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EXTREME OPERATORS ON FUNCTION SPACES

BY

STEPHEN T.L. CHOY

1. Introduction

Let A, B be Banach algebras and let be the identity of A. The closed unit
ball of A is denoted by S(A) and the set of extreme points of S(A) is denoted
by ext S(A). The closed unit ball of .o[A, B], the Banach space of bounded
linear operators from A to B, is denoted by S[A, B]. If X is a locally compact
Hausdorff space let C(X, A) stand for the space of continuous functions from
X to A and let Co(X, A) stand for the subspace of continuous functions
vanishing at infinity. Then Co(X, A) is a Banach algebra under the supremum
norm. If A C, the set of all complex numbers, we simply write C(X) and
C0(X). The o-algebra of Borel sets of X is denoted by (X) and the set of
bounded regular Borel measures is denoted by M(X).

For bounded linear operator T: C0(X, A) B let m: (X) ’[A, B**]
be its representing measure and let ml, r be its total variation and semivaria-
tion respectively, i.e.,

Iml(X) sup(EIIm(e,)ll" (ei} (X)},

r(X) sup(ll,m(ei)x,[I" (e,} ,rr(X),x, S(A));

where or(X) denotes the collection of all the (disjoint) finite Borel-partitions
of X.

It is known that II TII ff(X) and that if T is weakly compact then m:

(X) .5’[A, B] (see [1], for example).
An extreme point of S[A, B] is called an extreme operator from A to B. An

operator T in S[A, B] is a nice operator if T*[ext S(B*)] c ext S(A*), where
T* is the adjoint operator of T. It is known that every nice operator is an
extreme operator and that the converse assertion is not true in general. Several
authors studied the relationship between these two operators on various

settings (see [2] and [9], for example). Extreme operators from function spaces
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to C are characterized in, Dinculeanu [6] and Brooks and Lewis [1], for
example. In Section 2 we identify all the extreme operators from C0(X, A) to
B for the case where ]ml(X) 1. As an application we then characterize the
set PW(X, B) of B-valued probability measures introduced by Husain and
the author [4] in terms of extreme operators in Remarks 3.5. The intrinsic
differences between extreme operators and nice operators are then given for
this case in Section 3.
Throughout this paper multiplication in the second dual of a Banach

algebra is defined by the Arens product. Readers are referred to [7] for
notations not explained here.

2. Extreme operators

Let m be the representing measure of the operator T: C0(X, A) B. Recall
first that if m has finite total variation then Iml M(X) and rn maps g(X)
into .W[A, B] [1, p. 148 and p. 155]. For x A,e (S),l (R) x can be
viewed as an dement of Cg’*(X, A):

(1e (R) x)(ft) (X, f’)(e) forf’ C’(X, A),
where p(x, f’) M(X) is defined by

ffdl(X, f’) f’(f, x) (f Co(X)).

by

DEFINITION 2.1. For T: Co(X, A) B, e :(X), x A define

CO**(X, --
:#(e,x)(F) T**(F(1 (R) x)) (F Cd**(X, A)),

where the multiplication is defined by the Arens product. The restriction of
7<e, > to Co(X, A) will be denoted by T(e,x>.

LEMMA 2.2. For e (X), x A the mapping T(e,x is a bounded linear
operator Co(X, A) B if m has finite total variation. In fact

II T<e,x>ll II TII Ilxll.

Proof For f Co(X, A), T(e,x)(f) T**(f(1 (R) x)). Let

(R)xi, )E (le,,j j
i=1
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be a sequence converging uniformly to f, where ei, J N ek, j dp (i 4: k),
xi, . A [1, Lemma 2.1]. It is proved in [3, Lemma 2.3] that

( (R)x,, )(1 (R)x)=l c(R)x, jx.lei. j i,j

Since m has finite total variation, m maps (X) into Z[A, B]. Thus

)T** E (le,,j (R) xi,)(le (R) x) Y’. m(ei, C e)xi,2x
i---1 i=1

is in B. Since B is closed in B**, by a limit process, we see that T(e,x)(f) B.
The linearity of T(,x follows from that of T**. For the boundedness of

T(e, x) we note that

[[T(e,x)[ sup(l[T(e,x)(f )[[" f S(Co(X A)))
sup(][T**(f(1 (R) x))’f S(Co(X A))}

<- IITIIsuP(llf(le (R) x)ll" f S(Co(X, a))}
-< II TII Ilxll

since 111 (R) xll Ilxll [1, Lemma 2.1].

LEMMA 2.3. If the representing measure m of T has finite total variation,
then m (, x)" (X) .’ A, B defined by

m(e,x)(el)y m(e N ex)yx (e (X), y A)

is the representing measure of T{e,x).

Proof.
Now

(R) xi, )}i be a sequence converging uniformly to f.Let (El(le,, j

f xi, dm m (el,)xi,Xei, j (e,x) (e,x) j j

m(e C3 ei, j)Xi, jX
T**(1 (R)Xi, jX )0 ei,

T**((le,,, (R) xi, j)(1 (R) x))
(R) X j)f’(e,x) (lei,
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by [3, Lemma 2.3]. By a limit process we see that

ffdm(e,x) (e,x)(f) T(e,x)(f) (f Co(X, A)).

Thus m (, x) is the representing measure of T(e, x)"

LEMMA 2.4. For disjoint e, e2 I( X), x A, F Cd**( X, A), we have
(a) (le, (R) X) + (le, (R) X)= lelt0e2 (R) x,
(b) F(lx(R)i)=F.

Proof (a) For f’ C0*(X, A),

[(lel (R) x) + (le, (R) x)](f’) tx(x, f’)(ei) + (x, f’)(e:z )
(x, f’)(e tO e2)

(lextOe2 (R) x)(f’)

(b) For f’ e Co* (X, A),

F(1x (R) i)(f’) F((1x (R) i)f’).

For f Co(X, A),

(1x (R) i)f’(f ) f((1x (R) i)f’) f(1x (R) i)(f’),

where f is the cannonical image of f in Co**(X, A). Since there is a net of
A-valued simple functions over (X) approximating f uniformly in

Cd**(X,A), by a limit process and from [3, Lemma 2.3], we see that
f(1x (R) i) f. Thus

(1x (R) i)f’(f ) f(f’) f’(f )

and so F(1x (R) i)(f’) F(f’).

LEMMA 2.5. Let T be an extreme operator from Co(X, A) to B. If
ml(X) 1, then, for each e (X), either II T<e, > 0 or II Z<e,, > 0;
where e’ is the complement of e.

Proof We note first from Lemma 2.4 that

T**(f) r**(f(1 (R) i)) + r**(f(1e, (R) i))
T(e,i)(f) q- T(e,,i)(f)
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for f Co(X, A). Now suppose the contrary that

I] T(e, i>ll = o and T(e’, i)II o.

Then [m(e,i)l(X) and [m(e,,i)l(X) are finite and positive. Let

T T(,i>/Im(,i>l(X) and T Z(e,,i)/lm(e,,i)[(S).

Then T1, T2 S[Co(X, A), B] and

T= Z(e,i -1- Z(e,,i [m(e,i)l(X)T + Im(e,,i)l(X)T2.

For ej (X).

Ilm<,>(e)tl sup(ltm<e,>(e)xli" x S(A)}
sup{l[m(e N ej)xll" x = S(A)) Ilm(e q ej)[I.

Thus

[m<e,i)l(X ) sup E [[m<e,i)(e+)[[" (ej) _. ,n’(X)
j=l

sup Ilm(e eg)[l" {%.) r(X)
j----1

Similarly [m<e,,i>l(X) Iml(e’). Since Iml(X) 1, Iml M(X) and so

Im<,>l(S) + Im<e,,>l(S) 1.

It is easy to see from [3, Lemma 2.3] and [1, Theorem 2.1] that T # T and
T2 T if e : X. Thus T is not an extreme operator from C0(X, A) to B. This
contradiction shows that either II T<e,> II 0 or II T<e,, >11 0.

DEFINITION 2.6.
be defined by

For s X and S[A, B] let L(s, l) S[C0(X, A), B]

L(s, l)(f) l(f(s)) (f Co(X, A)).

A routine argument shows that if : 0, then the support, supp L(s, l), of
L (s, l) is ( s ). Conversely let

T S[Co(X, A), B]
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be such that supp T { s ) and let m" (X) .’[A, B**] be the represent-
ing measure of T. Then supp m { s } [1, Theorem 2.6]. Let

m({s))=lStA, B**].

Since T(f)= ffdm for f Co(X A), we see that S[A, B]. Thus T=
L(s, l) and T is weakly compact iff S[A, B] is weakly compact. Further-
more we see II TII--II111-

THEOREM 2.7. Let T: Co(X, A) B. Then T is an extreme operator and
m (X) 1 iff T L(s, 1) for some s X and some extreme operator from A
to B.

Proof Suppose T is an extreme operator and ml(S) 1. We claim first
that supp T is a singleton. For if x, y supp T let Ux, Uy be disjoint open
sets containing x and y respectively. Then, since T is an extreme operator,

II T<,,> 0 or II T<,,> II 0

by Lemma 2.5. If II T<,,>II o then

<u,,> (x) T<u, > II 0.

Thus, from Lemma 2.3, rh(Ux) 0 and so x supp m supp T [1, Lemma
2.2]. Similarly if II T<A,,>II 0 then y supp T.
Now, since supp T is a singleton, from the remarks after Definition 2.6 we

see T L(s, 1) for some s X and some S[A, B]. Let

1= hl + (1 X)I2

for some It, 12 S[A, B] and 0 < X < 1. Define ml, m2: (X) .a[A, B]
by

suppm suppm2= {s) and ml({S)) ll, m2({s)) =I2

Then fftt(X) < 1, rh2(X) < 1 and m km + (1 k)m 2. Since m is an
extreme point, m m m2 and so 11 2 and is an extreme operator
from A to B.

Conversely let T L(s, 1) with s X and an extreme operator from A to
B. Let

m=hml+ (1-h)m2
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for some representing measures

ml, m2: 6(X) .’[h, B**]

of operators in S[Co(X, A), B]. Then, since is an extreme point, ml(E)
m2(E ) 1 for any E N(X) such that s E. Since ml, m2 are finitely
additive, from

m(X) ,m(X) + (1 X)m(X)

we see supp m supp m g_ { s } and m m m. Thus T is an extreme
operator. Clearly Iml(X)= IIm({s})ll--II111--1, since I is an extreme point
[6, p. 159].

3. Nice operators

THEOREM 3.1. Let T: Co(X, A) --> B be such that ml(X) 1. Then T is
nice iff T L(s, 1), where s X and I is an extreme operator from A to B such
that y*l ext S(A*) for each y* ext S(B*).

Proof. Suppose T is a nice operator. Then T is an extreme operator and so
T L(s, 1) for some s X and some ext S[A, B] from Theorem 2.7.
Since T is nice, for each y* ext S(B*),

L*(s, l)(y*) ext S(C’( X, A)).

For f Co(X, A),

L*(s, l)(y*)(f ) y*(L(s, l)(f )) y*(l(f(s)) L(s, y*l)(f )

and so y*l ext S(A*) by Theorem 2.7 again.
The rest of the proof is similar.

COROLLARY 3.2. Let X and Y be locally compact and compact Hausdorff
spaces respectioely and let T: Co(X) - C(Y). If Iml(X)= I and T is an
extreme operator then T is a nice operator.

Proof. Recall first that

extS(C’(Y)) {,3y" X C with IXl 1, y Y)

and that

extS(C(Y)) {f C(Y): If(Y)l =1 fory Y},
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where iy is the (scalar) unit point mass at y. For f C(Y) let Tf: C C(Y)
be defined by Tf(a) af. It is easy to see that Tf is an extreme operator from
C to C(Y) iff f ext S(C(Y)). Suppose T is an extreme operator. Then
T L(s, T) for some f ext(C(Y)) and s X by Theorem 2.7. Now for
X C with I,1 I and y Y,

(XSyTf)(a) ,iy(af ) (,f(y)(a)) for a C.

Since If(Y)l 1, we see ,iyT ext S(C) and T is nice by Theorem 3.1.

It should be remarked that if Y is locally compact but not compact then
ext S(Co(Y)) is empty and so there is no such T in Corollary 3.2.

If B C, then m :(X) A* and it is shown in [6, p. 54] that Iml
Thus we obtain the following result of Brooks and Lewis [1, Theorem 5.4] as

COROLLARY 3.3.
a singleton.

If T: Co(X, A) C is an extreme operator then supp T is

COROLLARY 3.4.
a nice operator.

If T: Co(X, A) C, then T is an extreme operator iff T is

Proof We note first that , C is an extreme point of S(C) iff XI 1.
Suppose T is an extreme operator then, since ml(X) rh(X) 1, T
L(s, l) for some s X, ! ext S(A*). Thus, for complex X with IXI 1 and
f Co(X,A),

T*(X)(f ) X(Tf ) X(l(f(s)) L(s, Xl)(f ).

Clearly XI ext S(A*) and so T*(,) ext S(C’(X, A)). Thus T is nice.

Remarks 3.5. (1) It is tempting to conjecture that Theorems 2.7 and 3.1
are true in general without the assumption that ml(S) 1. However, Corol-
lary 2.7 of [9] shows that it is not the case.

(2) If A is C and B is a (abstract) convolution measure algebra defined in
[10, Definition 2.1], the set of all the probability measures m: (X) B
defined in [4] is denoted by PW(X, B). Then, since Iml(S)--1 by the
definition of probability measures, from similar arguments as in Theorem 2.7,
we see that m is an extreme point of PW(X, B) ill" supp m { s } for some
s X and m({s})= for some positive ext S(B). We denote such
measures by m(s, l). Then

PW( X, B) ( m (s, 1): s X, is positive and in ext S(B) }

where the closure is taken in the weak operator topology.



EXTREME OPERATORS ON FUNCTION SPACES 309

REFERENCES

1. J.K. BROOKS and P.W. LEWIS, Linear operators and vector measures, Trans. Amer. Math. Soc.,
vol. 192 (1974), pp. 139-162.

2. R.M. BLUMENTHAL, J. LINDENSTRAOSS and R.R. PHELPS, Extreme operators into C(K),
Pacific J. Math., vol. 15 (1965), pp 747-756.

3. S.T.L. CHOY, Integral representation of multiplicative, involution preserving operators in

a(C0(S, A), B), Proc. Amer. Math. Soc., vol. 83 (1981), pp. 54-58.
4. S.T.L. CHOY and T. HUSAIN, Vector-valued probability measures on semigroups, J. Math. Anal.

Appl., vol. 112 (1985), pp. 14-21.
5. J. DIESTEL and J.J. UHL, JR., Vector measures, Math. Surveys, no. 15, Amer. Math. Soc.,

Providence, R.I., 1977.
6. N. DINCULEANU, Vector measures, Pergamon Press, New York, 1967.
7. J. DUNCAN and S.A.R. HOSSEINIUN, The second dual of a Banach algebra, Proc. Royal Soc.

Edinburgh, vol. 84A (1979), pp. 309-325.
8. N. DUNFORD and J. SCHWARTZ, Linear operators, I. Interscience, New York, 1958.
9. M. SHARIR, A counter example on extreme operators, Israel J. Math., vol. 24 (1976),

pp. 320-328.
10. J.L. TAYLOR, The structure of convolution algebras, Trans. Amer. Math. Soc., vol. 119 (1965),

pp. 150-166.

NATIONAL UNIVERSITY OF SINGAPORE
REPUBLIC OF SINGAPORE


