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CHARACTERIZATION OF BANACH SPACES OF
CONTINUOUS VECTOR VALUED FUNCTIONS WITH

THE WEAK BANACH-SAKS PROPERTY

BY

CARMELO NUIEZ

Introduction

A Banach space E is said to have the Banach-Saks property (resp. weak
Banach-Saks property) if for every bounded sequence (resp. weakly convergent
sequence) (xn) in E, you can choose a subsequence (x’) of (xn) such that the
sequence

converges in the E-norm.
We shall refer to these properties as the B.S.P. and the W.B.S.P.
It is known that a Banach space E with the B.S.P. is reflexive. So, it is clear

that a C(K) space (being C(K), the Banach space of the continuous functions
from K to R, and being K, a compact Hausdorff space) has the B.S.P. iff K is
finite.
Much more interesting in this context of C(K) spaces is the W.B.S.P. The

following characterization of C(K) spaces with the W.B.S.P. is due essentially
to N. Farnum (see [2]).

THEOREM 1. Let K be a compact Hausdorffspace. Then C(K) possesses the
W. B. S.P. if and only if

K (.) ["] K(,,)

where K() K and K() is the set of all accumulation points of K(-1) for
nN.
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28 CARMELO NUIEZ

The target of this note is to characterize when C(K, E), the Banach space of
all continuous functions defined on a compact Hausdorff space K with values
in a Banach space E, endowed with the supremum norm, has the W.B.S.P.
Later, in Section 2, we’ll show a Banach space E and a compact K such that

(a) C(K) and E have the W.B.S.P.
(b) C(K, E) has not the W.B.S.P.
Finally, in Section 3, we’ll talk a little about two other properties that a

C(K) space may enjoy or not: the hereditary Dunford-Pettis and the alternate
Banach-Saks properties.
The notations and terminology used and not explained here can be found in

[2]. We only want to recall the definition of the spaces E ( En)v. If
(E, II I1) is a Banach space, and p, 1 < p < o (resp. p 0) we define E
as the Banach space of all sequences (xn), with xn En, (llXnll) -o 0 and
such that

-.[[x,,llV < o (resp. sup(llxl[" n 1,... } <
n

being these expressions the norm of E, for p, 1 < p < o and p 0 respec-
tively.

I. When a C(K, E) space has the weak Banaeh-Saks property

If K is a finite compact Hausdorff space, then it is immediate that C(K, E)
possesses the W.B.S.P. if and only if E does it. If K is infinite, we have the
following result. First of all, we recall that c0(E) is the Banach space of all
null sequences in E, endowed with the supremum norm.

THEOREM 2. Let K be an infinite compact Hausdorff space. Then C(K, E)
has the W.B.S.P. if and only if C(K) and co(E ) have the W.B.S.P.

Proof. It is identical to the proof of Theorem 3 of [3], so we omit it.

Now the question is: when co(E ) has the W.B.S.P.? The following theorem
gives us the answer.

THEOREM 3. co(E ) has the W.B.S.P. if and only if E has the uniform
W.B.S.P. That is to say, there exists a sequence (a(n)) ofpositive real numbers
converging to 0 such that, for every sequence

o,
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and for every rn N, we can choose n(1)< < n(m), these numbers
depending on m, satisfying

;n < a(m).

Proof Suppose E has not the uniform W.B.S.P. Then, there exist a strictly
increasing sequence of integers (i(m)), an e > 0, and sequences

( X (nl) ), ( x (nm) ),

weakly convergent to 0, (X(nm)) C B(E), such that

’n(1)

i( ’
"’n(i(m))

for every n(1) < < n(i(m)). We can suppose i(m) > 2m without prob-
lem.

Let (f,) c B(co(E)) be the sequence defined as follows:

That is, f,,(m) 0 if n < m; f,,(m) xm),,_,,,+x if n _> rn. It is clear that, for
every m fixed

(f,(m)" n 1,...) 0

and we can deduce that

(L) o

(for instance, see [5]).
Let (f’) be any subsequence of (f,). It is dear that the sequence

(g,) ((f{ + +f,)/n)
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does not converge in the c0(E)-norm. In fact, if (g,) converges to anything, it
must be to 0. But

i(m)+m

f{(m)+...i(;n.) +fim)+m(m)ll+rn
E

x(m) + .. x(m)n(1) n(j(m))

i(m)+m

It is easy to see that i(m) < j(m) < i(m) + m. And now, the inequality
continues with

(m) _[..... _[_ v.(m)Xn(1) n( i(m))> i(m)+m

ei(m) rn

i(m)+m i(m)+m

m/(i(m) + m)

So we deduce that c0(E) does not have the W.B.S.P.

Let’s suppose now that E has the uniform W.B.S.P. and let’s see that c0(E)
has the W.B.S.P. First of all, we need the following technical result.

LEMMA 4. Let E be a Banach space with the uniform weak Banach-Saks
property, Then, there exists a sequence (i,,) of positive real numbers such that
(im) -- 0 for which given any sequence (xn) in B(E) with (xn) -- O, there is
a subsequence (y) of (x) such that for every subsequence (y,) of (y), we
haoe

We leave the proof of this lemma to the end, and first finish the proof of our
theorem. Let

(L) o, (h) S(Co(e)).
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We need a subsequence (f.’) of (f) such that

((Z[ + + -" o

in the c0(E)-norm. We suppose first that

(f.) c Coo(E) ( / co(E ). max(k" f(k) . 0} Nf N).

Since coo(E) is dense on co(E ), if we prove ( ) for a sequence (f.) c coo(E),
we also have (.) for any sequence (g.) c co(E), (g) O.

So let’s suppose (f) B(co(E)), (f) coo(E), (f.) 0. For every
n N, we define

M(n) max{ k: f.(k) 4 O}

If the sequence (M(n)) is bounded (for instance, by M), we can apply
Lemma 4 to the sequences

(f.(1)),..., (f.(M)) E

and we can choose a subsequence (f.’) of (f) such that_
ff(k)/m

j<m

for rn N, and 1 < k < M. So, due to the fact that f.(k) 0 if k > M, we
have II Ey ,.ff/m II -< and we are finished.

If the sequence (M(n)) is not bounded, then we can assume (by passing to a
subsequence if necessary) that M(n)) is strictly increasing.
Now, we build (f.’) subsequence of (f.) by induction.

Case n 1. Let (fn(1)) (), fl "-fl(1). We also define N(O) 0 and

N(1) max{ n: f{(n) 4 O}

Case n 2. We consider the sequences

(f.)(1)" n 1,... ),..., (f.(’)(N(1))" n 1,... )
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If we apply Lemma 4 to these sequences, we have a subsequence (fn(2)) of
(fl)) such that for every increasing sequence of integers (n(j)),

formNandl<k<N(1).
We choose rE’ f2(2) and define

N(2) max(n’ f(n) , 0}.

Case n r + 1. Let’s suppose that we have chosen the sequences (ft):
n 1,...), 1,..., r, the functions f{,..., fr’ and the numbers N(0) <

< N(r) satisfying:
(1) If > 1, (f,,to) is a subsequence of (f.t-1)).
(2) f/’= fi(0, 1 < <_ r.
(3) N(i) max(n: fi’(n) : 0), 1 < < r.
(4) For every 2,..., r and for every increasing sequence of integers

(n (j)), we have

-’,,U)O ( k )/m <
j<_m

formNandl<k<N(t-1).
Now we consider the sequences

(f,,(r)(N(r- 1)+ 1)’n 1,...),..., (f,,(r)(N(r))’n 1,...)
If we apply Lemma 4 to these sequences, we have a subsequence (f2r+ 1)) of

(f/r)) such that for every increasing sequence of integers (n(j)), we have

,(j) ( k )/m < 8
j<m

for m N and N(r- 1) < k < N(r). Note that the previous inequality is
also true for every k, 1 < k < N(r- 1), since (fr+l) is a subsequence of

(r+ N(r + 1)(f,,(r)). So, it is true for I < k < N(r). Now, we define fr+ r+ 1),
max{ n" fr’+ l(n) 0} and the induction is finished.
Now, let’s prove (,). For every m N, if k < N(1) then

< 1/m + ((m- 1)/m).

where n(1) 2 < < n(m 1) are suitable numbers.
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If k is such that N(1) < k < N(2) then

< 1/m + ((m 2)/m)- 8,._ 2

where n(1) 3 < < n(m 2) are suitable numbers.
Continuing in this way, it is clear that

II(f ’ + /f)(k)/mll < llm + ((m- t)lm)Sm_

if N(t- 1) < k < N(t) (with the convention that 80 is any real number),
1 < < m, and it is immediate that

II(fV + f )(k)/mll o if N(m) < k.

So it only remains to prove that if (Sm) 0, then

(m) (sup{(m t)/m. m_t" l <_ <_ m 1}) 0

We leave it as an easy exercise to the reader.

Proof of Lemma 4. Let (x,)_..2_, 0 and (x,)c B(E). If (x,) has a
subsequence (x’) such that IIxLII --’ 0, we have finished. If not, then (x,) has
a subsequence (Xn’) with the following good property: For every bl,..., br, if
n (1) < < n (r) then the limit

lim Xn(j)
n(1) o j<r

exists. We call that limit L(Ej <_ rbjej) for convenience. See [1], Chapter 1, for a
proof.

Since E has the uniform W.B.S.P. (see the definition at the beginning of
Theorem 3) we can deduce that if we take s(r) < r, s(r) N and bl

bs(r)-- O, and bs(r+l) b 1/r, we have

(+) L < a(r- s(r)). (r- s(r))/r
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This holds because

j<r

r-s(r)
lim

x,(j)
r n(1)-oo j=s(r)+l

r- s(r)

< a(r-s(r))r

The last inequality is due to the fact that that limit exists and the definition
of a(m), for every rn N.

Let s(m)= [V/--] (where [.] is the greatest integer function). Now, we
consider the finite set

A(i) {m N" s(m) i}

It is clear that for every we have an integer N(i) such that if n(i) > N(i)
then

(++) L
j--i+l

Xn(j)
m

j=i+l

1

for every m, s(m) i. Then, if we define M(0) 1 and

M(i)---max(N(/), M(i- 1) + 1)

the sequence (xt(i)) satisfies Lemma 4. In fact, if (x’(j)) is a subsequence of
(x(j)), we have

m Xn(j
m

j=s(m)+l

<L
j--s(m)+l

1

This inequality follows from (+ + ) n(i) > M(i) > N(i). Now, by (+), we
continue the inequality with

< a(m s(m))m s(m) 1
rn rn
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And finally, it is clear that

jm js(m)

+ E Xn(j)
m

j=s(m)+l

s(m) s(m)< +a(m_s(m))m 1
m m m

It is obvious that (im)- 0. So the sequence (Yi)= (xi)) satisfies our
lemma.

2. A Banach space E with the weak Banach-Saks property but not in
the uniform sense

We begin this section with the following question: If a C(K) space has the
W.B.S.P., does C(K) possess the uniform W.B.S.P.? The answer is yes, and we
deduce it in this way:

(a) As we saw in Theorem 1, a C(K) space has the W.B.S.P. if and only if

( + ) K (’) r)K (,,) ,.
(b) C(K) has the uniform W.B.S.P. if and only if co(C(K)) has the

W.B.S.P. (by Theorem 3).
(c) As co(C(K)) is isomorphic to C(N* K), where N* is the Alexandroff

compactification of N, co(C(K)) has the W.B.S.P. if and only if

(+ +) (N* K)(’’) N(N* K)(’)= ,t3’.
n

(d) Proposition 10 of [3] proves that (+) (+ + ), so we have finished.
The problem that we want to solve now is the following: we have seen that

for a C(K) space, the properties uniform W.B.S. and W.B.S. are equivalent,
but is that true for any Banach space E? The answer is no. First of all, we
need the following result. Remember that a Banach space E has the W.B.S.P.
if and only if for every sequence (xn) 0 there exists a subsequence (x’) of
(xn) such that for every subsequence (x") of (x), we have

E xj’lm
j<m

0 as m - o

See [1], Chapter 2, for a proof.
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THEOREM 5.
(X En)1.

If each Banach space E has the W.B.S. property then so does

Proof. Let (x m) -- 0 in (Y. En)1. Then, it is known that if

( n m )X X ...,Xn,...

where xm En and I1 is the norm of the Banach space E we have

(+) limsup Ilxj IIj m= 1,... =0
kO j--k

Consider the sequence (x’) _2__, 0 in E. E has the W.B.S. property, so
we can choose a subsequence (Xx’) of (x) so that

I[(1)X?(1 + "1" (1)xn(r) Jr 0 in Et as r

for every increasing sequence of natural numbers (m(j)). Now let’s consider
the sequence

((1)xm) 0 in E22

As E2 has the W.B.S. property, there exists ((2)xn) a subsequence of ((t)x’),
such that

[l(alx’(xl + +Oxr(rl[/r - 0 in E as r

for every increasing sequence of natural numbers (m(j)).
In the same way, for every k there exists ((k)xm: m 1,... ), a subsequence

of ((k-lxm: m 1,... ), such that

for every increasing sequence of natural numbers (m(j)).
Define the subsequence (ym) of (xm) by

ym (m)xm

We will show that lift+ ymll/m O. Let e > 0. Then, by (+), there
exists k(e) such that

IlYj.mll < e/2 for every m.
j=k(,)+l
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For each j 1,..., k(e), we have

( yf" m j,..., } ((J’x)(m)" m j,... }
where k(m) is an increasing sequence of integers with k(j) j. So, it is clear
that, for every j 1,..., k(e), there exist ij such that for every > ij we have

Now, taking o max {i,..., i(o}, if > o we obviously have

s----1 j----1 s=l

=., y: i+ E y:
"= j j=k(e)+l s=l

j==l s=l j--k(e)+

So the Banach space (E En) has the W.B.S. property.
Now we can establish the main result of this section.

COROLLARY 6. Let N* be the Alexandroff compactification of N. There
exists a Banach space E with the weak Banach-Saks property such that c(N*, E)
does not have the weak Banach-Saks property despite the fact that c(N*) has the
W.B.S.P.

Proof Take E, c0(0: ). It is known that E, is isomorphic to co (see [6]),
so every E, has the W.B.S. property. Define E ( E,)I. As we have seen
before, E has the W.B.S. property. But co(E ) does not (and so neither does
c(N*, E)). To prove my point, we consider the subspace of co(E ),

Z {f: N E, f co(E)/f(n ) E,,}.

It is immediately seen that this subspace is isometric to

which, in fact, is isometric to c0(), a very well known example of a Banach
space which does not have the W.B.S. property (see [2] for a proof). So c0(E)
has not this property, either.
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The previous corollary is remarkable because it shows (using Theorem 3)
that the properties W.B.S. and uniform W.B.S. are not equivalent. In fact we
have a better result.

THEOREM 7. There is a Banach space E with the Banach-Saks property such
that E does not have the uniform weak Banach-Saks property.

Proof. Using Lemma 5.2 of [1], it is very easy to prove that if each Banach
space En has the Banach-Saks property, so does E (E En) 2.

For any n, one can take

E. (x: N Rsuchthat (,) <

where

(*) sup E Ix(k)[ "Card(Am) n, UAm N and
kA m

Am f Am, Jd if m m’}

We take II II= (*)- It is dear that (E,, II II,) is isomorphic to/2, so it
has the Banach-Saks property. By Lemma 5.2 of [1], E has the Banach-Saks
property. But, for every n N, if we take

x(", (0,..., "’e,O,... )
it is clear that (Xk")) 0 and, for every m(1) < < m(n), we have

I1( + )/nil 1

So E does not have the uniform weak Banach-Saks property.

3. Alternate Banach-Saks and the hereditary Dunford-Pettis properties
of C(K, E) spaces

DEFINITION 8. (a) A Banach space E is said to have the alternate
Banach-Saks property (A.B.S.P.) if for every bounded sequence (x) in E, we
can choose a subsequence (x’) of (x) such that the sequence

(y)=((-1)x+ ""n +(-1)nx’)
converges in the E-norm.
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(b) A Banach space E is said to have the hereditary Dunford-Pettis
property (H.D.P.P.) if for every sequence weakly convergent to 0, not conver-
gent in norm, there is a subsequence (x,) of (xn) which is equivalent to the
unit vector basis of co (see [3] for this definition).

Everything we have done in Section 1 with the W.B.S.P. we can do it with
the A.B.S.P. For instance:

THEOREM 9. (a) C(K, E) has the A.B.S.P if and only if C(K) and co(E )
have the A. B. S. P.

(b) C(K) has the A.B.S.P if and only if K) r)nK(n) J
(c) co(E ) has the A.B.S.P. if and only if E has the uniform A.B.S.P That

is there exists a sequence (a(n)) of positive real numbers converging to 0 such
that, for every sequence (xn) c B(E), and for every m N, we can choose
n(1) < < n(m), these numbers depending on m, such that

II((-1)xnx, +... +(--1)mxnm))/ml[ < a(m)

(d) The space E of Theorem 7 has the A.B.S.P. but not the uniform
A.B.S.P. Then the space C(N’, E) does not have the A.B.S.P. although

(i) c(N’) has the A.B.S.P. where N’ is the Alexandroff compactification of
N, and

(ii) E has the A B. S. P.

The hereditary Dunford-Pettis property on C(K, E) spaces was intensely
studied in [3]. The uniform H.D.P.P. was defined there as follows:

(.) There exists M > 0 such that every normalized weakly null sequence
(xn) c E, has a subsequence (x,’) that is equivalent to the unit vector basis of
co and satisfies

for all (an) co

and the problem "does every Banach space with the H.D.P.P. satisfy (.)" is
still open.
We do not have the answer to this difficult question. Someone suggested

that the space E ( En) with E c0(u" ) could be the answer, and we
are going to prove that it is not the case. Of course, we saw in Corollary 6 that
co(E ) has a subspace isometric to c0(o’), a well known example of a Banach
space without the H.D.P.P. (see [2], for a proof), and so co(E ) does not have
the H.D.P.P. The problem is that neither does E have this property. Let’s
prove this.

THEOREM 10. The space E (Z c0(o")) is not hereditarily Dunford-
Pettis (although E has the weak Banach-Saks and the Dunford-Pettis properties).
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Proof. Remember that a Banach space E has the Dunford-Pettis property
if for every (xn) - 0, (xn) c E and for every (x;,) 0, (x,’) c E’, the
sequence of real numbers ((xn, x,’)) - 0.
To prove that E has the Dunford-Pettis property is very easy with the ideas

of Theorem 5.
To prove that E does not have the H.D.P.P., we begin with the fact that the

space (: Co(Wn))o isometric to c0(w) does not have the H.D.P.P. Then,
using the same technique as Cembranos in [3], there is no M > 0 such that (,)
is satisfied for every Co(t0n) with the same M. In other words, for every
Mk 3k, there is an n(k) (we take n(k) > n(k- 1)) such that in the space
En( Co(wn(k)) there is a sequence

(xk)" j= 1,...)
with the following properties (where II Ilk is the norm of gn(k)):

(a) (x}) 0 in En(), IIx)ll 1.
(b) For every subsequence rx(k) j 1, ) of (xSk: j 1, ) there is\ re(j)

a sequence a (al,..., an,...) Co (depending on the subsequence) such
that

3ksuPlajl < II ajx(k)m(j).llk

Consider the following sequence in (Z En()), a subspace of (Y. Co(

z (x(/2,..., xI}/2k,... ),
z,, (x)/2,..., X(mk)/2k,... )

It is very easy to prove that
(1) z,, (Y. E,),
(2) (z,,)

But it is not difficult to see that, for every subsequence (z,’) of (zn), and every
k N, there is a sequence depending on (z) and k such that

ajz] E ajzj ( k )
j----I k--I j--1 k

E v*’J’a’ (’/’)

2kk--1 j--1 k

x(k),aj m(j,>
2j--1 k

>_ (3k/2k)suPla[ due to the choice of a (a,...)
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So (z,) can not be equivalent to the canonic base of Co, and so (X c0(0n))l
does not have the H.D.P.P.
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