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THE COMPARABILITY OF THE KOBAYASHI APPROACH
REGION AND THE ADMISSIBLE APPROACH REGION

BY

GERARDO ALADRO

1. Introduction

Given a domain f

_
Cn, we denote by Fff(z, ) the infinitesimal form of

the Kobayashi metric for f at z in the direction of the vector . In [1] we have
estimated the boundary behavior of the metric when is fixed and z is
allowed to approach a strongly pseudoconvex point P in the boundary of
As a consequence of the work done in [1] we obtained the following estimate:

Il I____l for all z U f(,) (, ) - c ,() + c
(z)

where U is a neighborhood of P where the eigenvalues of the Levi form at P
are bounded from zero, and for any Cn, v is the complex normal
component of at P and r is the complex tangential component of at P,
and Be(z) is the distance from z to the boundary.
N. Siboney in [10] has proven the inequality

r#z, ) >_ c .(z) + c
.()

for the Kobayashi metric on strongly pseudoconvex (and other) domains, but
it is not the precise asymptotic formula which is found in [1].
By means of the estimate (.), it is possible to solve the following problem:
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Let f C" be a pseudoconvex domain and P O fl be strongly pseudo-
convex point. For a > 1, define the admissible approach region of Stein to be

where Be(z) min(Su(z); dist(z, T,(012))) and Te(O’f) is the tangent space
to 3f at P.

Also, define the Kobayashi approach region to be

r(p) (z f" Ku(z, -ve) < fl) withfl>0

where Kn represents the Kobayashi distance from z to -v,.
Then our main result is:

THEOREM 1. Under the above conditions, given tx > 1 there are two constants
B B(a) and C C(a) which depend on f and the eigenvalues of the Levi

form at P, and are functions of a, and there exists an open neighborhood U of P
such that

While our result is local, in the case that f is strongly pseudoconvex domain
then B(a) and C(a) are uniform constants for all P 0f.
The theorem allows us give an invariant form of Fatou’s Theorem [11].
By Fefferman’s Theorem [6], biholomorphic maps of smooth strongly pseu-

doconvex domain extend smoothly, hence in particular C1, to the boundary.
Theorem 1 then yields immediately that Kobayashi approach regions are a
biholomorphically invariant concept, hence so are admissible approach re-
gions. An invariant metric approach to boundary behavior of holomorphic
functions is explored in great detail in [7].

In the second part of this paper we want to discuss the following problem:
Given a pseudoconvex domain f] of finite type in C", Nagel, Stein and

Wainger [8] introduced a family of balls on the boundary of f which is
intimately linked to the complex geometry of fl with respect to C ". They
define approach regions in terms of these balls. The approach regions are
denoted by o. By means of some estimates obtained by Catlin [3] for the
Kobayashi metric on domains of finite type in C2, it is possible to show that
the approach regions ’o are comparable to Kobayashi approach regions .
Again we get an invariant form of Fatou’s Theorem for pseudoconvex

domains of finite type in C 2.
I would like to thank Steven G. Krantz for all his help and good advice.
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I. Notations and definitions

DEFINITION 1.1. If e (1 + 0i, 0,..., 0) then the infinitesimal form of
the Kobayashi metric for f at z in the direction of is

I1F(z, ) inf I(f,(0))(e)l f: B - f is holomorphic, f(0) z,

and (f,(0))(el) is a constant multiple of

DEFINITION 1.2.
be defined as

The Kobayashi distance between the points z, w e f] can

K(z, w) inf f01FK(Y(t), 3"(t)) dt

where the infimum is taken over C curves 3’: [0,1] f such that 3,(0)= z
and 3’(1)= w.

Remark 1.3. Royden [9] has shown that the infimum can be taken over all
piece-wise differentiable curves.

For details about the metric and pseudoconvex domains see [6].
The following theorem has been proven in [1] and is a basic tool for our

future calculation.

THEOREM 1.4. Let f]c c C be a pseudoconoex domain with C"+ bound-
ary. Suppose P is a strongly pseudoconoex point and W is a neighborhood
of P on which the eigenvalues of Levi form are bounded from zero by some
number e > O. Let us assume without lost of generality that z is the normal
complex direction at P. Let p be a defining function for such that IVzp(w)l

1 for all w Of]. Let Q be a unitary operator which diagonalized the Levi

form at P, and let X,..., h, be the eigenoalues of the Levi form at P where the
corresponding eigenvectors have respectively the directions Zl,..., z,. Let z f]

and S be the projection of z into Of]. Given ; C, let Ns be the complex
normal component of at S and rs the complex tangential component of at S.
Define

+



KOBAYASHI AND ADMISSIBLE APPROACH REGIONS 45

where H is diagonal matrix with entries ,7, 1/2. Then

1
lim F(z, r/(z)) --Il-f z P

As a consequence of the theorem we obtain the estimate

(, 1 -- c (z) + c
(z)

for all z U q f

where P is a strongly pseudoconvex point in the boundary of a pseudoconvex
domain f, U is a neighborhood of P where the eigenvalues of the Levi form
at P are bounded from zero and for any C n, v, is the complex normal
component of at P and r, is the complex tangential component of at P.

DEFINITION 1.5. If f C C C" with C2 boundary, P 0f, z f, define

6e(z) min{8(z),dist(z, Te(O)}.

Then, for a > 1, let the admissible approach region at P with aperture a be

.(e) { . Iz el: < (z); I< e, .>1 < (z)).

9X(P) is like a cone in the complex normal direction and like a paraboloid
in the tangential direction. Notice that if is convex, then 8u(z) Be(z). But
8e(Z) is used because near non-convex boundary points we still want 9X(P)
to have the same shape.

DEFINITION 1.6. Let fl c c C" with C2 boundary, P Of] and /3 > 1.
The -admissible (for Kobayashi admissible) approach region of aperture fl at
P is

.gF(P) { z " Ku(z, -re) < fl }

where ve denotes the unit outward normal and

Ka(z,-re) inf(Ka(z, w): w -re}.

2. Proof of Theorem I

Through our work we will use the symbol c to denote constants whose
values change from line to line, but independent of the relevant parameter.
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THEOREM 1. Let 2 c C be a pseudoconoex domain with C+ boundary.
Let P O be a strongly pseudoconvex point. Then, given a > 1 there are two
constants B B(tx) and C C(tx) which depend on and the eigenvalues of
the Levi form at P and are functions of t, and there exists an open neighborhood
U of P such that

Proof Let U be a neighborhood of P such that

ep( , -- c + for all z

Part 1. Assume z U tq (P), we want to prove that z U N .gFc()(P).
If z U & 9(P) then

where (z P)vp is the projection of (z P) into vt/’v (the complex normal
space to O f at P) and

where (z P)rp is the projection of (z P) into -v (the complex tangent
space to 0fl at P). Let z* be the projection of z into -/fie and z’ the
projection of z into -vv.
We have three possibilities:
(i) zz’ is in
(ii) zz’ is in
(iii) neither of the above.

Case (i). Here we have I(z-P)rel z-z
8l(t) (1 t)z + tz’, 0 < < 1. Then

’1. Consider the curve

v;(t)) dt

where 3,[(t) (/[(t))r z z’ q’v. Since -h(t) U it turns out that

Fff(’i(t); 7;(t)) dt
cl()r(t)l clz z’l
/Sa ( Yx ( ) ) Ya (Y( ) )
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but /aSa(z) > [(z P)r,I > z z’l and 6a(z) < 8a(3q(t)) so

clz- z’l c.(z)
F(3q(t); y;(t)) < < cf-.o(z (z

Hence

K( z, ’p ) g
fl ( z z ) <_ ZK(Yl(t)) _< f01cv/- d

Case (ii) We have zz’ 4r,. Hence

iz z’l i(z z’)l < .(z).

Consider the curve "Y2(t) (1 t)z + tz’, 0 < < 1. Then

and

y(t) (Y)ve(t) z z’ V’,.

Since y2(t) U we have

Fff(72(t); y(t)) dt = cl (y) (t)l clz-z’l

Then

c(8(z)Fff(72(t); y(t)) < 8(z) ca,

so

K(z,-,,) < K(z, z’) < L(r2(t)) < dt ca.

Case (iii) zz’ (zz’)r + (zz’)u zz* + zz’. Consider the curve

where Yl(t) is the segment connecting z with z* and "Y2(t) is the segment
connecting z* with z’.
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Since 3 is a piece-wise differentiable curve joining z to z’, according to
Remark 1.3, we have

Kn(z,-Vl ) < K(z, z’) <

But

e ((; ()e + f.e((; ;( e,L()
o

so by the previous two cases we have

() c + c c().
Therefore

Kn(z,-Vp) C(a).

Part 2. Assume z U N od’n,,)(P), let us prove z U N (P).
Let us prove the contrapositive. Take a very large. Suppose z 9(P); we

want to show that z X’n)(P). We need to prove Kn(z, -re) > B(a).
Let -/ be a curve parametrized with respect to Euclidean arc length which

connects z to -v,, and let o be the Euclidean length of 3’. Fix two constants
D(a) > 0 and M(a) > 0 such that D(a) is a small number and M(a) is a
large number, to be selected. We have three possibilities:

(i) 8(3’(t)) < D(a)8u(z’) for some t;
(ii) 8u(V(t)) > m(a)8n(z’) for some t;
(iii) O(a)8u(z’) < 8(3,(t)) < m(a)8n(z’) for all t.

Case (i) We have

fotO I’vL(t)l Lto 13’,,,(t)l/(v) = c ,,,(v(t)) dt + c
/,,,(v(t))

Define the curve

.(t) ’ + .() a

where kp is the projection of rp(s) onto the real normal at P. We have

’(t) 3,k(t) for all t.

Let ,(tl), tl [0, to], be such that in(/(q)) < D(a)8n(z’) and let w be the
projection of (q) into the real normal. Now

fotO It’(t)l dt >_ cLt It2’(t)l
dtL(3) -- c 8o(/x(t)) 8(/2(t))
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where the curve/2 is gotten from/ by discarding overlaps. Then

fo, It2’(t)lz(v) >_ c n,((t))
> cL(segment connecting z’ to w)

’)- afw) dt
> c 6a(w) + 1

>_ cln (Su(w) + t)

> cln
8a(z’)
(w)"

8(z’)-8(w)

But 8u(w) < D(a)8u(z’), hence

L(8) >_ c In 8u(z’) 1
D(a)8u(z’) > c ln D(a)"

Case (ii) Again

f0t0 I’YtN,(t)lL(y) > c 8u(y(t)) dt.

As in case (i) we define the curve

(t) z’ + ,() d,.

Following the same argument as above, we get

L() > cL (segment connecting z’ to w)

where w is the projection of Y(t2), 12 [0; to] onto the real normal and

6f(y(tz)) > M(ot)8a(z’).
Then

Case (iii) We have to divide this case into two subcases:
(a) z PI >- /a(z)
(b) l( z P)N,I > aSu(z).
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Case (iii.a)

Since

we have

We claim that if z P > aS(z) then

Iz- pI 2 Iz- z,i 2 -+- Iz* pI

but

I z*l >_ #.(z) I* el

0 < k < 1 and 8e(z’) = 8a(z)

SO

Iz z*[ >_ /acSe(z’) k/6(z’) T(a)/6(z’)
and T(a) > 0 since we assume a very large.
Now

fotO 13’(t)l
dr.L(,) > c

We define the curve

/x2(t ) z + " ds.

We have g[(t) Vr(t) for all t. Then

fo,O Ig(t)l
dt >_ ct(tx2)

> >
/r,(,l.(z’) #)(,1.(’) /z)(,)

Case (iii.b) We claim that if I(z P)ul > a6(z) then

iz,-z’t > s()(z).

We have ](z P)N] [z* PI and ]z* p]2 Iz* z’[ 2 + [z’- p[2 SO

Iz* z’l > a*.(z) Iz’- PI.
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But

so

z’- PI 6u(z’) and 6u(z’) 6u(z)

Iz* z’l > ,(z,) ,(z,) s(),(z).

But since we assume a very large then S(a) > O.
Now

o I’L(t)lL(y) > c 8n(3(t))dt

f0to-- c z(.l,,(z’)
cS()
z()

Then

B(a) sup{ c In M(a); c In
1 cT(a) cS(a)}D( a) ID ( a) D( a)

Then we have proved that if z ff 9/,(P) then K(z, v,) > B(a), as desired.

Remark 2.1. The constants B(a) and C(a) hold for all P’ 0f which are
sufficiently near to P.

Remark 2.2. An alternative way to prove Theorem 1 would be the follow-
ing:

If fi is the unit ball in C n, then we can exploit the transitivity of the
automorphism group to get a quick proof of the result. Now if f is strongly
pseudoconvex domain then we can use the approximation ideas of Graham
[3a] to get the full result.

3. Fatou’s theorem on strongly pseudoconvex domains

As an application of Theorem 1 we can give a new statement of Fatou’s
theorem on strongly pseudoconvex domains in C n.

Let us recall the classical Fatou’s theorem.



52 GERARDO ALADRO

DEFINITION 3.1. Let f c c C be a domain with defining function
Let f (z C: p(z) < -e}. For 0 < p < oo we set

H’(f) (f holomorphic in " sup f>0

H(f) { f holomorphic in f]" sup If[ <
zfl

where d/ is the area measure on
We also define the Nevalinna class N(f) by

N(fl) { f holomorphic in f sup f0 lg+lf(z)[ d/ < o)e>0

where log+ u max(0, log u }.

FATOU’S TI-I,OREM. Let 0 < p < oo. Let a > 1. If f] c c Cn has C2

boundary andf HV(f), then for almost every P

lim f(z)
a(P)zP

exists.

For details see [11].
The results in the unit ball B

_
Cn and on certain other classical domains

were obtained by Koranyi [5] and all the principal ideas for arbitrary bounded
domains in C" with C2 boundary are due to Stein [11].
Now, given fl c c C" a strongly pseudoconvex domain and using the fact

that for all P Of], 9(P) -- 9(P), we obtain the following invariant form
of Fatou’s theorem:

THEOREM 3.1. Let ’l c c Cn be a strongly pseudoconoex domain with C2

boundary. Let 0 < p oo and fl > 1. Let f HV(f). Then for almost every
P Ofl,

lim f(z)
.t V z e

exists.

Also, Stein [11] got the analogue of Fatou’s theorem for the Nevanlinna
class. Therefore we have the following result:
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THEOREM 3.2. Let f c c C" be a strongly pseudoconvex domain with C2

boundary. Let 0 < p < and fl > 1. Let f N(f). Then for almost every

lim f(z)

exists.

4. Pseudoconvex domains of finite type in C2

DEFINITION 4.1. Let f be a smoothly bounded domain in C2 with defining
function p. We define two holomorphic vector fields T and T2 by

Op 0 Op 0
022 021 OZ OZ2

and

Op 0 Op 0
72 0 Oz + O2 OZ2

Thus the vector fields T1 and T2 are respectively tangent and transverse to the
boundary of f. For all z fl, we define the Levi function )(z) by

where ITs, Tt] TTt TT (Lie bracket).
Let -fro be the module spanned by T and T over the Coo functions and let

*’k+ be the module spanned by elements of A’g and elements of the form
IF, Tx] or IF, T] with F A"k.

DEFINITION 4.2. A point P Of is said to be of type m (m >_ 1) if

(0p(P), F(P)) 0 for all F c.’m_l

while

(8p(P), F(P)) * 0 for some F .a

DEFINITION 4.2. If C: C: C2 is a pseudoconvex domain and P Of] is
of type m, then we say that 0f] is pseudoconvex of type m at P.

Remark 4.3.
type 1.

If P 0f] is strongly pseudoconvex point, then P is of
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DEFINITION 4.4. Let (i0, il,’", ira) be an (m + 1)-tuple of zeros and ones;
we define the vector field Ti0 ira) inductively by

and

Then

Remark 4.5. It can be proved, see [4], that the type of a given point P
must be an odd integer if the boundary of fl is pseudoconvex near P.

Remark 4.6. Let us define the function C(z) (Tll)k-lh(z). It is possi-
ble to show that when f is pseudoconvex near a point P in the boundary,
then P is of type 2m 1 if and only if C,,(z) =/= 0 and Ck(Z) 0 for all k,
1 < k < m; for details see [4].

DEFINITION 4.7. Let X alT / aET2 be a tangent vector of type (1, 0) at
a point z in f. Define M(z; X) by

m

M,(z; X) la211P(z)l - + lal ICk(z)l/2lp(z)l -/2k
kl

Now we can state a theorem due to Catlin which allows us to estimate the
Kobayashi metric; for details see [3].

THEOREM 4.8. Let f be smoothly bounded domain in C 2. Let P be a given
point in the boundary of ; assume that P is of type 2m 1. Then there exist a
neighborhood U about P and positive constants c and C such that for every
tangent vector X aIT + aET2 at a point z U N f,

CMm(Z; X) < Fff(z; K) < CMm(:Z X).

Following the ideas introduced by Nagel, Stein and Wainger [10], we can
define balls on the boundary of a smoothly bounded domain in C2.

First, we consider a domain f _c R4 with smooth boundary and finite type
m. Let U be a neighborhood in 0ft. Let X and X2 be smooth real vector
fields defined in U and T be a non-vanishing transverse vector field in U, so
that Xx, X2 and T span the tangent space of each point of U.
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Following Kohn [4], we define

ik(X) (E( i’’’in( x ) }2) 1/2

where the sum is over the set of generators of k, the ideal over C(fl)
generated by the functions io i, with n < k. And let

m

As(x) E
k--1

assuming that f is of finite type m.

DEFINITION 4.9. Let

C4 ( q" [0,1] - tgf/qo is Lipschitz,

2

qo’(t) _, aj(t)Xj(ep(t)) + b(t)T(ep(t)),
j=’l

laj(t)l < , Ib(t)l < A(q(t))}
C { q" [0, 1] - Of/q is Lipschitz,

2

p’(t) ajXj(ep(t)) / bT(ep(t)),
j-1

aj, b R, layl -< 8, Ib(t)l _< A(tp(0))}.
In order to keep the notation in [81, we use C4, C5. The curves C, C2 and

C3 will not be used in this work.
We can define corresponding distance and balls as follows.

DEFINITION 4.10. Given xo, Yo 0fl we say t)j(xo, Yo) < i, j 4, 5, if
there exists j C with tp(0) x0, tpx) Y0.
Also we define By(xo, ) (Yo Oft" ta(xo, Yo) < }.

It was proven in [8] that the balls B4 and B5 are equivalent.
From R. O. Wells [12], we have the following:
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If V is a real vector space equipped with a complex structure J then V can
be made into a complex vector space Fj by introducing the complex scalar
multiplication

(a + ifl)v= av + Jv, a, fl a, v V, (-1

Alternatively, V (R)aC is a complex vector space and J can be defined on
V (R)aC by

(R) J(o) o v, c

This extended J has eigenvalues + and -i, since j2 I.
The + eigenspace is called Vt’.
The -i eigenspace is called V,1.
Observe that, in the setup where V R2n, then Vt’ corresponds to span

OZl Oz,,

and V’t corresponds to span

It can be checked that the complex vector space obtained from V by means of
the complex structure J, denoted by Vj is C-linearly isomorphic to Vt’. This
means we can canonically associate to any element of the "real" vector space a
holomorphic vector space. This way we do it in the Euclidean space is by

0(at, bt,..., an, bn) --+ (a + ib1)-7 + +(an

0+ ibn) Oz

Let fl c c C2 be a domain and U be a neighborhood in 0 ft. Let X be any
complex tangent vector field on U. Let X2 JXt. Let N be the vector field of
unit outward normal vectors to 0fl on U and T -JN.

Then, to the vector field alX + aEX2 + bT on U, where at, a2, b R,
corresponds the holomorphic vector field

atTt + ia2T2 + bT2= (a + ia2)Tt + bT2 onU.
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Then we can define the curves C4 and C5 in terms of holomorphic vector
fields by

C { tp" [0,1] --, 8fi/tp is Lipschitz;

q/(t) al(t)Tl(q(t)) + a2(t)T2(q(t));
lax(t)l < 8, laz(t)l < An((t)}.

C5 {tp" [0,1] --, 02/tp is Lipschitz;

q/(t) alTl(q(t)) + a2T2(q(t));
ax, a 2 C, lal < , la21 < An(W(0)}.

So we have equivalent notations of distances and balls.

We can define approach regions in 2 c c C2 in terms of the families of ball
on 0f. By B we mean any of the equivalent balls.

DEFINITION 4.11. Let f3 (small neighborhood of P 0f). Let rr
be any smooth projection from 2 to 0f. For z 2 set

O(z)
l<k<m-1 A(r(z))

DEFINITION 4.12. Given o > 0, P O f, then

(z " O(r(z), P) < o inf
l<k<m-1

where p denotes any of the equivalent metrics #4 or P5 and B any of the
equivalent balls B4 or B5.

5. Comparability of the Kobayashi approach region and the approach
region ’o(P)

THEOREM 5.1. Let c. C C2 be a pseudoconvex domain offinite type. Let P
be a given point in the boundaray of [2, and assume that P is of type 2m 1.

Then given o > 1 there are two positive constants, B B(o) and C C(o),
which depend on f] and are functions of o, and an open neighborhood U of P
such that
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Proof. Let U be a neighborhood of P where Catlin’s estimates hold.

Part 1. Assume zo U N Z’o(P); we want to prove zo U 3Ks(o)(P ).
If zo U ’o(P), then r(Zo) B(P, oD(zo)) and this implies there

exists a curve/3" [0,1] Of], Lipschitz with/3(0) P, /3(1) r(Zo) and

fl’(t) atTl((t)) + a2T2(fl(t))

where la] < oD(zo)and la_l < Aoo(0t(/3(O)).
Consider the curve in f U, defined by

i(t) fl(t) 8n(z)v#(,).

Then, applying Catlin’s estimates we have

K(zo, -ve) < L(i(t))

folFff(/(t),/’(t)) dt

fO<_ CMm(l(t); aiT(i(t)) + ag.T2((t)) ) dt

< C [a[ [p(/(t))[ -
m-1

+[al[ E [Ck((t))l/2k[P(i(t))[-/9* dt.
k=l

where p is a defining function for .
Since f is a domain of finite type, let us assume r(zo) is of type 2s- 1

with s _< m. Then a Am(r(zo)) 0. Therefore

m-1 m-l([a2[ < E (D(zo)) kA
k

<
k=l =s

<_ omA
m-1 (fi(Zo)m-l( P ) E O
k--’--s

laxl -< o A(,r(zo))
_< o

1/s
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We also have 10(/(t))l $(Zo) for all t. Hence,

k--s

m-1

C--Am-I(P) E /s-l(go)

m-1

+Co-x/SY2(ZO) fo E ICk(l(t))l x/2k dt

<_ C---Am_I(P) + Coa-l/s= B(o).

Part 2. Assume zo U 3 ffC<o)(P); we want to prove zo U n o(P).
Let us prove the contrapositive.
Assume zo U zo(P); we will prove that K(zo, -e) > C(o).
If zo q U n o(P) then r(Zo) B(P, oD(zo)). Therefore for any curve
[0,1] 0f, Lipschitz with q0(0)= P and q0(1)= rr(Zo) such that

qo’(t) alTl(O(t)) + a2T2(p(t)) we have

m-1

lall >oD(zo) or la21 > E oD(zo)kAk(P)
k--’l

Take a curve 3" [0,1] f such that the Euclidean length of 3’ is o and it
connects zo with -vv. Then the curve

q’(t) 3’(t) + f(3’(t))Pr(,/(t)

is a curve in 0f such that I,(0) P and q’(to) r(Zo).
Fix two constants N(o) > 0 and M(o) > 0 such that N(o) is a small

number and M(o) is a large number.
There are three possibilities"
(i) 6(,(t)) -- 6n(Zo) for all [0; 1];
(ii) /J(3,(t)) < N(o)8(Zo) for some t;
(iii) 6(3,(t)) > M(o)6a(Zo) for some t.

Case (i) Since 3’ is parametrized with respect to Euclidean arc length then
I"(t)l 1 for all and

q’(t) 3"(t) + 86(3’(t))v,,(r(t)) +
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Since 8u(,(t)) = 8n(Zo), the second and third terms of t"(t) are negligible, so

L (y ( ) ) fotFff(’ ( ) l’( ) ) dt

t>_ C Mm_l(Y(t); "t"(t)) dt

Cfot{la211(/(t)l-
m_l

+ lal IC(8(t))l/2lo(/(t))l-/2 dr.
k=l

Assume that r(Zo) is a point of type 2s 1 with s < m. We have

la21 > o
,(Zo)

A((Zo))

or

(ZO) Ills[all > o A(r(zo))

so

n(Zo) l(zo)A(p)drL(y(t)) > Cfo’O AT(;(o))

=h(o)

or

L(/(t)) > CfotOs/(zo)A-X/(r(zo))lC(,/(t))l/2Sff/2(Zo) dt

f(o).

Case (ii) We have

’(t) ClTl(Y(t)) + c2T:z({(t))
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where

Define the curve

IX(t) z + 3"ge(s) ds, 0 _< < to,

where 3’k(s) is the projection of 3’r(S) onto the real normal at P and zo is
the projection of zo onto -’e. We have/#(t) 3’(t) for all t. Then

L f0to It2’(t)lo I/’(t)l
dt >_ dt

where/2 is gotten from/ by discarding overlaps.
Let 3’(tl) be such that 8u(3’(tl)) < N(o)8u(Zo) and m is the projection of

3’(q) onto the real normal.
Then

LUK(3"(t)) > CLUK (segment connecting m with z)

"o 8u(m) + -- C In(8f(m) + t)[f(z)-f(m)
Io

But 8u(m) < N(o)8(Zo) < N(o)8u(z) since 8u(z0) < 8u(z). So

6(z6) 1LeK(3’) > C In N(o)8a(m) > C In N(o--’"

Case (iii) Fixing the large constant M(o) such that iu(3’(t)) >
M(o)Su(Zo) for some t, we follow the same argument applied in case (ii).
Therefore

Lg(y(t) ) Cfot 13’(t)l
(3’(t)) dt.
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and we can define the curve

x(t) z[3 + "t,ie( s ) ds, 0_<t<t0,

where 3’N(S) is the projection of 3,3(s) onto the real normal at P and z is
the projection of z0 onto -ve. We have/,’(t) 3,(t) for all t. Then

tfl(.y(t) ) ) CfotO Itx’(t)l
8u(/(t’)) dt > C[t I/2’(t)l dt

s0

where # is gotten from # by discarding overlaps.
Let 3,(t2) be such that 8u(,(t2)) > M(o)8u(Zo) and let m be the projection

of 3,(t2) onto the real normal. Then

Lr(/(t)) > CLr (segment connecting z with m)

-_ cfS(m)-Sa(ze) dt

[t(m)-(z)c + t} ,0

= C In 8.(z) C In 8.(z0) C In M(o)

If we let

C(o) sup{ClnM(o); Clnl/N(o); f(o)}

then we have proven that if z0 ’o(P) then K(zo, v,) > C(o), as desired.

6. Fatou’s theorem on domains of finite type

As an application of theorem 5.1 we can give a new invariate form of
Fatou’s theorem for domains of finite type in C 2.

Following the ideas in Section 6 of [8] we have the following:

DEFINITION 6.1.
We set

Let f be holomorphic on f c_ C, P 0f and /3 > 1.

’af(P) sup If(z)l
z(’)

Then we have the following theorems.



KOBAYASHI AND ADMISSIBLE APPROACH REGIONS 3

THEOREM 6.2. Let C_ C2 be a domain offinite type.
(i) For 0 <_ p < iff H(f) then g[f L(Of) and [[glfl[LP <

Ilfll
(ii) Iff N(fl), then glf is finite almost everywhere, and

m {log+’f > , ) _< c/k.

The proof this theorem is similar to the proof of Theorem 9 in [8]. We have
to use the fact that zOo(P) --.9(e).

THEOREM 6.3. Given f holomorphic in f, a domain offinite type in C 2, the
following two conditions are equivalent for almost every P O f.

(i) ’,f(P) < oo.
(ii) lim f( z ) exists.

z P z ..Yd P

In the proof we use the ideas of Theorem 11 in [8].

REFERENCES

1. G. ALADRO, The boundary behavior of the Carathdodory and Kobayashi metrics, preprint.
2. Some consequences of the boundary behavior of the Carathdodory and Kobayashi

metrics and applications to normal holomorphic functions, Pennsylvania State University
Ph.D. Thesis, 1985.

3. D.W. CATLIN, Inoariant metrics on pseudoconoex domains, prepdnt.
3A. I. GRAHAM, Boundary behavior of the Carathdodory and Kobayashi metrics on strongly

pseudoconoex domains in C with smooth boundary, Trans. Amer. Math. Soc., vol. 267
(1975), pp. 219-240.

4. J.J. KOHN, Boundary behavior of 0 on weakly pseudoconoex manifold of dimension two,
J. Differential Geometry, vol. 6 (1972), 523-542.

5. A. KORANYI, Harmonic functions on Hermitian hyperbolic space, Trans. Amer. Math. Soc. vol.
135 (1969), pp. 507-516.

6. S.G. KRANTZ, Function theory of several complex variables, Wiley-Interscience, New York,
1982.

7. Fatou theorems on domains in Cn, Bull. Amer. Math. Soc., vol. 16 (1987), pp. 93-96.
8. A. NAGEL, E. STEIN and S. WAINGER, Boundary behavior offunctions holomorphic in domains

offinite type, Proc. Nat. Acad. Sci. USA, vol. 78 (1981), pp. 6596-6599.
9. H.L. ROYDEN, "Remarks on the Kobayashi metric" in Several complex variables, H, Proc.

International Conf., Univ. of Maryland, 1970, Lectures Notes in Mathematics, Vol.
185, Spdnger-Vedag, Berlin, 1975, pp. 125-137.

10. N. SIBONY, "A class of hyperbolic manifolds" in Recent developments in several complex
variables, J.E. Fornaess ed., Princeton Univ. Press, Princeton, 181, pp. 357-372.

11. E.M. STEIN, Boundary behavior of holomorphic functions of several complex variables, Princeton
University Press, Princeton, N.J., 1972.

12. R.O. WELLS, Differential analysis on complex manifolds, Spdnger-Vedag, New York, 1980.

FLORIDA INTERNATIONAL UNIVERSITY
MIAMI, FLORIDA


