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INFINITESIMAL RIGIDITY OF PRODUCTS OF
SYMMETRIC SPACES

BY

JACQUES GASQUI AND HUBERT GOLDSCHMIDT

Let (X, g) be a compact symmetric space. We say that a 1-form or a
symmetric 2-form on X satisfies the zero-energy condition if all its integrals
over the closed geodesics of X vanish; an exact 1-form and the Lie derivative
of the metric g along a vector field on X always satisfy the zero-energy
condition. The space (X, g) is infinitesimally rigid if the only symmetric
2-forms on X satisfying the zero-energy condition are the Lie derivatives of
the metric g.

In this paper, which is a sequel to [6], we investigate the infinitesimal rigidity
of a product X Y Z of compact symmetric spaces Y and Z and general-
ize the results of [6] concerning the product S RPn. We give a criterion for
the infinitesimal rigidity of Y Z mainly in terms of properties of Y and Z
(Theorem 2.1) from which we deduce the infinitesimal rigidity of an arbitrary
product X Xr, where each X is either a projective space, different
from a sphere, or a flat toms, or a complex quadric of dimension > 5. This
englobes all the previously known infinitesimal rigidity results (see [8]) and
gives the first known examples of non-fiat infinitesimally rigid symmetric
spaces of arbitrary rank.
One of the main ingredients of our proofs is the characterization of exact

1-forms on these spaces in terms of closed geodesics. In [14] and [7], it is
shown that the 1-forms on a projective space, which is not a sphere, satisfying
the zero-energy condition are exact (see also [8]); the corresponding fact for
flat tori is given by [13], and for complex quadrics of dimension > 4 by [3].
We consider the product X= Y Z and assume that Y and Z are

infinitesimally rigid. We also suppose that the 1-forms on Y and Z which
satisfy the zero-energy condition are exact. Let h be a symmetric 2-form on X
satisfying the zero-energy condition. To prove that h is a Lie derivative of the
metric, most of the methods and computations introduced in [6] to treat the
case of S RPn, with n > 2, are used here. Several important new features
occur, especially because the dimensions of Y and Z may both be greater than
one. We first wish to show that h is locally a Lie derivative of the metric by
proving that it lies in the kernel of the differential operator Qg of order 3 of
[4], which is the compatibility condition for the Killing operator. The in-
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finitesimal rigidity of Y and Z implies that we may assume that

=0,

whenever the vectors 1, ’2 are tangent to the same factor. We require a crucial
additional assumption on h, which always holds if Y is either a projective
space, a fiat torus or a complex quadric (Lemma 1.9), namely: "averaging h
along the dosed geodesics of Y" is a C-process which gives rise to another
2-form of the same type. This condition on h is used in verifying the identity
(1.15) when Y and Z are both of dimension greater than one. In our proof
that Qgh 0 and our computation of LhR (see Proposition 1.1), we do not
require as in [6] exact formulas for the curvatures of Y and Z.

If the universal coveting space of Y or of Z does not admit a Euclidean
factor, we give a Kiinneth type decomposition for the harmonic space of
symmetric 2-forms on the product X Y Z (Proposition 2.1), which en-
ables us to conclude that a harmonic 2-form on X satisfying the zero-energy
condition vanishes. Standard Hodge theory now gives us the infinitesimal
rigidity of X (Theorem 2.1). The infinitesimal rigidity of the flat 2-torus
S S is used in several instances during the course of our proof.

1. The zero-energy condition and local results

Let (X, g) be a Riemannian manifold of dimension n. We shall denote by
T Tx the tangent bundle of X and by T* T the cotangent bundle of X.
By (R)kT*, SkT*, we shall mean the k-th tensor product and the k-th
symmetric product of T*, respectively. Let v v x be the Levi-Civita connec-
tion of g. Throughout this paper, we shall use the results and notations of 1
of [6]. In particular, we denote by gl gX the symbol of the Killing equation
of (X, g); it is the sub-bundle of T* (R) T whose fiber at x X is the Lie
algebra of the orthogonal group of the Euclidean vector space (Tx, g(x)) (cf.
[4, 3]). If X is locally symmetric, the space of Killing vector fields on a
connected and simply connected open subset U of X is isomorphic to the
space R3, R x3, of jets of order 3 of Killing vector fields at x U (see
[4, Theorem 7.1]); moreover, we say that X does not admit a Euclidean factor
at x X if there exists a neighborhood of x isometric to an open subset of a
product M+ M_, where M+ and M_ are Riemannian globally symmetric
spaces of the compact and non-compact type, respectively. If X is a compact
symmetric space and x X, the set Cx, of vectors " T (0), for which
Expx R" is a closed geodesic of X, is a dense subset of T (see [10, Chapter
IX, 51).

Let (Y, gy) and (Z, gz) be two Riemannian manifolds and suppose that
(X,g) is the Riemannian product of (Y, gy) and (Z, gz); we shall use the
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notations and conventions, introduced in {}2 of [6], concerning the product
Y Z. We shall identify a tensor on Y or Z with the one it determines on X.
The musical isomorphisms T T*, T* --, T, sending T onto /jb and
a T* onto a#, associated to the metric g, induce isomorphisms

which are in fact the musical isomorphisms associated to gr and gz. We also
denote by g and gxz the sub-bundles prlgY and prlgxz of T* (R) T. We
consider the isomorphism : T* (R) T ---, T* (R) T of vector bundles defined as
follows: if u=fl(R), with fl T*, T, then u=b(R)f#. The sub-
bundle

(u- u lu re (R)

of T* (R) T is isomorphic to T (R) Tz; moreover, it is clear that g’ z c gx and
that:

LEMMA 1.1. We have the direct sum

gx z.

We now suppose that (Y, g,) and (Z, gz) are connected and locally
symmetric. If (" (resp. (z) is the infinitesimal orbit of the curvature R, of
(Y, g,) (resp. Rz of (Z, gz)) of type (0,4), we identify pr{ (, (resp.
pr 1 (z) with a sub-bundle of G which we also denote by (y (resp. (z). The
curvature R of type (0, 4) of X is given by the relation R R, + Rz. If we
set

(r,z= #(gYx,Z)R

we have the surjective mapping

(1.1) T, (R) Tz --, (Y,Z,

sending u into p(u u)R. Let G1 denote the sub-bundle of G consisting of
the elements to of G for which d(1, 2, 3, 4) 0, with ’, ’2, 3, 4 T,
whenever all the vectors ’i are tangent to the same factor or whenever two of
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the ’i are tangent to Y and the other two to Z. It is easily verified that

(1.2) wKG

there exists u T (R) Tz such that

nl.

0(1, 1, 2, 3) -Ry(u(rll), 11, 12, 13),
for all Jx,/2, 3, Tr, rh, */2, /, Tz

LV.MMA 1.2. Suppose that Y and Z are connected and locally symmetric. Then
we have the direct sum

(1.3) ( dr (9 (z (9 (Y,z.

Let x (y, z) X; if Y (or Z) does not admit a Euclidean factor at y (or z),
the mapping (1.1) is an isomorphism at x.

Proof Since

#(grx)R #(gY)Ry (y,
p(gxZ)R #(gZ)Rz= (rz,

from Lemma 1.1 we obtain (1.3). If Y or Z satisfies the additional hypothesis
at y or at z, by [10, Chapters V and VII] we see that

dim R 3, dim RY3,y + dim RZ3,.

From the exactness of the sequence (5.4) of [4], it follows that

dim (x dim (f + dim (z + dim Y dim Z;

we now deduce from this relation that (1.1) is an isomorphism at x.
We identify T (R) Tz* with its image by the monomorphism of vector

bundles t: T (R) Tz* S2T * over X defined by

for v T (R) Tz*, ’1’ 2 T.
Assume that Y and Z are compact, connected locally symmetric spaces.

Since the sequence (1.3) of [6] is the initial part of an elliptic complex, if Y (or
Z) is infinitesimally rigid, then this property holds with parameters.
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LEMMA 1.3. Assume that Y and Z are infinitesimally rigid, and that Y or Z
is a compact symmetric space. Let k be a symmetric 2-form on X satisfying the
zero-energy condition and xo X. Then there exist a section h ofT (R) Tz over
X, with h(xo) O, and a vector field on X such that

k= h +.’g.

Proof. We write k k + k2 + k3, where kl, k2, k are sections of S2T,
T (R) Tz* and SET respectively. For all y Y and z Z, the restrictions
of k to Y (z) and of k2 to (y) Z satisfy the zero-energy condition.
Since Y and Z are infinitesimally rigid, there exist sections of Ty and ’0 of
Tz over X such that .g kt and *’nlg k3 are sections of T (R) Tz*. Then

’ + ’01 is a vector field on X and ht k- .lg is a section of T (R) Tz*.
We may assume without loss of generality that Z is a compact globally
symmetric space. Let z denote the Lie algebra of Killing vector fields of Z
and C(Y, z) the space of z-valued functions on Y. We may also consider
an element ’0 of Coo(Y, z) as a section of Tz over X; it is easily verified that
.ng is the section of T (R) Tz* equal to the exterior derivative dy’0 of the
function ’oh on Y. Since Z is globally symmetric, for z Z the mapping
z Tz, z, sending ’0 into ’0(z), is surjective. Therefore, there exists a section

’02 of Coo(Y { z)such that

(.n2g)(xo) (dr’0E)(xo) h(xo).

Then ’ ’ ’02 and h h "’n2g satisfy the desired conditions.
Let h be a section of T (R) Tz*. If ’ T, we denote by h the element of

T* defined by the relation h(") h(’, "), for ’ T; if " Ty (resp. Tz),
then h belongs to Tz* (resp. T).
For the remainder of this section, we consider a section h of T (R) Tz*. We

have

’02. ’03. ’04) 0.
:) 0.

for 1, 2’ 3’ 4 Ty, ’01’ ’02, ’03, ’04 Tz, 1, 2 T. We take this opportu-
nity to point out that equation (3.1) of [6] is not correct and should be
replaced by

/(h)(l, 2, 3, 4) ,(h)(tga, 1, t9, 2) t,(h)(tgo, 1, 2, 3) 0,

for all , 2, 3, 4 TZ, and that one must add the term 1/2,(h) to the
right-hand side of equation (3.2) of [6] and replace 1/(n + 1) by 1/(n 1)
there. By formulas (1.5) and (1.4) of [6], a computation similar to the one
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resulting in equation (3.2) of [6] yields the relations

(1.6)

for , 1, 2, 3, 4 T and */1, 1’/2, ’03, ’04 Tz; similarly, we have

(Z,h)(,, x, :, )
1/2{(v2h)(3, 1, ’2, ’0) (v2h)(2, ’1, ’3, ’0)

for 1’ 2’ 3 Zy, ’0 - TZ.
For the remainder of this paper, we assume that Y and Z are compact

symmetric spaces.

LEMMA 1.4. Let k be a symmetric 2-form on X satisfying the zero-energy
condition. Then we have

(z)(, , ,) + (zg)(, ,_, , ) o,

(z)(, , ,., ) + (z)(, , , ) o,

Proof. Let x (y, z) X and Cy, y, "0 Cz, z. Then

F Expx(R R’0)

is a flat 2-torus totally geodesic in X. If i: F X is the natural imbedding,
then i*k satisfies the zero-energy condition on F. According to [13], there is a
vector field ’ on F such that i*k .q(i*g). Since the sequence (1.7) of [6] is a
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complex, we see that Di.g(i-k) 0; from formula (1.8) of [6], we deduce that

(1.9)

Since Cy, y is dense in Ty, y and Cz, is dense in Tz, , (1.9) holds for all
Tr, y, "0 Tz, and we thus obtain the desired result.

If h satisfies the zero-energy condition, according to (1.6) and Lemma 1.4,
we see that

(1.10)

for all , , 2 Ty, , , "02 - TZ"
If y Y and Cr, y, we define a 1-form to on Z by

a( "0 ) - ( t’( ), "0) dt,

for "0 Tz, where ),(t) Expytt and ,(t) is the tangent vector to the closed
geodesic , of period L. We have t0x ,a, for , R, with , #: 0.
The proof of Lemma 3.2 of [6] gives us the following:

LEMMA 1.5. Assume that h satisfies the zero-energy condition. Ify Y and
1 Cy, y, the 1-form to on Z satisfies the zero-energy condition.

The following lemma is a consequence of Lemma 1.5; its proof is similar to
that of identity (3.9) of [6] and shall be omitted.

LEMMA 1.6. Assume that h satisfies the zero-energy condition, and that the
1-forms on Z which satisfy the zero-energy condition are closed. Then we have

(1.11)

for all y Y, C,, y, "01, "02 - TZ"
Under the hypotheses of Lemma 1.6, if there is a section h of T (R) Tz*

such that hl(, "0) to("0) for all y Y, Cy, y, "0 Tz, then, for "01, "02
Tz, y Y, by Lemma 1.6 we have

(1.12) 1/2((x7h)("01, , "02) + (vh)("02, , "01)) (Vhl)("01, , "02),

for all Cr, y; since Cr, y is dense in Ty, y, this identity is then valid for all
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Similarly, if z Z and / Cz, , we define a 1-form fin on Y by

fln(,) - (, (t)) dt,

for Tv, where V(t) Expt and (t) is the tangent vector to the closed
geodesic of period L. We have flxn hfln, for h R, with h 0.

LMMA 1.7. Suppose that h satisfies the zero-energy condition. If y Y,
z Z and Cy, y, rl Cz, , we haoe

Proo We may assume without loss of generaty that I111 Ilnll 1. Set
V(t) Expyt, 2(t)= Expt and let L, L2 be the lengths of the closed
geodesics Vx and V2, respectively. Consider the fiat 2-toms F S Sx, where
the first factor has length L and the second has length L2, and the totally
geodesic imbedding i: F X sending (O, 02) into (V(O), V2(2)). We iden-
tify a tensor on F with the coesponding doubly periodic tensor on the
(01, 02)-plane. According to Michd [13], there ests a vector field

on F such that

ri,g= OAI ( 3A1 0A2) 3Az do= i.h

Thus we see that A A(02), A2 A2(O) and that

where (0), 2(02) are the tgent vectors to the geodesics , y2. Therefore

dAxh(, ) h((0), (0)) (0) + (0).
On the other hand, we have

E
(o) +
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similarly, we obtain

da 2() --1(o),
and the desired equality.

LEMMA 1.8. Suppose that h satisfies the zero-energy condition. Let y Y,
z Z and 1, 2 Cr, y. If 1 + 2 Cr, y, for rl Tz, we have

Proof Since Cz, is dense in Tz, z, we may assume that Cz, z. Then by
Lemma 1.7, we have

%(r/) + o2(r/) h(l, r/) fln(l) + h(2, r/) fln(2)
h(,f + ,f:, n) ,,(,f + ,f)

LEMMA 1.9. Suppose that h satisfies the zero-energy condition and that there
exists a C-section h of T, (R) T7 such that

(1.13) h(j,

for ally Y, Cy, y

of T (R) T such that
and *1 Tz. Then there exists a unique Coo-section h 2

(1.14) h2(, r/)

for all Ty, z Z and 1 Cz, z; moreover, h h + h 2.

Proof We set h 2 h h; then by Lemma 1.7, if y Y, z Z, Cz, z,

we have (1.14) for all Cr, y and, since Cy, y is dense in Ty, y, for all
r,y.

We always consider the projective spaces endowed with their canonical
metrics as in [1]. In particular, the metric on the complex projective space CP
is the Fubini-Study metric with constant holomorphic curvature 4. We also
consider the complex quadric Q,, which is the hypersurface of CPn+l, with
n > 3, defined by the equation

-4- "1-2n+1 0

in terms of the homogeneous coordinates ’0, 1,’’’, n+l; the metric on Q, is
that induced by the Fubini-Study metric of CPn+l. If Y Q,, a field , of
unit tangent vectors of the hypersurface Y of CP"+ 1, normal to Y and defined
on an open subset U of Y, determines an involution K of Tyiv and a
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decomposition

TyiU T+ T-,

where T+, T- are the sub-bundles of Tyiv consisting of the eigenvectors of K
corresponding to the eigenvalues + 1 and -1, respectively (see [8]). According
to [3], if y U and F is the subspace of Tr, y generated by an orthonormal
set { , *1 ) of vectors of Ty+ or of Ty-, then ExpyF is a closed totally geodesic
surface of Y isometric to the sphere S2 of constant curvature 2. It follows
that, if is a non-zero vector of Ty+ or of Ty-, then ExpyR is a closed
geodesic of Y of length

LEMMA 1.10. Assume that Y is either a projective space, different from a
sphere, or a flat torus, or a complex quadric Qn, with n > 3. If h satisfies the
zero-energy condition, there exists a unique C-section h of TI (R) T satisfy-
ing the relation (1.13).

Proof If Y is a projective space, different from a sphere, the geodesic flow
of Y is periodic of period r. In this case, we define a C-function h on

(Ty- {0}) )< Tz by

,) g ,)

for Ty- {0), / Tz; clearly (1.13) holds, since Cy, y Tr, y- (0}, for
y Y. We set hl(, r/)= 0, for Ty, *1 Tz, whenever vanishes, if
y Y and l, 2 Tr, y {0}, with 1 + 2 =/= 0, by Lemma 1.8 we have

hl(l r/) + h1(2 /) h1(1 + 2, /),

for all r/ Tz. Therefore, since hl(hl, 1) hhl(l, *1), for all h R, 1
Tz, z, we see that hi is a C-section of T (R) Tz*. If Y is a flat torus Rq/F,
where F is a lattice of maximal rank in Rq, choose a basis el,... eq of Rq

generating F and let { Ol, Oq } be the corresponding coordinate system.
Then the vector fields O O/O0 and the 1-forms dog on Rq induce tensors on
Y which we denote in the same way. We define a C-section h of T (R) Tz*
over X by

q

i--1

where/j Z,qi..laiOi is an element of Ty and *1 of Tz; since (01,..., Oq} is a
global frame for Y, we see that hi is differentiable. If y Y and Eq=lpgOg,
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where p Pq Z, then j Cr, y and by Lemma 1.8 we see that

q

E
i==1

for all / Tz. From this relation, we deduce that (1.13) holds. Finally,
suppose that Y is the complex quadric Qn, with n > 3. Let y Y and , be a
field of unit tangent vectors on the hypersurface Y of CPn+ 1, normal to Y and
defined on a neighborhood U of y. Consider the sub-bundles T/ and T- of

Trlu determined by v. If % is the geodesic flow of Y, we define C-functions

h on (T+- {0}) Tz and hi- on (T--(0}) Tz by

h(, r/) (%, /),

1
hi-(’, n) (%1", n) ds,

for T+- {0}, " T-- {0} and Tz, where L r/-. According to
the remarks preceding the lemma, for all a U, the non-zero vectors of T.+
and T.- belong to C.,. and

h(j, 1) 0(rl), h-(’, 1)

for all T+-(0}, ’ T--{0} and / Tz. We set h(,r/)=0 and
h-(’, r/) 0, for T/, " T- and r/ Tz, whenever and " vanish. By
Lemma 1.8, we have

r/) q- -t-

r/) r/) +

for all 1, 2 T+-{0), ’1, ’2 T--{0}, whenever 1 + 2 0 and ’1 + ’2
0. Therefore, since

h(h, /) Xh(, r/), h-(X’, /) Xh-(’,

for all , R, T/, " T- and r/ Tz, the function h on TrIu Tz,
defined by

hl(, 1) h?(+, /) + h-(-, r/),

for Tglu, rl Tz, where ++ - is the decomposition of , with

+ T+ and - T-, is a C-section of T (R) Tz* over U Z. Now let be
an element of Cr’,a, with a U; we write ++ -, where / T/ and- T-. If + or - vanishes, then we know that (1.13) holds for all Tz.
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If + and - are both non-zero, by Lemma 1.8, we see that

h(,, n) hf(,/, ,) + h;(,-, n)

for all .1 Tz. As Cr, is dense in Ty, a, these relations give us the uniqueness
of h on U Z, and thus there exists a global section h of T (R) Tz* over X
satisfying (1.13).

PROPOSITION 1.1. Assume that the 1-forms on Y and Z satisfying the
zero-energy condition are closed. Suppose that h satisfies the zero-energy condi-
tion and that there exists a C-section h of T, (R) T satisfying the relation
(1.13). Then we have

(1.15)

(1.16)

(.7)

for all , 1, 2’ 3 ( Ty, .1, .11, .12, .13 ( Tz, and

D2h O.

Moreover, if h vanishes at x0, then

( Zxh )( xo) O.

Proof. Because of (1.13) and our hypothesis on Z, by Lemma 1.6 we know
that (1.12) holds. Hence by (1.10) and (1.6), we have

0-- (o,h)(,, n, ,, n)
-1/2((v -h)(, x, , n) + (v -h)(, , f, n)}
(Vhl)(, , , _),

for Tr, .11, .12 TZ" By our hypothesis on Y, by Lemma 1.6 the analogue
of (1.12) holds for hg_; namely, we have

(1.18) 1/2((XTh)(, 2, .1) + (XTh)(2, , .1)) (XTh2)(, 2, .1),
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for/Jl, 2 Ty, 11 -. TZ. Therefore by (1.10) and (1.6), we also have

( v2h2)(1, 11,2, 11/-" O,

for Jl, 2 Ty, 11 C= Tz. Thus by (1.12), (1.18) and the above relations, for
1, 2 Ty, 111, 112 Tz, we see that

(V 2hl)(1, ’01, 2,112)

is symmetric in 111, 112 and skew-symmetric in 1, 2, while

(V 2h2)(1,111, 2,112)

is symmetric in 1, 2 and skew-symmetric in 111, 112- Hence since h h + h2,
by (1.6) we have

(Dgh)(ll, 111, ’2,112) -1/2((v2hl)(l, 111, 2,112) + (v2h2)(l, 111, 2,112)

+ (V 2hl) (2, */2, 1, 111) -" ( V2h 2)(2,112 1,111))

By (1.7) and (1.12), we obtain

(Dgh)(l, 111,112,113) 1/2((V 2h)(112,113, , 111) (V 2h)(r/3,112, , 111)

+ (7 2hl)(113, Bx, , B2) (2hx)(B2, Bx, , B3)

for all Ty, , 2, 3 Tz; silarly, from (1.8) and (1.18) we deduce
(1.17). We now compute LhR. Let 1, 2, 3 Tz; we set Rz(2, 3).
For T, Tv, by formula (4.8) of [4], we have

(ZR)(, , n, ,) -R(Z, 1, n, n)
((vh)(,,)+(vh)(,,)-(vh)(,,)).

If Tv, then by (1.18)we see that

(ZR)(, , n, n, n) ((vh)(, , n) + (vh)(, ,
(vh)(, , n);



INFINITESIMAL RIGIDITY OF PRODUCTS OF SYMMETRIC SPACES 323

on the other hand, if " Tz, then by (1.12) we have

Since vRz 0, from the above relations we deduce that

(LhR)(, , rh, ’02, */3) -Rz((Vh2),, ’01, 1’/2, ’1/3),
for all ’ T, Tr, where (vh2)L is the element of Tz* defined by

(7hE)L(’0’) (7h2)(" , ’0’),

for ’0’ Tz. If ’1, 2 TZ’ by formula (4.8) of [41, we have

R(Lx’2, ’01, ’02, 1/3) --1/2((vh)(’l, ’2, ’0) -b (vh)(’2, ’0, ’1)
(vh)(n,

and so we obtain

(LhR)(, 2, ’0, ’0, ’03) 0.

Similarly, we have

(LhR)(, ’0, , 2, 3) -Rr’((Vhl),n, t, 2, 3),
o,

for all " T, 1, 2’ 3’ 1’ 2 Ty, ’0 - Tz, where (XThl), n is the element of
T defined by

(Vhl)Ln() (vhl)( , ’0),

for Tr. Moreover, since R Rr + Rz, for " T, l, 2 Ty, ’01, ’02
Tz, we easily see that

(LhR)(, 1, ’01, 2, ’02) O.

Since vR 0, from (1.16) and (1.i7), we deduce that

(VDgh)(’, , ’01, ’02, ’0a) Rz((Vh2),,, ’01, ’02, ’03),
(vDgh)(’, ’0, t, 2, 3) Rr((vhl),,, l, 2, 3),
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for all " T, , x, 2, 3 Ty and ’0, ’0a, ’02, ’03 TZ" From all these rela-
tions involving XTDgh and LhR and from (1.4), (1.5) and (1.15), by formula
(1.9) of [6] we obtain

for all , Jx, 2’ 3’ 4 Ty, ’0, ’01, ’02, ’03, ’04 Tz and T. Since D2h is a
section of H, these relations imply that DEh 0. If h(xo)= 0, we define
elements u (T, (R) Tz)xo, v (Tz (R) Tr)xo by

u() hg2,,

for Tr, xo, "0 Tz, xo; then by (1.16) and (1.17), we have

(Dgh)(’0, 1, 2, 3) Ry(O(’0), 1, 2, 3),

for all , x, 2’ 3 Ty, o’ ’0’ ’01, ’/12, ’03 TZ, o" As h(xo) 0, we know that
(Dgh)(xo) G, and that (Dxh)(xo) 0 if and only if (Dgh)(xo) . Ac-
cording to Lemma 1.2, (1.2), (1.5) and (1.15), this last condition holds if
v -u; this equality is true, since

for l Tr, xo, "0 Tz, o"

g(u(l), "0) + g(l, v(’0)) g(hg2,ti, "0) + g(f,
+

0,

Thus (Dlh)(xo) O.

PROPOSITION 1.2. Assume that Y and Z are infinitesimally rigid and that the
1-forms on Y and Z satisfying the zero-energy condition are closed. Suppose
moreover that the conclusion of Lemma 1.10 holds for every section h of
T, (R) Tz satisfying the zero-energy condition. If k is a symmetric 2-form on X
satisfying the zero-energy condition, then

Qgk O.

Proof. Let k be a symmetric 2-form on X satisfying the zero-energy
condition and x0 X. By Lemma 1.3, we may write k .oq’g + h, where is
a vector field on X and h is a section of T (R) Tz*, with h(Xo) 0, satisfying
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the zero-energy condition. By Proposition 1.1, we see that

(Dk)(xo) (Dh)(xo) 0 and D2k D2h O.

PROPOSITION 1.3. Assume that Y is either a projective space, different from
a sphere, or a fiat torus or a complex quadric Q, with n >_ 5. Assume that Z is
infinitesimally rigid and that the 1-forms on Z satisfying the zero-energy condition
are closed. If k is a symmetric 2-form on X satisfying the zero-energy condition,
then

Qgk O.

Proof. The 1-forms on Y satisfying the zero-energy condition are exact and
Y is infinitesimally rigid, according to [14], [7], [12] and [15] (see also [1], [5],
[8] and [9]) in the case of a projective space, or to [13] in the case of a torus, or
to [3] and [9] in the case of a complex quadric. The conclusion follows from
Lemma 1.10 and Proposition 1.2.

2. Harmonic infinitesimal deformations

We continue to assume that Y and Z are compact symmetric spaces and
that X Y Z. We denote~ by. I? and the universal coveting spaces of Y
and Z. We say that Y (resp. Z) does not admit a Euclidean factor if it is
isometric to a product M+ M_, where M+ and M_ are symmetric spaces
of compact and non-compact type, respectively.

LEMMA 2.1. If " does not admit a Euclidean factor, then every parallel
oector fieM on Y vanishes.

Proof. According to a result of H.C. Wang (see [11, Theorem 4.6, Chapter
VI]), a parallel vector field on Y is invariant under the identity component
of the group of isometries of Y. Thus by passing to the universal coveting
space of Y if necessary, we easily see that it suffices to consider the case of an
irreducible symmetric space (of compact or non-compact type) and a vector
field which is invariant under the identity component of the group of isome-
tries; such a vector field must necessarily vanish.

Let O, Or and Oz be the sheaves of Killing vector fields on X, Y and Z,
respectively. We consider the harmonic spaces

H= {h C(S2T*)IDh---O, Qgh O)
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on X and the analogous harmonic spaces Hxr and Hz on Y and Z, respec-
tively. According to Theorem 1.1 of [6], we have isomorphisms

(2.1) Hi(X, O) -- Hl, Hi(Y, Or) Hy, Hi(Z, Oz) = HXz
We denote by H (resp. HY, Z Z, Y) the subspace of Co(S2T*) generated by the
elements a. b, where a is a harmonic 1-form on Z (resp. Y) and is a
Killing vector field on Y (resp. Z).

PROPOSITION 2.1. Assume that Y, Z are compact symmetric spaces. If fr or
Z does not admit a Euclidean factor, then

H1= H1y(9 Hlz(9 H (9 HY, z z, Y"

Proof If h is an element of H,, then clearly Dff’h 0 on X; since h can
be written locally as a Lie derivative of the metric gy on Y, we see that
Qgh 0. Thus Hlr and H are subspaces of H. Next, let be a Killing
vector field on Y and ct be a harmonic 1-form on Z. If U is a simply
connected open subset of Z, we may write a dr, for some real-valued
function f on U, and then we have

on Y U. On the other hand, if i is the formal adjoint of d and if Tr h
denotes the trace of symmetric 2-form h on X, we have

D ( a , ) ,3a , + 2Tr(L’g) a 0.

Thus H and HY, Z Z, Y are also subspaces of H1. If I7 or does not admit a
Euclidean factor, we now show that HY,Z t3 Hz,r 0. Let cq, %, (resp.
fli,..., flq) be a basis of the space of harmonic 1-forms on Y (resp. Z).
Suppose that there are Killing vector fields 1,..., q on Y and *ll,..., rip on
Z such that

p q

(2.3) E%’I+ E’flk=0-
j=l k=l

For 1 < j < p, since r/j is a Killing vector field on Z, 8r/ 0; hence there
exist a 2-form pg on Z and constants bgt such that

q

k=l



INFINITESIMAL RIGIDITY OF PRODUCTS OF SYMMETRIC SPACES 327

Similarly, for 1 _< k _< q, there exist a 2-form 0k on Y and constants akj such
that

p

Ik 8tt: + akjetj.
j=l

From (2.3), it follows that

p q p q

(2.4) Y’. Oj j + E Ok" flk + E E (akj + bjk)tj" flk-- O.
j=l k=l j=l k=l

We denote by ( ) the L2-scalar product on C(S"T*) induced by the
metric g. As (Sqj, fig) 0, we see that

(,." ,,r., ,," &) o,

for 1 < j, 1 < p, 1 < k < q; similarly, we have

for 1 < j < p, 1 < k, r < q. Hence from (2.4), we deduce that

p q

(2.5) E . 0, E ,0./L 0,
j=l k=l

P q

E E (akj+bj)otj’flg
j=l k=l

Since R1,.--, Rp are linearly independent (over R), if /is a vector field on Z,
the first of equations (2.5) implies that (r, 8j) 0 and hence that 8%. 0,
for 1 < j < p. Similarly, we obtain

6oak O, akj + bjk O,

forl <j<p, 1 <k<q. Thus

p q

j=l k=l

Since dotj 0, dk 0 and }k, ’Oj are Killing vector fields, we see that }k and

/j are parallel vector fields. According to Lemma 2.1, the parallel vector fields
on Y or Z vanish, and so akj bjk 0 and k 0, j 0, for 1 < j < p,
1 < k < q. We have thus shown that the sum on the fight-hand side of (2.2) is
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direct. Our hypothesis on Y or on Z implies that

0 pr;0r prOz.

Kiinneth’s formula [2, Theorem II, 18.2] tells us that

H(X, 0) (H(Y,R) (R) H(Z, Oz)) (HI(y,R) (R) H(Z, 0z))
(H(Y, Oy) (R) HI(z,R)) ( (HI(y, Oy) (R) H(Z,R)).

Since Y and Z are connected, from the isomorphisms (2.1) we deduce the
equality (2.2).

In fact, we have shown that (2.2) represents a "Kfinneth decomposition" of
the harmonic space H1. If Z is of compact type, then Hi(Z, R)= 0 and so
H 0; in this case, the proof of Proposition 2.1 is considerably simpler.Y,Z

LEMMA 2.2. Assume that the 1-forms on Y and Z which satisfy the zero-
energy condition are exact. Let k be a symmetric 2-form on X which can be
written in the form

p

(2.6) k
j=l

where aj are 1-forms on Y and flj are 1-forms on Z satisfying 8aj
If k satisfies the zero-energy condition, then it vanishes.

O, /3 O.

Proof Assume that k is non-zero and satisfies the zero-energy condition,
and that p is the least integer for which we can write k in the form (2.6),
where aj are non-zero 1-forms on Y and flj are non-zero 1-forms on Z
satisfying %. 0, fl 0. There exists a closed geodesic 71 of Y such that

(2.7) flal C :: 0.

Indeed, if this were false, a would satisfy the zero-energy condition and, so by
our hypothesis on Y, would be exact. Since Y is compact and a 0, we
would have a 0. If
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for 2 _< j _< p, then

j=2 j=2

where

Thus we may assume without loss of generality that there exists a closed
geodesic 3’1 of Y such that (2.7) holds and that

(2.8) fvlaj 0,

for 2 < j < p. Let 3’2: [0, L2]-- Z be an arbitrary closed geodesic of Z
parametrized by its arc-length. Let L be the length of the dosed geodesic 3’1
of Y. Consider the flat 2-torus F S S1, where the first factor has length
L and the second has length L2, and the totally geodesic imbedding i:
F X sending (01, 02) into (3’1(01), 3’2(02)). According to Michel [13] and the
proof of Lemma 1.7, there exists a vector field

0 0
A1(02)-1 -- A2(1) 002

on F such that .ri*g i*k. Then we see that

P dA dA 2

j=l

from (2.7) and (2.8), it follows that

da
c11(2(2)) L1-2 (2)

and, since cl : 0, that

Our hypothesis on Z implies that 1 is exact; since Bill 0 and Z is
compact, we see that fl 0, which shows that p was not minimal.
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THEOREM 2.1. Assume that Y and Z are infinitesimally rigid compact
symmetric spaces. Assume that the 1-form.s on Y and Z which satisfy the
zero-energy condition are exact, and that Y or does not admit a Euclidean

factor. Let k be a symmetric 2-form on X. Then the following assertions are
equivalent"

(i) k satisfies the zero-energy condition and Qgk 0;
(ii) there exists a vector field on X such that .g k.

If moreover the conclusion of Lemma 1.10 holds for every section h of T (R) T
satisfying the zero-energy condition, then X is infinitesimally rigid.

Proof. By Proposition 1.2, it suffices to show that (i) (ii). Assume that (i)
holds. By Theorem 1.1 of [6], we may write

(2.9) k .g + k’,

where is a vector field on X and k’ H1. The hypotheses of Proposition 2.1
are satisfied and so, by (2.2), we have k’= k + k2 -I- k3, where kl H.,
k2 H and k H H By (2.9), k’ satisfies the zero-energy condi-’,z z,Y.
tion; hence k (resp. k2) satisfies the zero-energy condition on Y (resp. Z).
From the infinitesimal rigidity of Y and Z, we see that k 0, k2 0, and
hence that k’ k3. Since a Killing vector field " on Y or Z satisfies 8.b 0,
we see that k satisfies all the hypotheses of Lemma 2.2. Thus k 0 and
k

Since projective spaces, different from spheres, flat tori and complex quadrics
of dimension >_ 5 are infinitesimally rigid and the 1-forms on these spaces
satisfying the zero-energy condition are exact (see the proof of Proposition
1.3), the following theorem is a direct consequence of Proposition 1.3 and
Theorem 2.1.

THEOREM 2.2. Assume that Y is either a projective space, different from a
sphere, or a flat torus, or a complex quadric Qn, with n > 5. Assume that Z is
an infinitesimally rigid compact symmetric space and that the 1-forms on Z
satisfying the ze.ro-energy condition are exact. If Y is a flat torus, suppose
moreover that Z does not admit a Euclidean factor. Then X is infinitesimally
rigid.

PROPOSITION 2.2. Assume that Y and Z are compact symmetric spaces, and
that the 1-forms on Y and Z which satisfy the zero-energy condition are exact.
Then the 1-forms on X which satisfy the zero-energy condition are exact.

Proof. Let a be a 1-form on X satisfying the zero-energy condition. Then
by our hypothesis, for all y Y, z Z, the restrictions of a to Y { z } and
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( y } Z are exact. Therefore

(da)(l, 2) 0, (da)(’01, ’02) 0,

for all 1, 2 Ty, ’01,’02 Tz. Let x (y, z) X and Cr, y, ’0 Cz, z.
Then

r Exp (R 

is a flat 2-torus totally geodesic in X. If i: F X is the natural imbedding,
then i*a satisfies the zero-energy condition on F. According to [13], i*a is
exact; thus

(2.10) (da)(Id, ’0) O.

Since Cr, y is dense in Tr, y and Cz, is dense in Tz, z, (2.10) holds for all
Tr, y, *1 Tz, z. Hence a is closed. As Y and Z are connected, by the

Kiinneth formula, we have

Hi(X, R) H(Y, R) H(Z, R);

hence by Hodge theory, we may write

Ot df -[- fl -1- f12
where f is a real-valued function on X, and fl, 2 are harmonic 1-forms on Y
and Z respectively. Clearly fl and fiE satisfy the zero-energy condition on Y
and Z respectively, and therefore are exact. It follows that fll 0, fie 0 and

The following theorem is a consequence of the fact that 1-forms on
projective spaces, different from spheres, on flat toil, or on complex quadrics
of dimension >_ 5 satisfying the zero-energy condition are exact, and of
Theorem 2.2 and Proposition 2.2.

THEOREM 2.3. A product X X of Riemannian manifolds, where
each X; is either a projective space, different from a sphere, or a flat torus, or a
complex quadric Q,, with n >_ 5, is infinitesimally rigid.
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