INFINITESIMAL RIGIDITY OF PRODUCTS OF SYMMETRIC SPACES

BY
Jacques Gasqui and Hubert Goldschmidt

Let (X, g) be a compact symmetric space. We say that a 1 -form or a symmetric 2-form on X satisfies the zero-energy condition if all its integrals over the closed geodesics of X vanish; an exact 1 -form and the Lie derivative of the metric g along a vector field on X always satisfy the zero-energy condition. The space (X, g) is infinitesimally rigid if the only symmetric 2-forms on X satisfying the zero-energy condition are the Lie derivatives of the metric g.

In this paper, which is a sequel to [6], we investigate the infinitesimal rigidity of a product $X=Y \times Z$ of compact symmetric spaces Y and Z and generalize the results of [6] concerning the product $S^{1} \times \mathbf{R P}^{n}$. We give a criterion for the infinitesimal rigidity of $Y \times Z$ mainly in terms of properties of Y and Z (Theorem 2.1) from which we deduce the infinitesimal rigidity of an arbitrary product $X_{1} \times \cdots \times X_{r}$, where each X_{j} is either a projective space, different from a sphere, or a flat torus, or a complex quadric of dimension ≥ 5. This englobes all the previously known infinitesimal rigidity results (see [8]) and gives the first known examples of non-flat infinitesimally rigid symmetric spaces of arbitrary rank.

One of the main ingredients of our proofs is the characterization of exact 1 -forms on these spaces in terms of closed geodesics. In [14] and [7], it is shown that the 1 -forms on a projective space, which is not a sphere, satisfying the zero-energy condition are exact (see also [8]); the corresponding fact for flat tori is given by [13], and for complex quadrics of dimension ≥ 4 by [3].

We consider the product $X=Y \times Z$ and assume that Y and Z are infinitesimally rigid. We also suppose that the 1 -forms on Y and Z which satisfy the zero-energy condition are exact. Let h be a symmetric 2-form on X satisfying the zero-energy condition. To prove that h is a Lie derivative of the metric, most of the methods and computations introduced in [6] to treat the case of $S^{1} \times \mathbf{R P}^{n}$, with $n \geq 2$, are used here. Several important new features occur, especially because the dimensions of Y and Z may both be greater than one. We first wish to show that h is locally a Lie derivative of the metric by proving that it lies in the kernel of the differential operator Q_{g} of order 3 of [4], which is the compatibility condition for the Killing operator. The in-

[^0]finitesimal rigidity of Y and Z implies that we may assume that
$$
h\left(\zeta_{1}, \zeta_{2}\right)=0
$$
whenever the vectors ζ_{1}, ζ_{2} are tangent to the same factor. We require a crucial additional assumption on h, which always holds if Y is either a projective space, a flat torus or a complex quadric (Lemma 1.9), namely: "averaging h along the closed geodesics of Y " is a C^{∞}-process which gives rise to another 2-form of the same type. This condition on h is used in verifying the identity (1.15) when Y and Z are both of dimension greater than one. In our proof that $Q_{g} h=0$ and our computation of $L^{h} R$ (see Proposition 1.1), we do not require as in [6] exact formulas for the curvatures of Y and Z.

If the universal covering space of Y or of Z does not admit a Euclidean factor, we give a Künneth type decomposition for the harmonic space of symmetric 2-forms on the product $X=Y \times Z$ (Proposition 2.1), which enables us to conclude that a harmonic 2-form on X satisfying the zero-energy condition vanishes. Standard Hodge theory now gives us the infinitesimal rigidity of X (Theorem 2.1). The infinitesimal rigidity of the flat 2-torus $S^{1} \times S^{1}$ is used in several instances during the course of our proof.

1. The zero-energy condition and local results

Let (X, g) be a Riemannian manifold of dimension n. We shall denote by $T=T_{X}$ the tangent bundle of X and by $T^{*}=T_{X}^{*}$ the cotangent bundle of X. By $\otimes^{k} T^{*}, S^{k} T^{*}$, we shall mean the k-th tensor product and the k-th symmetric product of T^{*}, respectively. Let $\nabla=\nabla^{X}$ be the Levi-Civita connection of g. Throughout this paper, we shall use the results and notations of $\S 1$ of [6]. In particular, we denote by $g_{1}=g_{1}^{X}$ the symbol of the Killing equation of (X, g); it is the sub-bundle of $T^{*} \otimes T$ whose fiber at $x \in X$ is the Lie algebra of the orthogonal group of the Euclidean vector space ($T_{x}, g(x)$) (cf. [4, §3]). If X is locally symmetric, the space of Killing vector fields on a connected and simply connected open subset U of X is isomorphic to the space $R_{3, x}=R_{3, x}^{X}$ of jets of order 3 of Killing vector fields at $x \in U$ (see [4, Theorem 7.1]); moreover, we say that X does not admit a Euclidean factor at $x \in X$ if there exists a neighborhood of x isometric to an open subset of a product $M_{+} \times M_{-}$, where M_{+}and M_{-}are Riemannian globally symmetric spaces of the compact and non-compact type, respectively. If X is a compact symmetric space and $x \in X$, the set $C_{X, x}$ of vectors $\zeta \in T_{x}-\{0\}$, for which $\operatorname{Exp}_{x} \mathbf{R} \zeta$ is a closed geodesic of X, is a dense subset of T_{x} (see [10, Chapter IX, §5]).

Let $\left(Y, g_{Y}\right)$ and $\left(Z, g_{Z}\right)$ be two Riemannian manifolds and suppose that (X, g) is the Riemannian product of $\left(Y, g_{Y}\right)$ and $\left(Z, g_{Z}\right)$; we shall use the
notations and conventions, introduced in §2 of [6], concerning the product $Y \times Z$. We shall identify a tensor on Y or Z with the one it determines on X. The musical isomorphisms $T \rightarrow T^{*}, T^{*} \rightarrow T$, sending $\xi \in T$ onto ξ^{b} and $\alpha \in T^{*}$ onto $\alpha^{\#}$, associated to the metric g, induce isomorphisms

$$
\begin{array}{ll}
T_{Y} \longrightarrow T_{Y}^{*}, & T_{Y}^{*} \longrightarrow T_{Y} \\
T_{Z} \longrightarrow T_{Z}^{*}, & T_{Z}^{*} \longrightarrow T_{Z}
\end{array}
$$

which are in fact the musical isomorphisms associated to g_{Y} and g_{Z}. We also denote by g_{1}^{Y} and g_{1}^{Z} the sub-bundles $\operatorname{pr}_{Y}^{-1} g_{1}^{Y}$ and $\mathrm{pr}_{Z}^{-1} g_{1}^{Z}$ of $T^{*} \otimes T$. We consider the isomorphism k: $T^{*} \otimes T \rightarrow T^{*} \otimes T$ of vector bundles defined as follows: if $u=\beta \otimes \xi$, with $\beta \in T^{*}, \xi \in T$, then $u^{\natural}=\xi^{b} \otimes \beta^{\#}$. The subbundle

$$
g_{1}^{Y, Z}=\left\{u-u^{\natural} \mid u \in T_{Y}^{*} \otimes T_{Z}\right\}
$$

of $T^{*} \otimes T$ is isomorphic to $T_{Y}^{*} \otimes T_{Z}$; moreover, it is clear that $g_{1}^{Y, Z} \subset g_{1}$ and that:

Lemma 1.1. We have the direct sum

$$
g_{1}=g_{1}^{Y} \oplus g_{1}^{Z} \oplus g_{1}^{Y, Z}
$$

We now suppose that $\left(Y, g_{Y}\right)$ and $\left(Z, g_{Z}\right)$ are connected and locally symmetric. If \tilde{G}^{Y} (resp. \tilde{G}^{Z}) is the infinitesimal orbit of the curvature R_{Y} of $\left(Y, g_{Y}\right)$ (resp. R_{Z} of $\left(Z, g_{Z}\right)$) of type (0,4), we identify $\mathrm{pr}_{Y}^{-1} \tilde{G}_{Y}$ (resp. $\operatorname{pr}_{Z}^{-1} \tilde{G}_{Z}$) with a sub-bundle of G which we also denote by \tilde{G}_{Y} (resp. \tilde{G}_{Z}). The curvature R of type $(0,4)$ of X is given by the relation $R=R_{Y}+R_{Z}$. If we set

$$
\tilde{G}^{Y, Z}=\rho\left(g_{1}^{Y, Z}\right) R
$$

we have the surjective mapping

$$
\begin{equation*}
T_{Y}^{*} \otimes T_{Z} \rightarrow \tilde{G}^{Y, Z} \tag{1.1}
\end{equation*}
$$

sending u into $\rho\left(u-u^{\natural}\right) R$. Let G_{1} denote the sub-bundle of G consisting of the elements ω of G for which $\omega\left(\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right)=0$, with $\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4} \in T$, whenever all the vectors ζ_{i} are tangent to the same factor or whenever two of
the ζ_{i} are tangent to Y and the other two to Z. It is easily verified that
(1.2) $\tilde{G}^{Y, Z}=\left\{\omega \in G_{1} \left\lvert\, \begin{array}{c}\text { there exists } u \in T_{Y}^{*} \otimes T_{Z} \text { such that } \\ \omega\left(\xi_{1}, \eta_{1}, \eta_{2}, \eta_{3}\right)=R_{Z}\left(u\left(\xi_{1}\right), \eta_{1}, \eta_{2}, \eta_{3}\right), \\ \omega\left(\eta_{1}, \xi_{1}, \xi_{2}, \xi_{3}\right)=-R_{Y}\left(u^{\natural}\left(\eta_{1}\right), \xi_{1}, \xi_{2}, \xi_{3}\right), \\ \text { for all } \xi_{1}, \xi_{2}, \xi_{3}, \in T_{Y}, \eta_{1}, \eta_{2}, \eta_{3}, \in T_{Z}\end{array}\right.\right\}$.

Lemma 1.2. Suppose that Y and Z are connected and locally symmetric. Then we have the direct sum

$$
\begin{equation*}
\tilde{G}=\tilde{G}^{Y} \oplus \tilde{G}^{Z} \oplus \tilde{G}^{Y, Z} \tag{1.3}
\end{equation*}
$$

Let $x=(y, z) \in X$; if $Y($ or $Z)$ does not admit a Euclidean factor at $y($ or $z)$, the mapping (1.1) is an isomorphism at x.

Proof. Since

$$
\begin{aligned}
& \rho\left(g_{1}^{Y}\right) R=\rho\left(g_{1}^{Y}\right) R_{Y}=\tilde{G_{Y}}, \\
& \rho\left(g_{1}^{Z}\right) R=\rho\left(g_{1}^{Z}\right) R_{Z}=\tilde{G}_{Z},
\end{aligned}
$$

from Lemma 1.1 we obtain (1.3). If Y or Z satisfies the additional hypothesis at y or at z, by $[10$, Chapters V and VII] we see that

$$
\operatorname{dim} R_{3, x}=\operatorname{dim} R_{3, y}^{Y}+\operatorname{dim} R_{3, z}^{Z} .
$$

From the exactness of the sequence (5.4) of [4], it follows that

$$
\operatorname{dim} \tilde{G}_{x}=\operatorname{dim} \tilde{G}_{y}^{Y}+\operatorname{dim} \tilde{G}_{z}^{Z}+\operatorname{dim} Y \cdot \operatorname{dim} Z ;
$$

we now deduce from this relation that (1.1) is an isomorphism at x.
We identify $T_{Y}^{*} \otimes T_{Z}^{*}$ with its image by the monomorphism of vector bundles $t: T_{Y}^{*} \otimes T_{Z}^{*} \rightarrow S^{2} T^{*}$ over X defined by

$$
(\imath v)\left(\zeta_{1}, \zeta_{2}\right)=v\left(\zeta_{1}^{Y}, \zeta_{2}^{Z}\right)+v\left(\zeta_{2}^{Y}, \zeta_{1}^{Z}\right)
$$

for $v \in T_{Y}^{*} \otimes T_{Z}^{*}, \zeta_{1}, \zeta_{2} \in T$.
Assume that Y and Z are compact, connected locally symmetric spaces. Since the sequence (1.3) of [6] is the initial part of an elliptic complex, if Y (or Z) is infinitesimally rigid, then this property holds with parameters.

Lemma 1.3. Assume that Y and Z are infinitesimally rigid, and that Y or Z is a compact symmetric space. Let k be a symmetric 2-form on X satisfying the zero-energy condition and $x_{0} \in X$. Then there exist a section h of $T_{Y}^{*} \otimes T_{Z}^{*}$ over X, with $h\left(x_{0}\right)=0$, and a vector field ζ on X such that

$$
k=h+\mathscr{L}_{5} g
$$

Proof. We write $k=k_{1}+k_{2}+k_{3}$, where k_{1}, k_{2}, k_{3} are sections of $S^{2} T_{Y}^{*}$, $T_{Y}^{*} \otimes T_{Z}^{*}$ and $S^{2} T_{Z}^{*}$ respectively. For all $y \in Y$ and $z \in Z$, the restrictions of k_{1} to $Y \times\{z\}$ and of k_{2} to $\{y\} \times Z$ satisfy the zero-energy condition. Since Y and Z are infinitesimally rigid, there exist sections ξ of T_{Y} and η_{1} of T_{Z} over X such that $\mathscr{L}_{\xi} g-k_{1}$ and $\mathscr{L}_{\eta_{1}} g-k_{3}$ are sections of $T_{Y}^{*} \otimes T_{Z}^{*}$. Then $\zeta_{1}=\xi+\eta_{1}$ is a vector field on X and $h_{1}=k-\mathscr{L}_{\zeta_{1}} g$ is a section of $T_{Y}^{*} \otimes T_{Z}^{*}$. We may assume without loss of generality that Z is a compact globally symmetric space. Let g_{Z} denote the Lie algebra of Killing vector fields of Z and $C^{\infty}\left(Y, g_{Z}\right)$ the space of g_{Z}-valued functions on Y. We may also consider an element η of $C^{\infty}\left(Y, g_{Z}\right)$ as a section of T_{Z} over X; it is easily verified that $\mathscr{L}_{\eta} g$ is the section of $T_{Y}^{*} \otimes T_{Z}^{*}$ equal to the exterior derivative $d_{Y} \eta^{b}$ of the function η^{b} on Y. Since Z is globally symmetric, for $z \in Z$ the mapping $g_{Z} \rightarrow T_{Z, z}$, sending η into $\eta(z)$, is surjective. Therefore, there exists a section η_{2} of $C^{\infty}\left(Y, g_{Z}\right)$ such that

$$
\left(\mathscr{L}_{\eta_{2}} g\right)\left(x_{0}\right)=\left(d_{Y} \eta_{2}^{b}\right)\left(x_{0}\right)=h_{1}\left(x_{0}\right)
$$

Then $\zeta=\zeta_{1}-\eta_{2}$ and $h=h_{1}-\mathscr{L}_{\eta_{2}} g$ satisfy the desired conditions.
Let h be a section of $T_{Y}^{*} \otimes T_{Z}^{*}$. If $\zeta \in T$, we denote by h_{ζ} the element of T^{*} defined by the relation $h_{\zeta}\left(\zeta^{\prime}\right)=h\left(\zeta, \zeta^{\prime}\right)$, for $\zeta^{\prime} \in T$; if $\zeta \in T_{Y}$ (resp. T_{Z}), then h_{ζ} belongs to $T_{Z}^{*}\left(\right.$ resp. $\left.T_{Y}^{*}\right)$.

For the remainder of this section, we consider a section h of $T_{Y}^{*} \otimes T_{Z}^{*}$. We have

$$
\begin{gather*}
\nu(h)\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)=\nu(h)\left(\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}\right)=0 \tag{1.4}\\
\nu(h)\left(\xi_{1}, \eta_{1}, \xi_{1}, \xi_{2}\right)=0
\end{gather*}
$$

for $\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4} \in T_{Y}, \eta_{1}, \eta_{2}, \eta_{3}, \eta_{4} \in T_{Z}, \zeta_{1}, \zeta_{2} \in T$. We take this opportunity to point out that equation (3.1) of [6] is not correct and should be replaced by

$$
\nu(h)\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)=\nu(h)\left(\partial_{\theta}, \xi_{1}, \partial_{\theta}, \xi_{2}\right)=\nu(h)\left(\partial_{\theta}, \xi_{1}, \xi_{2}, \xi_{3}\right)=0
$$

for all $\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4} \in T_{Z}$, and that one must add the term $-\frac{1}{2} \nu(h)$ to the right-hand side of equation (3.2) of [6] and replace $1 /(n+1)$ by $1 /(n-1)$ there. By formulas (1.5) and (1.4) of [6], a computation similar to the one
resulting in equation (3.2) of [6] yields the relations

$$
\begin{align*}
&\left(D_{g} h\right)\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)=\left(D_{g} h\right)(\tag{1.5}\\
&\left(\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}\right)=0 \tag{1.6}\\
&\left(D_{g} h\right)\left(\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}\right)=-\frac{1}{2}\left\{\left(\nabla^{2} h\right)\left(\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}\right)\right. \\
&+\left.\left(\nabla^{2} h\right)\left(\xi_{2}, \eta_{2}, \xi_{1}, \eta_{1}\right)\right\} \\
&\left(D_{g} h\right)\left(\xi, \eta_{1}, \eta_{2}, \eta_{3}\right) \\
&=\frac{1}{2}\left\{\left(\nabla^{2} h\right)\left(\eta_{1}, \eta_{3}, \xi, \eta_{2}\right)-\right.\left.\left(\nabla^{2} h\right)\left(\eta_{1}, \eta_{2}, \xi, \eta_{3}\right)\right\} \tag{1.7}\\
&=\frac{1}{2}\left\{\left(\nabla^{2} h\right)\left(\eta_{3}, \eta_{1}, \xi, \eta_{2}\right)-\right.\left(\nabla^{2} h\right)\left(\eta_{2}, \eta_{1}, \xi, \eta_{3}\right) \\
&\left.+R_{Z}\left(h_{\xi}^{\#}, \eta_{1}, \eta_{2}, \eta_{3}\right)\right\}
\end{align*}
$$

for $\xi, \xi_{1}, \xi_{2}, \xi_{3}, \xi_{4} \in T_{Y}$ and $\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4} \in T_{Z} ;$ similarly, we have

$$
\begin{align*}
& \left(D_{g} h\right)\left(\eta, \xi_{1}, \xi_{2}, \xi_{3}\right) \\
& \quad \begin{array}{l}
=\frac{1}{2}\left\{\left(\nabla^{2} h\right)\left(\xi_{3}, \xi_{1}, \xi_{2}, \eta\right)-\right. \\
\\
\\
\left.\quad+\nabla^{2} h\right)\left(\xi_{2}, \xi_{1}, \xi_{3}, \eta\right) \\
\left.\left.h_{\eta}^{\#}, \xi_{1}, \xi_{2}, \xi_{3}\right)\right\}
\end{array} \tag{1.8}
\end{align*}
$$

for $\xi_{1}, \xi_{2}, \xi_{3} \in T_{Y}, \eta \in T_{Z}$.
For the remainder of this paper, we assume that Y and Z are compact symmetric spaces.

Lemma 1.4. Let k be a symmetric 2-form on X satisfying the zero-energy condition. Then we have

$$
\begin{aligned}
& \left(D_{g} k\right)\left(\xi, \eta_{1}, \xi, \eta_{2}\right)+\left(D_{g} k\right)\left(\xi, \eta_{2}, \xi, \eta_{1}\right)=0 \\
& \left(D_{g} k\right)\left(\xi_{1}, \eta, \xi_{2}, \eta\right)+\left(D_{g} k\right)\left(\xi_{2}, \eta, \xi_{1}, \eta\right)=0
\end{aligned}
$$

for $\xi, \xi_{1}, \xi_{2} \in T_{Y}, \eta, \eta_{1}, \eta_{2} \in T_{Z}$.
Proof. Let $x=(y, z) \in X$ and $\xi \in C_{Y, y}, \eta \in C_{Z, z}$. Then

$$
\Gamma=\operatorname{Exp}_{x}(\mathbf{R} \xi \oplus \mathbf{R} \eta)
$$

is a flat 2-torus totally geodesic in X. If $i: \Gamma \rightarrow X$ is the natural imbedding, then $i^{*} k$ satisfies the zero-energy condition on Γ. According to [13], there is a vector field ζ on Γ such that $i^{*} k=\mathscr{L}_{\zeta}\left(i^{*} g\right)$. Since the sequence (1.7) of [6] is a
complex, we see that $D_{i^{*} g}\left(i^{*} k\right)=0$; from formula (1.8) of [6], we deduce that

$$
\begin{equation*}
\left(D_{g} k\right)(\xi, \eta, \xi, \eta)=0 \tag{1.9}
\end{equation*}
$$

Since $C_{Y, y}$ is dense in $T_{Y, y}$ and $C_{Z, z}$ is dense in $T_{Z, z}$, (1.9) holds for all $\xi \in T_{Y, y}, \eta \in T_{Z, z}$ and we thus obtain the desired result.

If h satisfies the zero-energy condition, according to (1.6) and Lemma 1.4, we see that

$$
\begin{equation*}
\left(D_{g} h\right)\left(\xi, \eta_{1}, \xi, \eta_{2}\right)=\left(D_{g} h\right)\left(\xi_{1}, \eta, \xi_{2}, \eta\right)=0 \tag{1.10}
\end{equation*}
$$

for all $\xi, \xi_{1}, \xi_{2} \in T_{Y}, \eta, \eta_{1}, \eta_{2} \in T_{Z}$.
If $y \in Y$ and $\xi \in C_{Y, y}$, we define a 1 -form ω_{ξ} on Z by

$$
\omega_{\xi}(\eta)=\frac{1}{L} \int_{0}^{L} h(\dot{\gamma}(t), \eta) d t
$$

for $\eta \in T_{Z}$, where $\gamma(t)=\operatorname{Exp}_{y} t \xi$ and $\dot{\gamma}(t)$ is the tangent vector to the closed geodesic γ of period L. We have $\omega_{\lambda \xi}=\lambda \omega_{\xi}$, for $\lambda \in \mathbf{R}$, with $\lambda \neq 0$.

The proof of Lemma 3.2 of [6] gives us the following:
Lemma 1.5. Assume that h satisfies the zero-energy condition. If $y \in Y$ and $\xi \in C_{Y, y}$, the 1 -form ω_{ξ} on Z satisfies the zero-energy condition.

The following lemma is a consequence of Lemma 1.5; its proof is similar to that of identity (3.9) of [6] and shall be omitted.

Lemma 1.6. Assume that h satisfies the zero-energy condition, and that the 1 -forms on Z which satisfy the zero-energy condition are closed. Then we have

$$
\begin{equation*}
\frac{1}{2}\left\{(\nabla h)\left(\eta_{1}, \xi, \eta_{2}\right)+(\nabla h)\left(\eta_{2}, \xi, \eta_{1}\right)\right\}=\left(\nabla^{z} \omega_{\xi}\right)\left(\eta_{1}, \eta_{2}\right) \tag{1.11}
\end{equation*}
$$

for all $y \in Y, \xi \in C_{Y, y}, \eta_{1}, \eta_{2} \in T_{Z}$.
Under the hypotheses of Lemma 1.6, if there is a section h_{1} of $T_{Y}^{*} \otimes T_{Z}^{*}$ such that $h_{1}(\xi, \eta)=\omega_{\xi}(\eta)$ for all $y \in Y, \xi \in C_{Y, y}, \eta \in T_{Z}$, then, for η_{1}, η_{2} $\in T_{Z}, y \in Y$, by Lemma 1.6 we have

$$
\begin{equation*}
\frac{1}{2}\left\{(\nabla h)\left(\eta_{1}, \xi, \eta_{2}\right)+(\nabla h)\left(\eta_{2}, \xi, \eta_{1}\right)\right\}=\left(\nabla h_{1}\right)\left(\eta_{1}, \xi, \eta_{2}\right) \tag{1.12}
\end{equation*}
$$

for all $\xi \in C_{Y, y}$; since $C_{Y, y}$ is dense in $T_{Y, y}$, this identity is then valid for all $\xi \in T_{Y, y}$.

Similarly, if $z \in Z$ and $\eta \in C_{Z, z}$, we define a 1-form β_{η} on Y by

$$
\beta_{\eta}(\xi)=\frac{1}{L} \int_{0}^{L} h(\xi, \dot{\gamma}(t)) d t
$$

for $\xi \in T_{Y}$, where $\gamma(t)=\operatorname{Exp}_{z} t \eta$ and $\dot{\gamma}(t)$ is the tangent vector to the closed geodesic γ of period L. We have $\beta_{\lambda \eta}=\lambda \beta_{\eta}$, for $\lambda \in \mathbf{R}$, with $\lambda \neq 0$.

Lemma 1.7. Suppose that h satisfies the zero-energy condition. If $y \in Y$, $z \in Z$ and $\xi \in C_{Y, y}, \eta \in C_{Z, z}$, we have

$$
\omega_{\xi}(\eta)+\beta_{\eta}(\xi)=h(\xi, \eta)
$$

Proof. We may assume without loss of generality that $\|\xi\|=\|\eta\|=1$. Set $\gamma_{1}(t)=\operatorname{Exp}_{y} t \xi, \gamma_{2}(t)=\operatorname{Exp}_{z} t \eta$ and let L_{1}, L_{2} be the lengths of the closed geodesics γ_{1} and γ_{2}, respectively. Consider the flat 2-torus $\Gamma=S^{1} \times S^{1}$, where the first factor has length L_{1} and the second has length L_{2}, and the totally geodesic imbedding $i: \Gamma \rightarrow X$ sending $\left(\theta_{1}, \theta_{2}\right)$ into $\left(\gamma_{1}\left(\theta_{1}\right), \gamma_{2}\left(\theta_{2}\right)\right.$). We identify a tensor on Γ with the corresponding doubly periodic tensor on the $\left(\theta_{1}, \theta_{2}\right)$-plane. According to Michel [13], there exists a vector field

$$
\zeta=A_{1}\left(\theta_{1}, \theta_{2}\right) \frac{\partial}{\partial \theta_{1}}+A_{2}\left(\theta_{1}, \theta_{2}\right) \frac{\partial}{\partial \theta_{2}}
$$

on Γ such that

$$
\mathscr{L}_{\zeta} i^{*} g=\frac{\partial A_{1}}{\partial \theta_{1}} d \theta_{1}^{2}+\left(\frac{\partial A_{1}}{\partial \theta_{2}}+\frac{\partial A_{2}}{\partial \theta_{1}}\right) d \theta_{1} \cdot d \theta_{2}+\frac{\partial A_{2}}{\partial \theta_{2}} d \theta_{2}^{2}=i^{*} h
$$

Thus we see that $A_{1}=A_{1}\left(\theta_{2}\right), A_{2}=A_{2}\left(\theta_{1}\right)$ and that

$$
h\left(\dot{\gamma}_{1}\left(\theta_{1}\right), \dot{\gamma}_{2}\left(\theta_{2}\right)\right)=\frac{d A_{1}}{d \theta_{2}}+\frac{d A_{2}}{d \theta_{1}}
$$

where $\dot{\gamma}_{1}\left(\theta_{1}\right), \dot{\gamma}_{2}\left(\theta_{2}\right)$ are the tangent vectors to the geodesics γ_{1}, γ_{2}. Therefore

$$
h(\xi, \eta)=h\left(\dot{\gamma}_{1}(0), \dot{\gamma}_{2}(0)\right)=\frac{d A_{1}}{d \theta_{2}}(0)+\frac{d A_{2}}{d \theta_{1}}(0)
$$

On the other hand, we have

$$
\begin{aligned}
\omega_{\xi}(\eta) & =\frac{1}{L_{1}} \int_{0}^{L_{1}} h\left(\dot{\gamma}_{1}\left(\theta_{1}\right), \dot{\gamma}_{2}(0)\right) d \theta_{1} \\
& =\frac{1}{L_{1}} \int_{0}^{L_{1}}\left(\frac{d A_{1}}{d \theta_{2}}(0)+\frac{d A_{2}}{d \theta_{1}}\left(\theta_{1}\right)\right) d \theta_{1} \\
& =\frac{d A_{1}}{d \theta_{2}}(0)
\end{aligned}
$$

similarly, we obtain

$$
\beta_{\eta}(\xi)=\frac{d A_{2}}{d \theta_{1}}(0)
$$

and the desired equality.
Lemma 1.8. Suppose that h satisfies the zero-energy condition. Let $y \in Y$, $z \in Z$ and $\xi_{1}, \xi_{2} \in C_{Y, y}$. If $\xi_{1}+\xi_{2} \in C_{Y, y}$, for $\eta \in T_{Z, z}$ we have

$$
\omega_{\xi_{1}}(\eta)+\omega_{\xi_{2}}(\eta)=\omega_{\xi_{1}+\xi_{2}}(\eta)
$$

Proof. Since $C_{Z, z}$ is dense in $T_{Z, z}$, we may assume that $\eta \in C_{Z, z}$. Then by Lemma 1.7, we have

$$
\begin{aligned}
\omega_{\xi_{1}}(\eta)+\omega_{\xi_{2}}(\eta) & =h\left(\xi_{1}, \eta\right)-\beta_{\eta}\left(\xi_{1}\right)+h\left(\xi_{2}, \eta\right)-\beta_{\eta}\left(\xi_{2}\right) \\
& =h\left(\xi_{1}+\xi_{2}, \eta\right)-\beta_{\eta}\left(\xi_{1}+\xi_{2}\right)=\omega_{\xi_{1}+\xi_{2}}(\eta) .
\end{aligned}
$$

Lemma 1.9. Suppose that h satisfies the zero-energy condition and that there exists a C^{∞}-section h_{1} of $T_{Y}^{*} \otimes T_{Z}^{*}$ such that

$$
\begin{equation*}
h_{1}(\xi, \eta)=\omega_{\xi}(\eta) \tag{1.13}
\end{equation*}
$$

for all $y \in Y, \xi \in C_{Y, y}$ and $\eta \in T_{Z}$. Then there exists a unique C^{∞}-section h_{2} of $T_{Y}^{*} \otimes T_{Z}^{*}$ such that

$$
\begin{equation*}
h_{2}(\xi, \eta)=\beta_{\eta}(\xi) \tag{1.14}
\end{equation*}
$$

for all $\xi \in T_{Y}, z \in Z$ and $\eta \in C_{Z, z}$; moreover, $h=h_{1}+h_{2}$.
Proof. We set $h_{2}=h-h_{1}$; then by Lemma 1.7, if $y \in Y, z \in Z, \eta \in C_{Z, z}$, we have (1.14) for all $\xi \in C_{Y, y}$ and, since $C_{Y, y}$ is dense in $T_{Y, y}$, for all $\xi \in T_{Y, y}$.

We always consider the projective spaces endowed with their canonical metrics as in [1]. In particular, the metric on the complex projective space $\mathbf{C P}{ }^{n}$ is the Fubini-Study metric with constant holomorphic curvature 4 . We also consider the complex quadric Q_{n}, which is the hypersurface of $\mathbf{C} \mathbf{P}^{n+1}$, with $n \geq 3$, defined by the equation

$$
\zeta_{0}^{2}+\zeta_{1}^{2}+\cdots+\zeta_{n+1}^{2}=0
$$

in terms of the homogeneous coordinates $\zeta_{0}, \zeta_{1}, \ldots, \zeta_{n+1}$; the metric on Q_{n} is that induced by the Fubini-Study metric of $\mathbf{C P}^{n+1}$. If $Y=Q_{n}$, a field ν of unit tangent vectors of the hypersurface Y of $\mathbf{C P}^{n+1}$, normal to Y and defined on an open subset U of Y, determines an involution K of $T_{Y \mid U}$ and a
decomposition

$$
T_{Y \mid U}=T^{+} \oplus T^{-}
$$

where T^{+}, T^{-}are the sub-bundles of $T_{Y \mid U}$ consisting of the eigenvectors of K corresponding to the eigenvalues +1 and -1 , respectively (see [8]). According to [3], if $y \in U$ and F is the subspace of $T_{Y, y}$ generated by an orthonormal set $\{\xi, \eta\}$ of vectors of T_{y}^{+}or of T_{y}^{-}, then $\operatorname{Exp}_{y} F$ is a closed totally geodesic surface of Y isometric to the sphere S^{2} of constant curvature 2. It follows that, if ξ is a non-zero vector of T_{y}^{+}or of T_{y}^{-}, then $\operatorname{Exp}_{y} \mathbf{R} \xi$ is a closed geodesic of Y of length $\pi \sqrt{2}$.

Lemma 1.10. Assume that Y is either a projective space, different from a sphere, or a flat torus, or a complex quadric Q_{n}, with $n \geq 3$. If h satisfies the zero-energy condition, there exists a unique C^{∞}-section h_{1} of $T_{Y}^{*} \otimes T_{Z}^{*}$ satisfying the relation (1.13).

Proof. If Y is a projective space, different from a sphere, the geodesic flow φ_{s} of Y is periodic of period π. In this case, we define a C^{∞}-function h_{1} on $\left(T_{Y}-\{0\}\right) \times T_{Z}$ by

$$
h_{1}(\xi, \eta)=\frac{1}{\pi} \int_{0}^{\pi} h\left(\varphi_{s} \xi, \eta\right) d s
$$

for $\xi \in T_{Y}-\{0\}, \eta \in T_{Z}$; clearly (1.13) holds, since $C_{Y, y}=T_{Y, y}-\{0\}$, for $y \in Y$. We set $h_{1}(\xi, \eta)=0$, for $\xi \in T_{Y}, \eta \in T_{Z}$, whenever ξ vanishes. If $y \in Y$ and $\xi_{1}, \xi_{2} \in T_{Y, y}-\{0\}$, with $\xi_{1}+\xi_{2} \neq 0$, by Lemma 1.8 we have

$$
h_{1}\left(\xi_{1}, \eta\right)+h_{1}\left(\xi_{2}, \eta\right)=h_{1}\left(\xi_{1}+\xi_{2}, \eta\right)
$$

for all $\eta \in T_{Z}$. Therefore, since $h_{1}\left(\lambda \xi_{1}, \eta\right)=\lambda h_{1}\left(\xi_{1}, \eta\right)$, for all $\lambda \in \mathbf{R}, \eta \in$ $T_{Z, z}$, we see that h_{1} is a C^{∞}-section of $T_{Y}^{*} \otimes T_{Z}^{*}$. If Y is a flat torus \mathbf{R}^{q} / Γ, where Γ is a lattice of maximal rank in \mathbf{R}^{q}, choose a basis e_{1}, \ldots, e_{q} of \mathbf{R}^{q} generating Γ and let $\left\{\theta_{1}, \ldots, \theta_{q}\right\}$ be the corresponding coordinate system. Then the vector fields $\partial_{i}=\partial / \partial \theta_{i}$ and the 1-forms $d \theta_{i}$ on \mathbf{R}^{q} induce tensors on Y which we denote in the same way. We define a C^{∞}-section h_{1} of $T_{Y}^{*} \otimes T_{Z}^{*}$ over X by

$$
h_{1}(\xi, \eta)=\sum_{i=1}^{q} a_{i} \omega_{\partial_{i}}(\eta)
$$

where $\xi=\sum_{i=1}^{q} a_{i} \partial_{i}$ is an element of T_{Y} and η of T_{Z}; since $\left\{\partial_{1}, \ldots, \partial_{q}\right\}$ is a global frame for Y, we see that h_{1} is differentiable. If $y \in Y$ and $\xi=\sum_{i=1}^{q} p_{i} \partial_{i}$,
where $p_{1}, \ldots, p_{q} \in \mathbf{Z}$, then $\xi \in C_{Y, y}$ and by Lemma 1.8 we see that

$$
\omega_{\xi}(\eta)=\sum_{i=1}^{q} p_{i} \omega_{\partial_{i}}(\eta)
$$

for all $\eta \in T_{Z}$. From this relation, we deduce that (1.13) holds. Finally, suppose that Y is the complex quadric Q_{n}, with $n \geq 3$. Let $y \in Y$ and ν be a field of unit tangent vectors on the hypersurface Y of $\mathbf{C P}^{n+1}$, normal to Y and defined on a neighborhood U of y. Consider the sub-bundles T^{+}and T^{-}of $T_{Y \mid U}$ determined by ν. If φ_{s} is the geodesic flow of Y, we define C^{∞}-functions h_{1}^{+}on $\left(T^{+}-\{0\}\right) \times T_{Z}$ and h_{1}^{-}on $\left(T^{-}-\{0\}\right) \times T_{Z}$ by

$$
\begin{gathered}
h_{1}^{+}(\xi, \eta)=\frac{1}{L} \int_{0}^{L} h\left(\varphi_{s} \xi, \eta\right), \\
h_{1}^{-}(\zeta, \eta)=\frac{1}{L} \int_{0}^{L} h\left(\varphi_{s} \zeta, \eta\right) d s
\end{gathered}
$$

for $\xi \in T^{+}-\{0\}, \zeta \in T^{-}-\{0\}$ and $\eta \in T_{Z}$, where $L=\pi \sqrt{2}$. According to the remarks preceding the lemma, for all $a \in U$, the non-zero vectors of T_{a}^{+} and T_{a}^{-}belong to $C_{Y, a}$ and

$$
h_{1}^{+}(\xi, \eta)=\omega_{\xi}(\eta), \quad h_{1}^{-}(\zeta, \eta)=\omega_{\xi}(\eta)
$$

for all $\xi \in T^{+}-\{0\}, \zeta \in T^{-}-\{0\}$ and $\eta \in T_{Z}$. We set $h_{1}^{+}(\xi, \eta)=0$ and $h_{1}^{-}(\zeta, \eta)=0$, for $\xi \in T^{+}, \zeta \in T^{-}$and $\eta \in T_{Z}$, whenever ξ and ζ vanish. By Lemma 1.8, we have

$$
\begin{aligned}
h_{1}^{+}\left(\xi_{1}, \eta\right)+h_{1}^{+}\left(\xi_{2}, \eta\right) & =h_{1}^{+}\left(\xi_{1}+\xi_{2}, \eta\right) \\
h_{1}^{-}\left(\zeta_{1}, \eta\right)+h_{1}^{-}\left(\zeta_{2}, \eta\right) & =h_{1}^{-}\left(\zeta_{1}+\zeta_{2}, \eta\right)
\end{aligned}
$$

for all $\xi_{1}, \xi_{2} \in T^{+}-\{0\}, \zeta_{1}, \zeta_{2} \in T^{-}-\{0\}$, whenever $\xi_{1}+\xi_{2} \neq 0$ and $\zeta_{1}+\zeta_{2}$ $\neq 0$. Therefore, since

$$
h_{1}^{+}(\lambda \xi, \eta)=\lambda h_{1}^{+}(\xi, \eta), \quad h_{1}^{-}(\lambda \zeta, \eta)=\lambda h_{1}^{-}(\zeta, \eta)
$$

for all $\lambda \in \mathbf{R}, \xi \in T^{+}, \zeta \in T^{-}$and $\eta \in T_{Z}$, the function h_{1} on $T_{Y \mid U} \times T_{Z}$, defined by

$$
h_{1}(\xi, \eta)=h_{1}^{+}\left(\xi^{+}, \eta\right)+h_{1}^{-}\left(\xi^{-}, \eta\right)
$$

for $\xi \in T_{Y \mid U}, \eta \in T_{Z}$, where $\xi=\xi^{+}+\xi^{-}$is the decomposition of ξ, with $\xi^{+} \in T^{+}$and $\xi^{-} \in T^{-}$, is a C^{∞}-section of $T_{Y}^{*} \otimes T_{Z}^{*}$ over $U \times Z$. Now let ξ be an element of $C_{Y, a}$, with $a \in U$; we write $\xi=\xi^{+}+\xi^{-}$, where $\xi^{+} \in T^{+}$and $\xi^{-} \in T^{-}$. If ξ^{+}or ξ^{-}vanishes, then we know that (1.13) holds for all $\eta \in T_{Z}$.

If ξ^{+}and ξ^{-}are both non-zero, by Lemma 1.8 , we see that

$$
\begin{aligned}
h_{1}(\xi, \eta) & =h_{1}^{+}\left(\xi^{+}, \eta\right)+h_{1}^{-}\left(\xi^{-}, \eta\right) \\
& =\omega_{\xi^{+}}(\eta)+\omega_{\xi}-(\eta) \\
& =\omega_{\xi}(\eta)
\end{aligned}
$$

for all $\eta \in T_{Z}$. As $C_{Y, a}$ is dense in $T_{Y, a}$, these relations give us the uniqueness of h_{1} on $U \times Z$, and thus there exists a global section h_{1} of $T_{Y}^{*} \otimes T_{Z}^{*}$ over X satisfying (1.13).

Proposition 1.1. Assume that the 1 -forms on Y and Z satisfying the zero-energy condition are closed. Suppose that h satisfies the zero-energy condition and that there exists a C^{∞}-section h_{1} of $T_{Y}^{*} \otimes T_{Z}^{*}$ satisfying the relation (1.13). Then we have

$$
\begin{gather*}
\left(D_{g} h\right)\left(\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}\right)=0 \tag{1.15}\\
\left(D_{g} h\right)\left(\xi, \eta_{1}, \eta_{2}, \eta_{3}\right)=R_{Z}\left(h_{2, \xi}^{\#}, \eta_{1}, \eta_{2}, \eta_{3}\right) \tag{1.16}\\
\left(D_{g} h\right)\left(\eta, \xi_{1}, \xi_{2}, \xi_{3}\right)=R_{Y}\left(h_{1, \eta}^{\#}, \xi_{1}, \xi_{2}, \xi_{3}\right) \tag{1.17}
\end{gather*}
$$

for all $\xi, \xi_{1}, \xi_{2}, \xi_{3} \in T_{Y}, \eta, \eta_{1}, \eta_{2}, \eta_{3} \in T_{Z}$, and

$$
D_{2} h=0
$$

Moreover, if h vanishes at x_{0}, then

$$
\left(D_{1} h\right)\left(x_{0}\right)=0
$$

Proof. Because of (1.13) and our hypothesis on Z, by Lemma 1.6 we know that (1.12) holds. Hence by (1.10) and (1.6), we have

$$
\begin{aligned}
0 & =\left(D_{g} h\right)\left(\xi, \eta_{1}, \xi, \eta_{2}\right) \\
& =-\frac{1}{2}\left\{\left(\nabla^{2} h\right)\left(\xi, \eta_{1}, \xi, \eta_{2}\right)+\left(\nabla^{2} h\right)\left(\xi, \eta_{2}, \xi, \eta_{1}\right)\right\} \\
& =-\left(\nabla^{2} h_{1}\right)\left(\xi, \eta_{1}, \xi, \eta_{2}\right)
\end{aligned}
$$

for $\xi \in T_{Y}, \eta_{1}, \eta_{2} \in T_{Z}$. By our hypothesis on Y, by Lemma 1.6 the analogue of (1.12) holds for h_{2}; namely, we have

$$
\begin{equation*}
\frac{1}{2}\left\{(\nabla h)\left(\xi_{1}, \xi_{2}, \eta\right)+(\nabla h)\left(\xi_{2}, \xi_{1}, \eta\right)\right\}=\left(\nabla h_{2}\right)\left(\xi_{1}, \xi_{2}, \eta\right) \tag{1.18}
\end{equation*}
$$

for $\xi_{1}, \xi_{2} \in T_{Y}, \eta \in T_{Z}$. Therefore by (1.10) and (1.6), we also have

$$
\left(\nabla^{2} h_{2}\right)\left(\xi_{1}, \eta, \xi_{2}, \eta\right)=0
$$

for $\xi_{1}, \xi_{2} \in T_{Y}, \eta \in T_{Z}$. Thus by (1.12), (1.18) and the above relations, for $\xi_{1}, \xi_{2} \in T_{Y}, \eta_{1}, \eta_{2} \in T_{Z}$, we see that

$$
\left(\nabla^{2} h_{1}\right)\left(\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}\right)
$$

is symmetric in η_{1}, η_{2} and skew-symmetric in ξ_{1}, ξ_{2}, while

$$
\left(\nabla^{2} h_{2}\right)\left(\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}\right)
$$

is symmetric in ξ_{1}, ξ_{2} and skew-symmetric in η_{1}, η_{2}. Hence since $h=h_{1}+h_{2}$, by (1.6) we have

$$
\begin{aligned}
\left(D_{g} h\right)\left(\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}\right)= & -\frac{1}{2}\left\{\left(\nabla^{2} h_{1}\right)\left(\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}\right)+\left(\nabla^{2} h_{2}\right)\left(\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}\right)\right. \\
& \left.+\left(\nabla^{2} h_{1}\right)\left(\xi_{2}, \eta_{2}, \xi_{1}, \eta_{1}\right)+\left(\nabla^{2} h_{2}\right)\left(\xi_{2}, \eta_{2}, \xi_{1}, \eta_{1}\right)\right\} \\
= & 0
\end{aligned}
$$

By (1.7) and (1.12), we obtain

$$
\begin{aligned}
\left(D_{g} h\right)\left(\xi, \eta_{1}, \eta_{2}, \eta_{3}\right)= & \frac{1}{2}\left\{\left(\nabla^{2} h\right)\left(\eta_{2}, \eta_{3}, \xi, \eta_{1}\right)-\left(\nabla^{2} h\right)\left(\eta_{3}, \eta_{2}, \xi, \eta_{1}\right)\right. \\
& \left.+R_{Z}\left(h_{\xi}^{\#}, \eta_{1}, \eta_{2}, \eta_{3}\right)\right\} \\
& +\left(\nabla^{2} h_{1}\right)\left(\eta_{3}, \eta_{1}, \xi, \eta_{2}\right)-\left(\nabla^{2} h_{1}\right)\left(\eta_{2}, \eta_{1}, \xi, \eta_{3}\right) \\
= & R_{Z}\left(h_{\xi}^{\#}-h_{1, \xi}^{\#}, \eta_{1}, \eta_{2}, \eta_{3}\right) \\
= & R_{Z}\left(h_{2, \xi}^{\#}, \eta_{1}, \eta_{2}, \eta_{3}\right)
\end{aligned}
$$

for all $\xi \in T_{Y}, \eta_{1}, \eta_{2}, \eta_{3} \in T_{Z}$; similarly, from (1.8) and (1.18), we deduce (1.17). We now compute $L^{h} R$. Let $\eta_{1}, \eta_{2}, \eta_{3} \in T_{Z}$; we set $\eta=\tilde{R}_{Z}\left(\eta_{2}, \eta_{3}\right) \eta_{1}$. For $\zeta \in T, \xi \in T_{Y}$, by formula (4.8) of [4], we have

$$
\begin{aligned}
\left(L^{h} R\right)\left(\zeta, \xi, \eta_{1}, \eta_{2}, \eta_{3}\right) & =-R\left(L_{\zeta}^{h} \xi, \eta_{1}, \eta_{2}, \eta_{3}\right) \\
& =\frac{1}{2}\{(\nabla h)(\zeta, \xi, \eta)+(\nabla h)(\xi, \zeta, \eta)-(\nabla h)(\eta, \xi, \zeta)\}
\end{aligned}
$$

If $\zeta \in T_{Y}$, then by (1.18) we see that

$$
\begin{aligned}
\left(L^{h} R\right)\left(\zeta, \xi, \eta_{1}, \eta_{2}, \eta_{3}\right) & =\frac{1}{2}\{(\nabla h)(\zeta, \xi, \eta)+(\nabla h)(\xi, \zeta, \eta)\} \\
& =\left(\nabla h_{2}\right)(\zeta, \xi, \eta)
\end{aligned}
$$

on the other hand, if $\zeta \in T_{Z}$, then by (1.12) we have

$$
\begin{aligned}
\left(L^{h} R\right)\left(\zeta, \xi, \eta_{1}, \eta_{2}, \eta_{3}\right) & =\frac{1}{2}\{(\nabla h)(\zeta, \xi, \eta)-(\nabla h)(\eta, \xi, \zeta)\} \\
& =(\nabla h)(\zeta, \xi, \eta)-\left(\nabla h_{1}\right)(\zeta, \xi, \eta) \\
& =\left(\nabla h_{2}\right)(\zeta, \xi, \eta)
\end{aligned}
$$

Since $\nabla R_{Z}=0$, from the above relations we deduce that

$$
\left(L^{h} R\right)\left(\xi, \xi, \eta_{1}, \eta_{2}, \eta_{3}\right)=-R_{Z}\left(\left(\nabla h_{2}\right)_{\zeta, \xi}^{\#}, \eta_{1}, \eta_{2}, \eta_{3}\right),
$$

for all $\zeta \in T, \xi \in T_{Y}$, where $\left(\nabla h_{2}\right)_{\zeta, \xi}$ is the element of T_{Z}^{*} defined by

$$
\left(\nabla h_{2}\right)_{\zeta, \xi}\left(\eta^{\prime}\right)=\left(\nabla h_{2}\right)\left(\zeta, \xi, \eta^{\prime}\right)
$$

for $\eta^{\prime} \in T_{Z}$. If $\zeta_{1}, \zeta_{2} \in T_{Z}$, by formula (4.8) of [4], we have

$$
\begin{aligned}
R\left(L_{\zeta_{1}}^{h} \zeta_{2}, \eta_{1}, \eta_{2}, \eta_{3}\right)=-\frac{1}{2}\left\{(\nabla h)\left(\zeta_{1}, \zeta_{2}, \eta\right)+\right. & (\nabla h)\left(\zeta_{2}, \eta, \zeta_{1}\right) \\
& \left.-(\nabla h)\left(\eta, \zeta_{1}, \zeta_{2}\right)\right\}
\end{aligned}
$$

and so we obtain

$$
\left(L^{h} R\right)\left(\zeta_{1}, \zeta_{2}, \eta_{1}, \eta_{2}, \eta_{3}\right)=0
$$

Similarly, we have

$$
\begin{gathered}
\left(L^{h} R\right)\left(\zeta, \eta, \xi_{1}, \xi_{2}, \xi_{3}\right)=-R_{Y}\left(\left(\nabla h_{1}\right)_{3, \eta}^{\#}, \xi_{1}, \xi_{2}, \xi_{3}\right) \\
\left(L^{h} R\right)\left(\zeta_{1}, \zeta_{2}, \xi_{1}, \xi_{2}, \xi_{3}\right)=0
\end{gathered}
$$

for all $\zeta \in T, \xi_{1}, \xi_{2}, \xi_{3}, \zeta_{1}, \zeta_{2} \in T_{Y}, \eta \in T_{Z}$, where $\left(\nabla h_{1}\right)_{\zeta, \eta}$ is the element of T_{Y}^{*} defined by

$$
\left(\nabla h_{1}\right)_{\zeta, \eta}(\xi)=\left(\nabla h_{1}\right)(\zeta, \xi, \eta)
$$

for $\xi \in T_{Y}$. Moreover, since $R=R_{Y}+R_{Z}$, for $\zeta \in T, \xi_{1}, \xi_{2} \in T_{Y}, \eta_{1}, \eta_{2} \in$ T_{Z}, we easily see that

$$
\left(L^{h} R\right)\left(\zeta, \xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}\right)=0
$$

Since $\nabla R=0$, from (1.16) and (1.17), we deduce that

$$
\begin{aligned}
& \left(\nabla D_{g} h\right)\left(\zeta, \xi, \eta_{1}, \eta_{2}, \eta_{3}\right)=R_{Z}\left(\left(\nabla h_{2}\right)_{\zeta, \xi}^{\#}, \eta_{1}, \eta_{2}, \eta_{3}\right) \\
& \left(\nabla D_{g} h\right)\left(\zeta, \eta, \xi_{1}, \xi_{2}, \xi_{3}\right)=R_{Y}\left(\left(\nabla h_{1}\right)_{\zeta, \eta}^{\#}, \xi_{1}, \xi_{2}, \xi_{3}\right)
\end{aligned}
$$

for all $\zeta \in T, \xi, \xi_{1}, \xi_{2}, \xi_{3} \in T_{Y}$ and $\eta, \eta_{1}, \eta_{2}, \eta_{3} \in T_{Z}$. From all these relations involving $\nabla D_{g} h$ and $L^{h} R$ and from (1.4), (1.5) and (1.15), by formula (1.9) of [6] we obtain

$$
\begin{gathered}
\left(D_{2} h\right)\left(\xi, \xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)=\left(D_{2} h\right)\left(\eta, \eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}\right)=0 \\
\left(D_{2} h\right)\left(\zeta, \xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}\right)=0 \\
\left(D_{2} h\right)\left(\zeta, \xi, \eta_{1}, \eta_{2}, \eta_{3}\right)=\left(D_{2} h\right)\left(\zeta, \eta, \xi_{1}, \xi_{2}, \xi_{3}\right)=0
\end{gathered}
$$

for all $\xi, \xi_{1}, \xi_{2}, \xi_{3}, \xi_{4} \in T_{Y}, \eta, \eta_{1}, \eta_{2}, \eta_{3}, \eta_{4} \in T_{Z}$ and $\zeta \in T$. Since $D_{2} h$ is a section of H, these relations imply that $D_{2} h=0$. If $h\left(x_{0}\right)=0$, we define elements $u \in\left(T_{Y}^{*} \otimes T_{Z}\right)_{x_{0}}, v \in\left(T_{Z}^{*} \otimes T_{Y}\right)_{x_{0}}$ by

$$
u(\xi)=h_{2, \xi}^{\#}, \quad v(\eta)=h_{1, \eta}^{\#},
$$

for $\xi \in T_{Y, x_{0}}, \eta \in T_{Z, x_{0}}$; then by (1.16) and (1.17), we have

$$
\begin{aligned}
& \left(D_{g} h\right)\left(\xi, \eta_{1}, \eta_{2}, \eta_{3}\right)=R_{Z}\left(u(\xi), \eta_{1}, \eta_{2}, \eta_{3}\right) \\
& \left(D_{g} h\right)\left(\eta, \xi_{1}, \xi_{2}, \xi_{3}\right)=R_{Y}\left(v(\eta), \xi_{1}, \xi_{2}, \xi_{3}\right)
\end{aligned}
$$

for all $\xi, \xi_{1}, \xi_{2}, \xi_{3} \in T_{Y, x_{0}}, \eta, \eta_{1}, \eta_{2}, \eta_{3} \in T_{Z, x_{0}}$. As $h\left(x_{0}\right)=0$, we know that $\left(D_{g} h\right)\left(x_{0}\right) \in G$, and that $\left(D_{1} h\right)\left(x_{0}\right)=0$ if and only if $\left(D_{g} h\right)\left(x_{0}\right) \in \tilde{G}$. According to Lemma 1.2, (1.2), (1.5) and (1.15), this last condition holds if $v=-u^{\natural}$; this equality is true, since

$$
\begin{aligned}
g(u(\xi), \eta)+g(\xi, v(\eta)) & =g\left(h_{2, \xi}^{\#}, \eta\right)+g\left(\xi, h_{1, \eta}^{\#}\right) \\
& =h_{2}(\xi, \eta)+h_{1}(\xi, \eta) \\
& =h(\xi, \eta) \\
& =0
\end{aligned}
$$

for $\xi \in T_{Y, x_{0}}, \eta \in T_{Z, x_{0}}$. Thus $\left(D_{1} h\right)\left(x_{0}\right)=0$.
Proposition 1.2. Assume that Y and Z are infinitesimally rigid and that the 1-forms on Y and Z satisfying the zero-energy condition are closed. Suppose moreover that the conclusion of Lemma 1.10 holds for every section h of $T_{Y}^{*} \otimes T_{Z}^{*}$ satisfying the zero-energy condition. If k is a symmetric 2-form on X satisfying the zero-energy condition, then

$$
Q_{g} k=0
$$

Proof. Let k be a symmetric 2-form on X satisfying the zero-energy condition and $x_{0} \in X$. By Lemma 1.3, we may write $k=\mathscr{L}_{\xi} g+h$, where ξ is a vector field on X and h is a section of $T_{Y}^{*} \otimes T_{Z}^{*}$, with $h\left(x_{0}\right)=0$, satisfying
the zero-energy condition. By Proposition 1.1, we see that

$$
\left(D_{1} k\right)\left(x_{0}\right)=\left(D_{1} h\right)\left(x_{0}\right)=0 \quad \text { and } \quad D_{2} k=D_{2} h=0
$$

Proposition 1.3. Assume that Y is either a projective space, different from a sphere, or a flat torus or a complex quadric Q_{n}, with $n \geq 5$. Assume that Z is infinitesimally rigid and that the 1-forms on Z satisfying the zero-energy condition are closed. If k is a symmetric 2 -form on X satisfying the zero-energy condition, then

$$
Q_{g} k=0
$$

Proof. The 1-forms on Y satisfying the zero-energy condition are exact and Y is infinitesimally rigid, according to [14], [7], [12] and [15] (see also [1], [5], [8] and [9]) in the case of a projective space, or to [13] in the case of a torus, or to [3] and [9] in the case of a complex quadric. The conclusion follows from Lemma 1.10 and Proposition 1.2.

2. Harmonic infinitesimal deformations

We continue to assume that Y and Z are compact symmetric spaces and that $X=Y \times Z$. We denote by \tilde{Y} and \tilde{Z} the universal covering spaces of Y and Z. We say that \tilde{Y} (resp. \tilde{Z}) does not admit a Euclidean factor if it is isometric to a product $M_{+} \times M_{-}$, where M_{+}and M_{-}are symmetric spaces of compact and non-compact type, respectively.

Lemma 2.1. If \tilde{Y} does not admit a Euclidean factor, then every parallel vector field on Y vanishes.

Proof. According to a result of H.C. Wang (see [11, Theorem 4.6, Chapter VI]), a parallel vector field ξ on Y is invariant under the identity component of the group of isometries of Y. Thus by passing to the universal covering space of Y if necessary, we easily see that it suffices to consider the case of an irreducible symmetric space (of compact or non-compact type) and a vector field which is invariant under the identity component of the group of isometries; such a vector field must necessarily vanish.

Let Θ, Θ_{Y} and Θ_{Z} be the sheaves of Killing vector fields on X, Y and Z, respectively. We consider the harmonic spaces

$$
\boldsymbol{H}^{1}=\left\{h \in C^{\infty}\left(S^{2} T^{*}\right) \mid D_{0}^{*} h=0, Q_{g} h=0\right\}
$$

on X and the analogous harmonic spaces \mathbf{H}_{Y}^{1} and \mathbf{H}_{Z}^{1} on Y and Z, respectively. According to Theorem 1.1 of [6], we have isomorphisms

$$
\begin{equation*}
H^{1}(X, \Theta) \approx \mathbf{H}^{1}, \quad H^{1}\left(Y, \Theta_{Y}\right) \approx \mathbf{H}_{Y}^{1}, \quad H^{1}\left(Z, \Theta_{Z}\right) \approx \mathbf{H}_{Z}^{1} \tag{2.1}
\end{equation*}
$$

We denote by $\mathbf{H}_{Y, Z}^{1}$ (resp. $\left.\mathbf{H}_{Z, Y}^{1}\right)$ the subspace of $C^{\infty}\left(S^{2} T^{*}\right)$ generated by the elements $\alpha \cdot \xi^{b}$, where α is a harmonic 1-form on Z (resp. Y) and ξ is a Killing vector field on Y (resp. Z).

Proposition 2.1. Assume that Y, Z are compact symmetric spaces. If \tilde{Y} or \tilde{Z} does not admit a Euclidean factor, then

$$
\begin{equation*}
\mathbf{H}^{1}=\mathbf{H}_{Y}^{1} \oplus \mathbf{H}_{Z}^{1} \oplus \mathbf{H}_{Y, Z}^{1} \oplus \mathbf{H}_{Z, Y}^{1} \tag{2.2}
\end{equation*}
$$

Proof. If h is an element of \mathbf{H}_{Y}^{1}, then clearly $D_{0}^{*} h=0$ on X; since h can be written locally as a Lie derivative of the metric g_{Y} on Y, we see that $Q_{g} h=0$. Thus \mathbf{H}_{Y}^{1} and \mathbf{H}_{Z}^{1} are subspaces of \mathbf{H}^{1}. Next, let ξ be a Killing vector field on Y and α be a harmonic 1 -form on Z. If U is a simply connected open subset of Z, we may write $\alpha=d f$, for some real-valued function f on U, and then we have

$$
\mathscr{L}_{f \xi} g=d f \cdot \xi^{b}+f \mathscr{L}_{\xi} g=\alpha \cdot \xi^{b}
$$

on $Y \times U$. On the other hand, if δ is the formal adjoint of d and if $\operatorname{Tr} h$ denotes the trace of symmetric 2-form h on X, we have

$$
D_{0}^{*}\left(\alpha \cdot \xi^{b}\right)=-\delta \alpha \cdot \xi^{b}+2 \operatorname{Tr}\left(\mathscr{L}_{\xi} g\right) \cdot \alpha=0
$$

Thus $\mathbf{H}_{Y, Z}^{1}$ and $\mathbf{H}_{Z, Y}^{1}$ are also subspaces of \mathbf{H}^{1}. If \tilde{Y} or \tilde{Z} does not admit a Euclidean factor, we now show that $\mathbf{H}_{Y, Z}^{1} \cap \mathbf{H}_{Z, Y}^{1}=0$. Let $\alpha_{1}, \ldots, \alpha_{p}$ (resp. $\beta_{1}, \ldots, \beta_{q}$) be a basis of the space of harmonic 1 -forms on Y (resp. Z). Suppose that there are Killing vector fields ξ_{1}, \ldots, ξ_{q} on Y and $\eta_{1}, \ldots, \eta_{p}$ on Z such that

$$
\begin{equation*}
\sum_{j=1}^{p} \alpha_{j} \cdot \eta_{j}^{b}+\sum_{k=1}^{q} \xi_{k}^{b} \cdot \beta_{k}=0 \tag{2.3}
\end{equation*}
$$

For $1 \leq j \leq p$, since η_{j} is a Killing vector field on $Z, \delta \eta_{j}^{b}=0$; hence there exist a 2 -form φ_{j} on Z and constants $b_{j l}$ such that

$$
\eta_{j}^{b}=\delta \varphi_{j}+\sum_{k=1}^{q} b_{j k} \beta_{k}
$$

Similarly, for $1 \leq k \leq q$, there exist a 2 -form ω_{k} on Y and constants $a_{k j}$ such that

$$
\xi_{k}^{b}=\delta \omega_{k}+\sum_{j=1}^{p} a_{k j} \alpha_{j} .
$$

From (2.3), it follows that

$$
\begin{equation*}
\sum_{j=1}^{p} \alpha_{j} \cdot \delta \varphi_{j}+\sum_{k=1}^{q} \delta \omega_{k} \cdot \beta_{k}+\sum_{j=1}^{p} \sum_{k=1}^{q}\left(a_{k j}+b_{j k}\right) \alpha_{j} \cdot \beta_{k}=0 . \tag{2.4}
\end{equation*}
$$

We denote by (,) the L^{2}-scalar product on $C^{\infty}\left(S^{m} T^{*}\right)$ induced by the metric g. As $\left(\delta \varphi_{j}, \beta_{k}\right)=0$, we see that

$$
\left(\alpha_{j} \cdot \delta \varphi_{j}, \alpha_{l} \cdot \beta_{k}\right)=0,
$$

for $1 \leq j, l \leq p, 1 \leq k \leq q$; similarly, we have

$$
\left(\delta \omega_{k} \cdot \beta_{k}, \alpha_{j} \cdot \beta_{r}\right)=\left(\alpha_{j} \cdot \delta \varphi_{j}, \delta \omega_{k} \cdot \beta_{r}\right)=0,
$$

for $1 \leq j \leq p, 1 \leq k, r \leq q$. Hence from (2.4), we deduce that

$$
\begin{gather*}
\sum_{j=1}^{p} \alpha_{j} \cdot \delta \varphi_{j}=0, \quad \sum_{k=1}^{q} \delta \omega_{k} \cdot \beta_{k}=0, \tag{2.5}\\
\sum_{j=1}^{p} \sum_{k=1}^{q}\left(a_{k j}+b_{j k}\right) \alpha_{j} \cdot \beta_{k}=0 .
\end{gather*}
$$

Since $\alpha_{1}, \ldots, \alpha_{p}$ are linearly independent (over \mathbf{R}), if η is a vector field on Z, the first of equations (2.5) implies that $\left\langle\eta, \delta \varphi_{j}\right\rangle=0$ and hence that $\delta \varphi_{j}=0$, for $1 \leq j \leq p$. Similarly, we obtain

$$
\delta \omega_{k}=0, \quad a_{k j}+b_{j k}=0,
$$

for $1 \leq j \leq p, 1 \leq k \leq q$. Thus

$$
\xi_{k}^{b}=\sum_{j=1}^{p} a_{k j} \alpha_{j}, \quad \eta_{j}^{b}=\sum_{k=1}^{q} b_{j k} \beta_{k} .
$$

Since $d \alpha_{j}=0, d \beta_{k}=0$ and ξ_{k}, η_{j} are Killing vector fields, we see that ξ_{k} and η_{j} are parallel vector fields. According to Lemma 2.1, the parallel vector fields on Y or Z vanish, and so $a_{k j}=b_{j k}=0$ and $\xi_{k}=0, \eta_{j}=0$, for $1 \leq j \leq p$, $1 \leq k \leq q$. We have thus shown that the sum on the right-hand side of (2.2) is
direct. Our hypothesis on \tilde{Y} or on \tilde{Z} implies that

$$
\Theta=\operatorname{pr}_{Y}^{-1} \Theta_{Y} \oplus \operatorname{pr}_{Z}^{-1} \Theta_{Z}
$$

Künneth's formula [2, Theorem II, 18.2] tells us that

$$
\begin{aligned}
H^{1}(X, \Theta)= & \left(H^{0}(Y, \mathbf{R}) \otimes H^{1}\left(Z, \Theta_{Z}\right)\right) \oplus\left(H^{1}(Y, \mathbf{R}) \otimes H^{0}\left(Z, \Theta_{Z}\right)\right) \\
& \oplus\left(H^{0}\left(Y, \Theta_{Y}\right) \otimes H^{1}(Z, \mathbf{R})\right) \oplus\left(H^{1}\left(Y, \Theta_{Y}\right) \otimes H^{0}(Z, \mathbf{R})\right)
\end{aligned}
$$

Since Y and Z are connected, from the isomorphisms (2.1) we deduce the equality (2.2).

In fact, we have shown that (2.2) represents a "Künneth decomposition" of the harmonic space \mathbf{H}^{1}. If Z is of compact type, then $H^{1}(Z, \mathbf{R})=0$ and so $\mathbf{H}_{Y, Z}^{1}=0$; in this case, the proof of Proposition 2.1 is considerably simpler.

Lemma 2.2. Assume that the 1 -forms on Y and Z which satisfy the zeroenergy condition are exact. Let k be a symmetric 2-form on X which can be written in the form

$$
\begin{equation*}
k=\sum_{j=1}^{p} \alpha_{j} \cdot \beta_{j} \tag{2.6}
\end{equation*}
$$

where α_{j} are 1-forms on Y and β_{j} are 1-forms on Z satisfying $\delta \alpha_{j}=0, \delta \beta_{j}=0$. If k satisfies the zero-energy condition, then it vanishes.

Proof. Assume that k is non-zero and satisfies the zero-energy condition, and that p is the least integer for which we can write k in the form (2.6), where α_{j} are non-zero 1 -forms on Y and β_{j} are non-zero 1 -forms on Z satisfying $\delta \alpha_{j}=0, \delta \beta_{j}=0$. There exists a closed geodesic γ_{1} of Y such that

$$
\begin{equation*}
\int_{\gamma_{1}} \alpha_{1}=c_{1} \neq 0 \tag{2.7}
\end{equation*}
$$

Indeed, if this were false, α_{1} would satisfy the zero-energy condition and, so by our hypothesis on Y, would be exact. Since Y is compact and $\delta \alpha_{1}=0$, we would have $\alpha_{1}=0$. If

$$
c_{j}=\int_{\gamma_{1}} \alpha_{j}
$$

for $2 \leq j \leq p$, then

$$
k=\alpha_{1} \cdot\left(\beta_{1}+\sum_{j=2}^{p} \frac{c_{j}}{c_{1}} \beta_{j}\right)+\sum_{j=2}^{p}\left(\alpha_{j}-\frac{c_{j}}{c_{1}} \alpha_{1}\right) \cdot \beta_{j}
$$

where

$$
\int_{\gamma_{1}}\left(\alpha_{j}-\frac{c_{j}}{c_{1}} \alpha_{1}\right)=0
$$

Thus we may assume without loss of generality that there exists a closed geodesic γ_{1} of Y such that (2.7) holds and that

$$
\begin{equation*}
\int_{\gamma_{1}} \alpha_{j}=0 \tag{2.8}
\end{equation*}
$$

for $2 \leq j \leq p$. Let $\gamma_{2}:\left[0, L_{2}\right] \rightarrow Z$ be an arbitrary closed geodesic of Z parametrized by its arc-length. Let L_{1} be the length of the closed geodesic γ_{1} of Y. Consider the flat 2-torus $\Gamma=S^{1} \times S^{1}$, where the first factor has length L_{1} and the second has length L_{2}, and the totally geodesic imbedding i : $\Gamma \rightarrow X$ sending $\left(\theta_{1}, \theta_{2}\right)$ into $\left(\gamma_{1}\left(\theta_{1}\right), \gamma_{2}\left(\theta_{2}\right)\right)$. According to Michel [13] and the proof of Lemma 1.7, there exists a vector field

$$
\zeta=A_{1}\left(\theta_{2}\right) \frac{\partial}{\partial \theta_{1}}+A_{2}\left(\theta_{1}\right) \frac{\partial}{\partial \theta_{2}}
$$

on Γ such that $\mathscr{L}_{\zeta} i^{*} g=i^{*} k$. Then we see that

$$
\sum_{j=1}^{p} \alpha_{j}\left(\dot{\gamma}_{1}\left(\theta_{1}\right)\right) \beta_{j}\left(\dot{\gamma}_{2}\left(\theta_{2}\right)\right)=\frac{d A_{1}}{d \theta_{2}}\left(\theta_{2}\right)+\frac{d A_{2}}{d \theta_{1}}\left(\theta_{1}\right)
$$

from (2.7) and (2.8), it follows that

$$
c_{1} \beta_{1}\left(\dot{\gamma}_{2}\left(\theta_{2}\right)\right)=L_{1} \frac{d A_{1}}{d \theta_{2}}\left(\theta_{2}\right)
$$

and, since $c_{1} \neq 0$, that

$$
\int_{\gamma_{2}} \beta_{1}=0 .
$$

Our hypothesis on Z implies that β_{1} is exact; since $\delta \beta_{1}=0$ and Z is compact, we see that $\beta_{1}=0$, which shows that p was not minimal.

Theorem 2.1. Assume that Y and Z are infinitesimally rigid compact symmetric spaces. Assume that the 1-forms on Y and Z which satisfy the zero-energy condition are exact, and that \tilde{Y} or \tilde{Z} does not admit a Euclidean factor. Let k be a symmetric 2-form on X. Then the following assertions are equivalent:
(i) k satisfies the zero-energy condition and $Q_{g} k=0$;
(ii) there exists a vector field ξ on X such that $\mathscr{L}_{\xi} g=k$. If moreover the conclusion of Lemma 1.10 holds for every section h of $T_{Y}^{*} \otimes T_{Z}^{*}$ satisfying the zero-energy condition, then X is infinitesimally rigid.

Proof. By Proposition 1.2, it suffices to show that (i) \Rightarrow (ii). Assume that (i) holds. By Theorem 1.1 of [6], we may write

$$
\begin{equation*}
k=\mathscr{L}_{\xi} g+k^{\prime} \tag{2.9}
\end{equation*}
$$

where ξ is a vector field on X and $k^{\prime} \in \mathbf{H}^{1}$. The hypotheses of Proposition 2.1 are satisfied and so, by (2.2), we have $k^{\prime}=k_{1}+k_{2}+k_{3}$, where $k_{1} \in \mathbf{H}_{Y}^{1}$, $k_{2} \in \mathbf{H}_{Z}^{1}$ and $k_{3} \in \mathbf{H}_{Y, Z}^{1} \oplus \mathbf{H}_{Z, Y}^{1}$. By (2.9), k^{\prime} satisfies the zero-energy condition; hence k_{1} (resp. k_{2}) satisfies the zero-energy condition on Y (resp. Z). From the infinitesimal rigidity of Y and Z, we see that $k_{1}=0, k_{2}=0$, and hence that $k^{\prime}=k_{3}$. Since a Killing vector field ζ on Y or Z satisfies $\delta \zeta^{b}=0$, we see that k_{3} satisfies all the hypotheses of Lemma 2.2. Thus $k_{3}=0$ and $k=\mathscr{L}_{\xi} g$.

Since projective spaces, different from spheres, flat tori and complex quadrics of dimension ≥ 5 are infinitesimally rigid and the 1 -forms on these spaces satisfying the zero-energy condition are exact (see the proof of Proposition 1.3), the following theorem is a direct consequence of Proposition 1.3 and Theorem 2.1.

Theorem 2.2. Assume that Y is either a projective space, different from a sphere, or a flat torus, or a complex quadric Q_{n}, with $n \geq 5$. Assume that Z is an infinitesimally rigid compact symmetric space and that the 1-forms on Z satisfying the zero-energy condition are exact. If Y is a flat torus, suppose moreover that \tilde{Z} does not admit a Euclidean factor. Then X is infinitesimally rigid.

Proposition 2.2. Assume that Y and Z are compact symmetric spaces, and that the 1 -forms on Y and Z which satisfy the zero-energy condition are exact. Then the 1-forms on X which satisfy the zero-energy condition are exact.

Proof. Let α be a 1-form on X satisfying the zero-energy condition. Then by our hypothesis, for all $y \in Y, z \in Z$, the restrictions of α to $Y \times\{z\}$ and
$\{y\} \times Z$ are exact. Therefore

$$
(d \alpha)\left(\xi_{1}, \xi_{2}\right)=0, \quad(d \alpha)\left(\eta_{1}, \eta_{2}\right)=0
$$

for all $\xi_{1}, \xi_{2} \in T_{Y}, \eta_{1}, \eta_{2} \in T_{Z}$. Let $x=(y, z) \in X$ and $\xi \in C_{Y, y}, \eta \in C_{Z, z}$. Then

$$
\Gamma=\operatorname{Exp}_{x}(\mathbf{R} \xi \oplus \mathbf{R} \eta)
$$

is a flat 2-torus totally geodesic in X. If $i: \Gamma \rightarrow X$ is the natural imbedding, then $i^{*} \alpha$ satisfies the zero-energy condition on Γ. According to [13], $i^{*} \alpha$ is exact; thus

$$
\begin{equation*}
(d \alpha)(\xi, \eta)=0 \tag{2.10}
\end{equation*}
$$

Since $C_{Y, y}$ is dense in $T_{Y, y}$ and $C_{Z, z}$ is dense in $T_{Z, z}$, (2.10) holds for all $\xi \in T_{Y, y}, \eta \in T_{Z, z}$. Hence α is closed. As Y and Z are connected, by the Künneth formula, we have

$$
H^{1}(X, \mathbf{R}) \simeq H^{1}(Y, \mathbf{R}) \oplus H^{1}(Z, \mathbf{R})
$$

hence by Hodge theory, we may write

$$
\alpha=d f+\beta_{1}+\beta_{2}
$$

where f is a real-valued function on X, and β_{1}, β_{2} are harmonic 1-forms on Y and Z respectively. Clearly β_{1} and β_{2} satisfy the zero-energy condition on Y and Z respectively, and therefore are exact. It follows that $\beta_{1}=0, \beta_{2}=0$ and $\alpha=d f$.

The following theorem is a consequence of the fact that 1 -forms on projective spaces, different from spheres, on flat tori, or on complex quadrics of dimension ≥ 5 satisfying the zero-energy condition are exact, and of Theorem 2.2 and Proposition 2.2.

Theorem 2.3. A product $X_{1} \times \cdots \times X_{r}$ of Riemannian manifolds, where each X_{j} is either a projective space, different from a sphere, or a flat torus, or a complex quadric Q_{n}, with $n \geq 5$, is infinitesimally rigid.

References

1. A. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., Band 93, Springer-Verlag, New York, 1978.
2. G. Bredon, Sheaf theory, McGraw-Hall, New York, 1967.
3. Y. Dieng, Quelques résultats de rigidité infinitésimale pour les quadriques complexes, C. R. Acad. Sci. Paris Sér. I Math., vol. 304 (1987), pp. 393-396.
4. J. Gasqui and H. Goldschmidt, Déformations infinitésimales des espaces riemanniens localement symétriques. I, Adv. in Math., vol. 48 (1983), pp. 205-285.
5. J. Gasqui and H. GoldSChmidt, Déformations infinitésimales des espaces riemanniens localement symétriques. II. La conjecture infinitésimale de Blaschke pour les espaces projectifs complexes, Ann. Inst. Fourier (Grenoble), vol. 34 (1984), fasc. 2, pp. 191-226.
6. \qquad , Infinitesimal rigidity of $S^{1} \times \mathbf{R P}^{n}$, Duke Math. J., vol. 51 (1984), pp. 675-690.
7. \qquad , Une caractérisation des formes exactes de degré 1 sur les espaces projectifs, Comment. Math. Helv., vol. 60 (1985), pp. 46-53.
8. \qquad , "Some rigidity results in the deformation theory of symmetric spaces" in Deformation theory of algebras and structures and applications, edited by M. Hazewinkel and M. Gerstenhaber, Kluwer, Boston, 1988, pp. 839-851.
9. \qquad , Rigidité infinitésimale des espaces projectifs et des quadriques complexes, J. Reine Angew. Math., to appear.
10. S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1963.
11. S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. I, Interscience, New York, 1963.
12. R. Michel, Problèmes d'analyse géométrique liés à la conjecture de Blaschke, Bull. Soc. Math. France, vol. 101 (1973), pp. 17-69.
13. , (a) Un problème d'exactitude concernant les tenseurs symétriques et les géodésiques, C. R. Acad. Sc. Paris Sér. A, vol. 284 (1977), pp. 183-186; (b) Tenseurs symétriques et géodésiques, C. R. Acad. Sc. Paris Sér. A, vol. 284 (1977), pp. 1065-1068.
14. \qquad , Sur quelques problèmes de géométrie globale des géodésiques, Bol. Soc. Brasil Mat., vol. 9 (1978), pp. 19-38.
15. C. Tsukamoto, Infinitesimal Blaschke conjectures on projective spaces, Ann. Sci. École Norm. Sup. (4), vol. 14 (1981), pp. 339-356.

Université Scientifique, Technologique, et Médicale de Grenoble
Grenoble, France
Columbia University
New York

[^0]: Received April 23, 1987.

