right)-\delta_{\Omega}(m)} \\
& \approx C \ln \frac{\delta_{\Omega}\left(z_{0}^{\prime}\right)}{\delta_{\Omega}(m)}
\end{aligned}
$$

But $\delta_{\Omega}(m) \leq N(\sigma) \delta_{\Omega}\left(z_{0}\right) \leq N(\sigma) \delta_{\Omega}\left(z_{0}^{\prime}\right)$ since $\delta_{\Omega}\left(z_{0}\right) \leq \delta_{\Omega}\left(z_{0}^{\prime}\right)$. So

$$
L_{K}^{\Omega}(\gamma) \geq C \ln \frac{\delta_{\Omega}\left(z_{0}^{\prime}\right)}{N(\sigma) \delta_{\Omega}(m)} \geq C \ln \frac{1}{N(\sigma)}
$$

Case (iii) Fixing the large constant $M(\sigma)$ such that $\delta_{\Omega}(\gamma(t)) \geq$ $M(\sigma) \delta_{\Omega}\left(z_{0}\right)$ for some t, we follow the same argument applied in case (ii). Therefore

$$
L_{K}^{\Omega}(\gamma(t))=C \int_{0}^{t_{0}} \frac{\left|\gamma_{N_{P}}(t)\right|}{\delta_{\Omega}(\gamma(t))} d t
$$

and we can define the curve

$$
\mu_{1}(t)=z_{0}^{\prime}+\int_{0}^{t} \gamma_{\hat{N}_{P}}^{\prime}(s) d s, \quad 0 \leq t \leq t_{0}
$$

where $\gamma_{N_{P}}^{\prime}(s)$ is the projection of $\gamma_{N_{P}}^{\prime}(s)$ onto the real normal at P and z_{0}^{\prime} is the projection of z_{0} onto $-\nu_{P}$. We have $\mu^{\prime}(t)=\gamma_{\hat{N}_{P}}^{\prime}(t)$ for all t. Then

$$
L^{\Omega}(\gamma(t)) \geq C \int_{0}^{t_{0}} \frac{\left|\mu^{\prime}(t)\right|}{\delta_{\Omega}(\mu(t))} d t \geq C \int_{0}^{t_{0}} \frac{\left|\hat{\mu}^{\prime}(t)\right|}{\delta_{\Omega}(\hat{\mu}(t))} d t
$$

where μ is gotten from μ by discarding overlaps.
Let $\gamma\left(t_{2}\right)$ be such that $\delta_{\Omega}\left(\gamma\left(t_{2}\right)\right)>M(\sigma) \delta_{\Omega}\left(z_{0}\right)$ and let m be the projection of $\gamma\left(t_{2}\right)$ onto the real normal. Then

$$
\begin{aligned}
L_{K}^{\Omega}(\gamma(t)) & \geq C L_{K}^{\Omega}\left(\text { segment connecting } z_{0}^{\prime} \text { with } m\right) \\
& \approx C \int_{0}^{\delta_{\Omega}(m)-\delta_{\Omega}\left(z_{0}^{\prime}\right)} \frac{d t}{\delta_{\Omega}\left(z_{0}^{\prime}\right)+t} \\
& \left.\approx C \ln \left\{\delta_{\Omega}\left(z_{0}^{\prime}\right)+t\right\}\right|_{0} ^{\delta_{\Omega}(m)-\delta_{\Omega}\left(z_{0}^{\prime}\right)} \\
& \approx C \ln \frac{\delta_{\Omega}(m)}{\delta_{\Omega}\left(z_{0}^{\prime}\right)} \geq C \ln \frac{M(\sigma) \delta_{\Omega}\left(z_{0}\right)}{\delta_{\Omega}\left(z_{0}\right)} \geq C \ln M(\sigma)
\end{aligned}
$$

If we let

$$
C(\sigma)=\sup \{C \ln M(\sigma) ; C \ln 1 / N(\sigma) ; f(\sigma)\}
$$

then we have proven that if $z_{0} \notin \mathscr{A}_{\sigma}(P)$ then $K\left(z_{0},-\nu_{P}\right)>C(\sigma)$, as desired.

6. Fatou's theorem on domains of finite type

As an application of theorem 5.1 we can give a new invariate form of Fatou's theorem for domains of finite type in \mathbf{C}^{2}.

Following the ideas in Section 6 of [8] we have the following:
DEFINITION 6.1. Let f be holomorphic on $\Omega \subseteq \mathbf{C}^{2}, P \in \partial \Omega$ and $\beta>1$. We set

$$
\mathscr{M}_{\beta} f(P)=\sup _{z \in \mathscr{\mathscr { K }}_{\beta}(P)}|f(z)|
$$

Then we have the following theorems.

Theorem 6.2. Let $\Omega \subseteq \mathbf{C}^{2}$ be a domain of finite type.
(i) For $0 \leq p<\infty$ if $f \in H^{p}(\Omega)$ then $\mathscr{M}_{\beta} f \in L^{p}(\partial \Omega)$ and $\left\|\mathscr{M}_{\beta} f\right\|_{L} p \leq$ $\|f\|_{H} p$.
(ii) If $f \in N(\Omega)$, then $\mathscr{M}_{\beta} f$ is finite almost everywhere, and

$$
m\left\{\log ^{+} \mathscr{M}_{\beta} f>\lambda\right\} \leq c / \lambda
$$

The proof this theorem is similar to the proof of Theorem 9 in [8]. We have to use the fact that $\mathscr{A}_{\sigma}(P) \approx \mathscr{K}_{\beta}(P)$.

Theorem 6.3. Given f holomorphic in Ω, a domain of finite type in \mathbf{C}^{2}, the following two conditions are equivalent for almost every $P \in \partial \Omega$.
(i) $\mathscr{M}_{\beta} f(P)<\infty$.
(ii) $\lim _{z \rightarrow P, z \in \mathscr{K}_{\beta}(P)} f(z)$ exists.

In the proof we use the ideas of Theorem 11 in [8].

References

1. G. Aladro, The boundary behavior of the Carathéodory and Kobayashi metrics, preprint.
2. \qquad , Some consequences of the boundary behavior of the Carathéodory and Kobayashi metrics and applications to normal holomorphic functions, Pennsylvania State University Ph.D. Thesis, 1985.
3. D.W. Catlin, Invariant metrics on pseudoconvex domains, preprint.

3A. I. Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in \mathbf{C}^{n} with smooth boundary, Trans. Amer. Math. Soc., vol. 267 (1975), pp. 219-240.
4. J.J. Kohn, Boundary behavior of ∂ on weakly pseudoconvex manifold of dimension two, J. Differential Geometry, vol. 6 (1972), 523-542.
5. A. Koranyi, Harmonic functions on Hermitian hyperbolic space, Trans. Amer. Math. Soc. vol. 135 (1969), pp. 507-516.
6. S.G. Krantz, Function theory of several complex variables, Wiley-Interscience, New York, 1982.
7. \qquad , Fatou theorems on domains in \mathbf{C}^{n}, Bull. Amer. Math. Soc., vol. 16 (1987), pp. 93-96.
8. A. Nagel, E. Stein and S. Wainger, Boundary behavior of functions holomorphic in domains of finite type, Proc. Nat. Acad. Sci. USA, vol. 78 (1981), pp. 6596-6599.
9. H.L. Royden, "Remarks on the Kobayashi metric" in Several complex variables, II, Proc. International Conf., Univ. of Maryland, 1970, Lectures Notes in Mathematics, Vol. 185, Springer-Verlag, Berlin, 1975, pp. 125-137.
10. N. Sibony, "A class of hyperbolic manifolds" in Recent developments in several complex variables, J.E. Fornaess ed., Princeton Univ. Press, Princeton, 181, pp. 357-372.
11. E.M. Stein, Boundary behavior of holomorphic functions of several complex variables, Princeton University Press, Princeton, N.J., 1972.
12. R.O. Wells, Differential analysis on complex manifolds, Springer-Verlag, New York, 1980.

Florida International University
Miami, Florida

[^0]: Received January 9, 1987.
 ${ }^{1}$ The work in this paper is contained in the author's Ph.D. thesis at the Pennsylvania State University, directed by Professor Steven G. Krantz.

