# THE MAXIMAL OPERATORS RELATED TO THE CALDERÓN-ZYGMUND METHOD OF ROTATIONS 

## BY

## Lung-Kee Chen

## 1. Introduction and result

Let $a_{i}, i=1, \ldots, n$, be positive numbers, $0<a_{1}<a_{2}<\cdots<a_{n}$. Define

$$
\delta_{t} x=\left(t^{a_{1}} x_{1}, \ldots, t^{a_{n}} x_{n}\right), \quad t>0,
$$

where $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$. Let $\tau=a_{1}+\cdots+a_{n}$. and $v$ always denote a unit vector,

$$
v=\left(v_{1}, \ldots, v_{n}\right) \in S^{n-1}
$$

and $d \sigma(v)$ denote the Lebesgue measure on $S^{n-1}$. Let $L^{p}\left(L^{q}\left(S^{n-1}\right) R^{n}\right)$ denote mixed norm Lebesgue spaces. More precisely, if
$\|g\|_{L^{p}\left(L^{q}\right)}=\| \| g\left\|_{L^{q}\left(S^{n-1}\right)}\right\|_{L^{p}\left(R^{n}\right)}=\left[\int_{R^{n}}\left(\int_{S^{n-1}}|g(v, x)|^{q} d \sigma(v)\right)^{p / q} d x\right]^{1 / p}<\infty$,
then we say $g(v, x) \in L^{p}\left(L^{q}\right)$. Define

$$
M_{v} f(x)=\sup _{r>0} \frac{1}{r} \int_{0}^{r}\left|f\left(x-\delta_{t} v\right)\right| d t .
$$

R. Fefferman [2] proved that if $a=\cdots=a_{n}=1$ then $M_{v} f$ is bounded on $L^{p}\left(L^{2}\right)$, for $p>2 n / n+1$. Further developments are found in [1] and [3].

In this paper, we prove the following theorem.
Theorem. If $f \in L^{p}\left(R^{n}\right)$, then

$$
\left\|M_{v} f\right\|_{L^{p}\left(L^{\varphi}\right)} \leq C\|f\|_{p},
$$

[^0]provided
\[

$$
\begin{gather*}
1<q \leq \frac{2\left(n-1+\frac{1}{n}\right)}{n-1} \text { and } \frac{q\left(n-1+\frac{2}{n}\right)}{n-1+\frac{2}{n} q}<p \leq \infty,  \tag{1}\\
\frac{2\left(n-1+\frac{1}{n}\right)}{n-1}<q \text { and } \frac{q(n-1)}{n-1+\frac{2}{n}}<p \leq \infty . \tag{2}
\end{gather*}
$$
\]

Let $\hat{f}$ denote the Fourier transform of $f$, and $\check{f}$ denote the corresponding inverse Fourier transform. $C$ will denote some constants which may depend on $n, p, a_{1}, \ldots, a_{n}$ and may change at different occurrences.

## 2. Proof of the theorem

Let $f \geq 0$. It is clear that

$$
M_{v} f(x)=\sup _{r>0} \frac{1}{r} \int_{0}^{r} f\left(x-\delta_{t} v\right) d t \leq 2 \sup _{k} \Delta_{k} * f(x)
$$

where

$$
\int_{R^{n}} \Delta_{k}(x) g(x) d x=\int_{1}^{2} g\left(\delta_{2^{k} t} v\right) d t
$$

and $k$ is integer. Let us define a family of operators $\left\{T_{k, v}^{\alpha} f\right\}_{\alpha}$, where $\alpha$ is a complex number. Let

$$
\begin{aligned}
\left(T_{k, v}^{\alpha} f\right) \wedge(x) & =\int_{1}^{2} \exp \left(i\left(\delta_{2^{k} t} v\right) \cdot x\right) d t\left(1+\left|\delta_{2^{k}} x\right|^{2}\right)^{-\alpha / 2} \hat{f}(x) \\
& =m_{k}(v, x) \hat{f}(x)
\end{aligned}
$$

Clearly $T_{k, v}^{0} f(x)=\Delta_{k} * f(x)$. In order to prove the theorem, we need the following three lemmas.

Lemma 1. If $n>\operatorname{Re} \alpha>-1 / n$ then $\left\|\sup _{k}\left|T_{k, v}^{\alpha} f\right|\right\|_{L^{2}\left(L^{2}\right)} \leq C\|f\|_{2}$.
Lemma 2. Let $1<p \leq \infty$. Then $\left\|M_{v} f\right\|_{L^{p}\left(L^{1}\right)} \leq C\|f\|_{p}$.
Lemma 3. If $n>\operatorname{Re} \alpha>n-1$ then $\left\|\sup _{k}\left|T_{k, v}^{\alpha} f\right|\right\|_{L^{p}\left(L^{q}\right)} \leq C\|f\|_{p}$, for $1 \leq q \leq \infty, 1<p \leq \infty$.

Using the analytic interpolation theorem with Lemmas 1 and 3, we have

$$
\left\|M_{v} f\right\|_{L^{p}\left(L^{q}\right)} \leq C\|f\|_{p}
$$

for

$$
\frac{2\left(n-1+\frac{1}{n}\right)}{n-1+\frac{2}{n}}<q, p<\frac{2\left(n-1+\frac{1}{n}\right)}{n-1}
$$

Next, by interpolation between Lemma 2 and the trivial case, $\left\|M_{v} f\right\|_{L^{\infty}\left(L^{q}\right)} \leq$ $C\|f\|_{L^{\infty}}$, for $1 \leq q \leq \infty$, we have $\left\|M_{v} f\right\|_{L^{P}\left(L^{q}\right)} \leq C\|f\|_{p}$, if $1<q \leq p<\infty$. Therefore the theorem follows by applying the real interpolation theorem to the above results.

Proof of Lemma 1. One takes a smooth function, $p \in C_{0}^{\infty}\left(R^{n}\right)$, with compact support and $\int p(x) d x=1$. Let

$$
p_{k}(x)=\frac{1}{\left(2^{k}\right)^{r}} p\left(\delta_{2^{-k}} x\right)
$$

Then

$$
\sup _{k}\left|T_{k, v}^{\alpha} f\right| \leq\left(\sum_{k}\left|T_{k, v}^{\alpha} f-p_{k} * f\right|^{2}\right)^{1 / 2}+M_{1} M_{2} \cdot M_{n} f
$$

where $M_{i} f$ is the Hardy-Littlewood maximal operators acting on the $x_{i}$ variable. It is well-known that $M_{i} f$ is bounded on $L^{p}\left(R^{n}\right)$. To prove that $\sup _{k}\left|T_{k, v}^{\alpha} f\right|$ is bounded on $L^{2}\left(L^{2}\right)$, it is sufficient to show that

$$
\begin{equation*}
\sum_{k} \int_{S^{n-1}}\left|m_{k}(v, x)-\hat{p}_{k}(x)\right|^{2} d \sigma(v) \tag{1.1}
\end{equation*}
$$

is bounded for every $x \in R^{n}$. We claim that

$$
\int_{S^{n-1}}\left|m_{k}(v, x)-\hat{p}_{k}(x)\right|^{2} d \sigma(v) \leq C \min \left\{\left|\delta_{2^{k}} x\right|^{2},\left|\delta_{2^{k}} x\right|^{-(2 / n+2 \operatorname{Re} \alpha)}\right\}
$$

By dilation invariance, we can assume $k=0$. If $|x|$ is near zero, $m_{0}(v, 0)=$ $\hat{p}(0)=1, m_{0}(v, x)$ and $\hat{p}(x)$ are smooth functions. Therefore,

$$
\left|m_{0}(v, x)-\hat{p}(x)\right| \leq C|x|
$$

It is clear that $\hat{p}(x) \leq 1 /|x|^{1 / n}$. On the other hand, if $|x|$ is large, then

$$
\begin{aligned}
m_{0}(v, x) & =\int_{1}^{2} e^{i\left(\delta_{t} v\right) \cdot x} d t\left(1+|x|^{2}\right)^{-\alpha / 2} \\
& =\int_{1}^{2} e^{i r(t) \cdot \xi} d t\left(1+|x|^{2}\right)^{-\alpha / 2}
\end{aligned}
$$

where $r(t)=\left(t^{a_{1}}, \ldots, t^{a_{n}}\right) \xi=\left(v_{1} x_{1}, \ldots, v_{n} x\right)$. The last equality is bounded by

$$
|\xi|^{-1 / n}|x|^{-\operatorname{Re} \alpha} .
$$

This critical estimate for $m_{0}(v, x)$ is obtained by the Van der Corput's lemma (see [4], age 1257). Without loss of generality, we can assume $\left|x_{1}\right|=$ $\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$. It is clear that $|x| \sim\left|x_{1}\right|$. So,

$$
\left|m_{0}(v, x)\right| \leq C\left|v_{1}\right| x| |^{-1 / n}|x|^{-\operatorname{Re} \alpha}
$$

Hence,

$$
\begin{aligned}
\int_{S^{n-1}}\left|m_{0}(v, x)\right|^{2} d \sigma(v) \leq & |x|^{-2 \operatorname{Re} \alpha} \int_{\left|v_{1}\right| x| |<1} 1 d \sigma(v) \\
& +\int_{\left|v_{1}\right| x| |>1}\left|m_{0}(v, x)\right|^{2} d \sigma(v) \\
\leq & C|x|^{-1-2 \operatorname{Re} \alpha}+C^{\prime}|x|^{-2 \operatorname{Re} \alpha} \int_{1 /|x|}^{1}\left(|x|\left|v_{1}\right|\right)^{-2 / n} d v_{1} \\
\leq & C|x|^{-(2 / n+2 \operatorname{Re} \alpha)}
\end{aligned}
$$

Hence, we proved the claim. Note that $\left|\delta_{t} x\right|=\left|\delta_{t} \tilde{x}\right|$ where $\tilde{x}=$ $\left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$. It is clear that $\left|\delta_{0} \tilde{x}\right|=0,\left|\delta_{t} \tilde{x}\right| \rightarrow \infty$ if $t \rightarrow \infty,|\tilde{x}| \neq 0$ and $\left|\delta_{t} \tilde{x}\right|$ is an increasing function of $t$. Therefore for every $x \in R^{n}-\{0\}$ there exist $k_{0}, j_{0}, 1 \leq j_{0} \leq n$ such that

$$
\left|x_{i}\right| / 2^{k_{0} a_{i}}<2^{a_{i}}
$$

for every $i=1, \ldots, n$ and $1<\left|x_{i_{0}}\right| / 2^{k_{0} a_{j_{0}}}<2^{a_{j_{0}}}$. Changing index in the sum in (1.1) from $k$ to $k+k_{0}$ it is sufficient to assume that $\left|x_{i}\right|<2^{a_{i}}$ and $1<\left|x_{j}\right|<2^{a_{j}}$ for some $j$. Therefore,

$$
\int_{S^{n-1}}\left|m_{k}(v, x)-\hat{p}_{k}(x)\right|^{2} d \sigma(v) \leq C \min \left\{2^{k \beta}, 2^{-k \gamma(2 / n+2 \operatorname{Re} \alpha)}\right\}
$$

where $\beta, \gamma$ are positive. Hence,

$$
\sum_{k} \int_{S^{n-1}}\left|m_{k}(v, x)-\hat{p}_{k}(x)\right|^{2} d \sigma(v)<\infty
$$

for every $x \in R^{n}$, if $\operatorname{Re} \alpha>-1 / n$. Lemma 1 is proved.

Before proving Lemma 2, we need the following lemma.
Lemma 4. Suppose $\left\|\sup _{k}\left|\Delta_{k} * f\right|\right\|_{L^{q}\left(L^{1}\right)} \leq C\|f\|_{L^{q}}$.
(I) Suppose $1 / 2-1 / p_{0}=1 / 2 q$. For arbitrary functions $u_{k}(v, x)$ on $S^{n-1}$ $\times R^{n}$, define the operators $L_{k}$ by

$$
L_{k} u_{k}=\int_{1}^{2} u_{k}\left(v, x+\delta_{2^{k} t} v\right) d t
$$

Then the following vector-valued inequality holds:

$$
\left\|\left(\sum_{k}\left|L_{k} u_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{p_{0}\left(L^{1}\right)}} \leq C\| \|\left(\sum_{k}\left|u_{k}\right|^{2}\right)^{1 / 2}\left\|_{L^{\infty}\left(S^{n-1}\right)}\right\|_{L^{p_{0}}\left(R^{n}\right)}
$$

(II) Suppose $\left|1 / 2-1 / p_{0}\right|=1 / 2 q$ and $\left\{g_{k}\right\}_{k=1}^{\infty}$ are arbitrary functions defined only on $R^{n}$. Then we have the same inequality as in (I), namely

$$
\left\|\left(\sum_{k}\left|\Delta_{k} * g_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{p_{0}}\left(L^{1}\right)} \leq C\left\|\left(\sum_{k}\left|g_{k}\right|^{2}\right)^{1 / 2}\right\|_{p_{0}}
$$

Proof of Lemma 4. (I) Since $p_{0}>2$, there exists a positive function, $h \in L^{q}\left(R^{n}\right)$, with unit norm, such that

$$
\left\|\left(\sum_{k}\left|L_{k} u_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{p_{0}}\left(L^{1}\right)}^{2}=\int_{R^{n}}\left\|\left(\sum_{k}\left|L_{k} u_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{1}\left(S^{n-1}\right)}^{2} h(x) d x
$$

$$
\begin{align*}
& \leq C \iint \sum_{k} L_{k}\left(u_{k}\right)^{2} d \sigma(v) h(x) d x  \tag{1}\\
& =C \iint \sum_{k} u_{k}^{2}(v, y) \Delta_{k} * h(y) d \sigma(v) d y
\end{align*}
$$

$$
\begin{equation*}
\leq C\| \|\left(\sum_{k} u_{k}^{2}\right)\left\|_{L^{\infty}(v)}^{1 / 2}\right\|_{p_{0}}^{2}\left\|\sup _{k}\left|\Delta_{k} * h\right|\right\|_{L^{q}\left(L^{1}\right)} \tag{2}
\end{equation*}
$$

$$
\leq C\| \|\left(\sum_{k}\left|u_{k}\right|^{2}\right)^{1 / 2}\left\|_{L^{\infty}(v)}\right\|_{p_{0}}^{2}
$$

(II) By (I), the vector valued inequality holds if $p_{0}>2$. On the other hand, if $p_{0}<2,1 / p_{0}+1 / p_{0}^{\prime}=1$ then

$$
\left.\begin{array}{l}
\left\|\left(\sum_{k}\left|\Delta_{k} * g_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{p_{0}}\left(L^{1}\right)}
\end{array}=\sup \int_{R^{n}} \int_{S^{n-1}} \sum_{k} \Delta_{k} * g_{k}(x) u_{k}(v, x) d \sigma(v) d x\right] \text { } \begin{aligned}
& =\sup \iint \sum_{k} g_{k}(x) L_{k} u_{k}(v, x) d \sigma(v) d x \\
& \leq \sup \int\left(\sum\left|g_{k}\right|^{2}\right)^{1 / 2}\left\|\left(\sum_{k}\left|L_{k} u_{k}(\cdot, x)\right|^{2}\right)^{1 / 2}\right\|_{L^{1}(v)} d x \\
& \leq \sup \left\|\left(\sum\left|g_{k}\right|^{2}\right)^{1 / 2}\right\|_{p_{0}}\left\|\left(\sum_{k}\left|L_{k} u_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{p_{0}^{\prime}}\left(L^{1}\right)} \\
\text { (4) } & \leq\left\|\left(\sum\left|g_{k}\right|^{2}\right)^{1 / 2}\right\|_{p_{0}}
\end{aligned}
$$

where the supremum is taken over all indicated $\left\{u_{k}\right\}_{k}$ with the unit norm in $L^{p^{\prime}}\left(L^{\infty}\left(l^{2}\right)\right)$. The inequalities (3) and (4) follow by Hölder's inequality, and the inequality (5) is supported by (I). Lemma 4 is proved.

The proof of Lemma 2 follows the ideas of J. Duoandikoetexa and J. L. Rubio de Francia [5], but in this lemma, we need to consider the extra $L^{1}\left(S^{n-1}\right)$-norm. We will use the same notation as in the proof of Lemma 1. The proof of Lemma 2 will be obtained by induction.

Proof of Lemma 2. We separate the proof into two parts: the boundedness on $L^{2}\left(L^{1}\right)$ in the first part, and the boundness on $L^{p}\left(L^{1}\right)$ in the second part.

Part 1. It is enough to show

$$
\left\|\left\|\sup _{k}\left|\Delta_{k} * f\right|\right\|_{L^{1}(v)}\right\|_{L^{2}(x)} \leq C\|f\|_{2}
$$

If $n=1$, it is clear that

$$
\Delta_{k} * f \leq C M f
$$

Suppose that for $n-1$ dimensions, $\sup _{k}\left|\Delta_{k} * f\right|$ is bounded on $L^{2}\left(L^{1}\left(S^{n-2}\right), R^{n-1}\right), n \geq 2$. In $n$ dimensions, let $v=\left(v^{\prime}, v_{n}\right) \in S^{n-1}$ where $v^{\prime}=\left(v_{1}, \ldots, v_{n-1}\right)$, and $x=\left(x^{\prime}, x_{n}\right) \in R^{n}$, where $x^{\prime} \in R^{n-1}$, and $\delta_{t} v^{\prime}=$
$\left(t^{a_{1}} v_{1}, \ldots, t^{a_{n-1}} v_{n-1}\right)$. Let

$$
\Delta_{k}^{n-1} * f(x)=\int_{1}^{2} f\left(x^{\prime}-\delta_{2^{k} t} v^{\prime}, x_{n}\right) d t
$$

We claim that $\sup _{k}\left|\Delta_{k}^{n-1} * f(x)\right|$ is bounded on $L^{2}\left(L^{1}\left(S^{n-1}\right), R^{n}\right)$. Let us make a change of variables for $v, v \in S^{n-1}$. Let $d \sigma_{n-2}$ denote the Lebesgue measure on $S^{n-2}$. Since

$$
\begin{aligned}
& \left\|\sup _{k}\left|\Delta_{k}^{n-1} * f\right|\right\|_{L} L^{2}\left(L^{1}\right) \\
& =\left[\int_{R^{n}} \mid \int_{-1}^{1} \int_{\xi \in S^{n-2}} \sup _{k} \int_{1}^{2} f\left(x^{\prime}-\left(1-S^{2}\right)^{1 / 2} \delta_{2^{k} t} \xi, x_{n}\right) d t\right. \\
& \left.\times\left. d \sigma_{n-2}(\xi)\left(1-S^{2}\right)^{(n-3) / 2} d S\right|^{2} d x\right]^{1 / 2} \\
& \leq \int_{-1}^{1}\left[\int_{R} \int_{R^{n-1}} \mid \int_{\xi \in S^{n-2}}\left\{\sup _{k} \int_{1}^{2} f\left(x^{\prime}-\left(1-S^{2}\right)^{1 / 2} \delta_{2^{k} t} \xi, x_{n}\right) d t\right\}\right. \\
& \left.\quad \times\left. d \sigma_{n-2}(\xi)\right|^{2} d x^{\prime} d x_{n}\right]^{1 / 2}\left(1-S^{2}\right)^{n-3 / 2} d S .
\end{aligned}
$$

After a change of variables for $x$, (i.e., $x^{\prime} \rightarrow\left(1-S^{2}\right)^{1 / 2} x^{\prime}, x_{n} \rightarrow x_{n}$, we let

$$
f_{S}\left(x^{\prime}, x_{n}\right)=f\left(\left(1-S^{2}\right)^{1 / 2} x^{\prime}, x_{n}\right)
$$

By the induction hypothesis, the term in parentheses is bounded on

$$
L^{2}\left(L^{1}\left(S^{n-2}\right), R^{n-1}\right)
$$

for almost every $x_{n} \in R$. Therefore, the last inequality is not bigger then

$$
\int_{-1}^{1}\left\|f_{S}\right\|_{L^{2}\left(R^{n}\right)}\left(1-S^{2}\right)^{(n-1) / 4}\left(1-S^{2}\right)^{(n-3) / 2} d S
$$

Then we change variables again. The inequality above becomes

$$
\int_{-1}^{1}\|f\|_{2}\left(1-S^{2}\right)^{(n-3) / 2} d S \leq C\|f\|_{2}
$$

if $n \geq 2$. Therefore, we have

$$
\begin{equation*}
\left\|\left\|\sup _{k}\left|\Delta_{k}^{n-1} * f\right|\right\|_{L^{1}\left(S^{n-1}\right)}\right\|_{L^{2}\left(R^{n}\right)} \leq C\|f\|_{2} \tag{2.1}
\end{equation*}
$$

Let $p$ be a smooth function in $R$, (this $p$ is different from the $p$ in Lemma 1 ), $p \in C_{0}^{\infty}(R)$, and $\int p(x) d x=1$. Let

$$
p_{k}(x)=\frac{1}{2^{k a_{n}}} p\left(\frac{x}{2^{k a_{n}}}\right)
$$

Let

$$
\left(\Delta_{k}^{n-1} \otimes p_{k}\right) * f=\int_{R} \int_{1}^{2} f\left(x^{\prime}-\delta_{2^{k} t} v^{\prime}, x_{n}-y_{n}\right) p_{k}\left(y_{n}\right) d t d y_{n}
$$

Let us write

$$
\Delta_{k} * f \leq\left|\Delta_{k} * f-\left(\Delta_{k}^{n-1} \otimes p_{k}\right) * f\right|+\sup _{k}\left|\Delta_{k}^{n-1} * M_{n} f\right|
$$

where $M_{n}$ is the Hardy-Littlewood maximal operator acting on $x_{n}$ variable. From (2.1) the second term of the right hand side of the above inequality is bounded on $L^{2}\left(L^{1}\right)$. On the other hand, the first term is dominated by the square function,

$$
G(f)=\left(\sum_{k}\left|\Delta_{k} * f-\left(\Delta_{k}^{n-1} \otimes p_{k}\right) * f\right|^{2}\right)^{1 / 2}
$$

To show $G(f)$ is bounded on $L^{2}\left(L^{1}\right)$, by the Minkowski's inequality and the Plancherel's theorem, it is sufficient to show that

$$
\begin{aligned}
& \int\left(\iint \sum_{k} \mid \hat{\Delta}_{k}(v-x)\right. \\
& \left.\quad-\left.\hat{\Delta}_{k}^{n-1}\left(v^{\prime}, x^{\prime}\right) \hat{p}\left(2^{k a_{n}} x_{n}\right)\right|^{2}\left|\hat{f}\left(x^{\prime}, x_{n}\right)\right|^{2} d x^{\prime} d x_{n}\right)^{1 / 2} d \sigma(v)
\end{aligned}
$$

is bounded by $C\|f\|_{2}$. Since

$$
\begin{aligned}
& \left|\hat{\Delta}_{k}(v, x)-\hat{\Delta}_{k}^{n-1}\left(v^{\prime}, x^{\prime}\right) \hat{p}\left(2^{k a_{n}} x_{n}\right)\right| \\
& =\left|\int_{1}^{2} \exp \left(i x \delta_{2^{k} t} v\right)-\exp \left(i x^{\prime} \delta_{2^{k} t} v^{\prime}\right) \hat{p}\left(2^{k a_{n}} x_{n}\right) d t\right| \\
& \leq \int_{1}^{2}\left|\exp \left(i x_{n} v_{n} 2^{k a_{n}} t^{a_{n}}\right)-\hat{p}\left(2^{k a_{n}} x_{n}\right)\right| d t \\
& \leq C\left|2^{k a_{n}} x_{n} v_{n}\right|+C^{\prime}\left|2^{k a_{n}} x_{n}\right| \leq C\left|2^{k a_{n}} x_{n}\right| \text {. }
\end{aligned}
$$

On the other hand, as in the proof for Lemma 1, using the Van der Corput's lemma, and $\hat{p}(x) \leq 1 /|x|$, we have, if $\left|2^{k a_{n}} x_{n}\right|$ is large,

$$
\begin{aligned}
\left|\hat{\Delta}_{k}(v, x)-\hat{\Delta}_{k}^{n-1}\left(v^{\prime}, x^{\prime}\right) \hat{p}\left(2^{k a_{n}} x_{n}\right)\right| & \leq C|\xi|^{-1 / n}+\left|2^{k a_{n}} x_{n}\right|^{-1} \\
& \leq C\left|2^{k a_{n}} x_{n} v_{n}\right|^{-1 / n}
\end{aligned}
$$

where $\xi=\left(2^{k a_{1}} x_{1} v_{1}, \ldots, 2^{k a_{n}} x_{n} v_{n}\right)$. Hence, we get

$$
\begin{equation*}
\left|\hat{\Delta}_{k}(v, x)-\hat{\Delta}_{k}^{n-1}\left(v^{\prime}, x^{\prime}\right) \hat{p}_{k}\left(x_{n}\right)\right| \leq C\left|v_{n}\right|^{-1 / n} \min \left\{2^{k a_{n}}\left|x_{n}\right|,\left|2^{k a_{n}} x_{n}\right|^{-1 / n}\right\} \tag{2.2}
\end{equation*}
$$

So

$$
\sum_{k}\left|\hat{\Delta}_{k}(v, x)-\hat{\Delta}_{k}^{n-1}\left(v^{\prime}, x^{\prime}\right) \hat{p}_{k}\left(x_{n}\right)\right|^{2} \leq C\left|v_{n}\right|^{-2 / n}
$$

Hence $G(f)$ is bounded on $L^{2}\left(L^{1}\right)$, if $n \geq 2$. That is to say

$$
\begin{equation*}
\left\|\sup _{k}\left|\Delta_{k} * f\right|\right\|_{L^{2}\left(L^{1}\right)} \leq C\|f\|_{2} \tag{2.3}
\end{equation*}
$$

Part 2. Now, we start to prove that $\sup _{k}\left|\Delta_{k} * f\right|$ is bounded on $L^{p}\left(L^{1}\right)$, $1<p \leq \infty$, again, via in duction argument at dimension $n$. As above, when $n=1, \sup _{k}\left|\Delta_{k} * f\right| \leq C M(f)$. Suppose that for dimension $n-1$,

$$
\left\|\left\|\sup _{k}\left|\Delta_{k} * f\right|\right\|_{L^{1}\left(S^{n-2}\right)}\right\|_{L^{p}\left(R^{n-1}\right)} \leq C\|f\|_{L^{p}\left(R^{n-1}\right)}, \quad 1<p \leq \infty .
$$

(Note that

$$
\begin{equation*}
\left\|\left\|\sup _{k}\left|\Delta_{k}^{n-1} * f\right|\right\|_{L^{1}\left(S^{n-1}\right)}\right\|_{L^{p}\left(R^{n}\right)} \leq C\|f\|_{L^{p}\left(R^{n}\right)} \tag{2.4}
\end{equation*}
$$

by the same proof as in (2.1) of part I.)
Let us consider a partition of unity on $(0, \infty)$. That is, there exists a function $h \in C_{0}^{\infty}(R)$ supported in $\left[2^{-a_{n}}, 2^{a_{n}}\right]$ and such that $\sum_{j} h\left(2^{a_{n} j} t\right)=1$. Define

$$
\widehat{S_{j} f}\left(x^{\prime}, x_{n}\right)=h\left(2^{a_{n} j}\left|x_{n}\right|\right) \hat{f}\left(x^{\prime}, x_{n}\right)
$$

Then

$$
\begin{align*}
\sup _{k}\left|\Delta_{k} * f\right| \leq & \left(\sum_{k}\left|\left(\Delta_{k}-\Delta_{k}^{n-1} \otimes p_{k}\right) * f\right|^{2}\right)^{1 / 2}+\sup _{k}\left|\left(\Delta_{k}^{n-1} \otimes p_{k}\right) * f\right| \\
.5) & =\sum_{j}\left(\sum_{k}\left|\left(\Delta_{k}-\Delta_{k}^{n-1} \otimes p_{k}\right) * S_{j+k} f\right|^{2}\right)^{1 / 2}  \tag{2.5}\\
& +\sup _{k}\left|\left(\Delta_{k}^{n-1} \otimes p_{k}\right) * f\right|
\end{align*}
$$

By (2.4) the second term of the last inequality is bounded on $L^{p}\left(L^{1}\right)$. Let

$$
T_{j} f=\left(\sum_{k}\left|\left(\Delta_{k}-\Delta_{k}^{n-1} \otimes p_{k}\right) * S_{j+k} f\right|^{2}\right)^{1 / 2} .
$$

First, let us compute the $L^{2}\left(L^{1}\right)$-norm of $T_{j} f$. We have

$$
\begin{aligned}
\left\|T_{j} f\right\|_{L^{2}\left(L^{1}\right)} \leq & \left\|\left\|T_{j} f\right\|_{L^{2}\left(R^{n}\right)}\right\|_{L^{1}\left(S^{n-1}\right)} \\
\leq & \|\left(\sum_{k} \int_{R^{n-1}} \int_{1 / 2^{a_{n}<2^{a_{n}(j+k)} x_{n} \mid<2^{a_{n}}}}\left|\hat{\Delta}_{k}(v, x)-\hat{\Delta}_{k}^{n-1}\left(v^{\prime}, x^{\prime}\right) \hat{p}_{k}\left(x_{n}\right)\right|^{2}\right. \\
& \left.\times\left|\hat{f}\left(x^{\prime}, x_{n}\right)\right|^{2} d x_{n} d x^{\prime}\right)^{1 / 2} \|_{L^{1}\left(S^{n-1}\right)} .
\end{aligned}
$$

From (2.2), we have

$$
\begin{equation*}
\left\|T_{j} f\right\|_{L^{2}\left(L^{1}\right)} \leq C \min \left\{2^{-a_{n} j},\left(2^{a_{n} j}\right)^{1 / n}\right\}\|f\|_{2} . \tag{2.6}
\end{equation*}
$$

Next, applying (2.3) and (2.4) (just with $p=2$ ) to Lemma 4 (II) (let $g_{k}=$ $S_{j+k} f$ ), and using the classical Littlewood-Paley theorem and the vector valued maximal operators, we have

$$
\left\|\left(\sum_{k}\left|\Delta_{k} * S_{j+k} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p_{0}}\left(L^{1}\right)} \leq C\|f\|_{p_{0}}
$$

and

$$
\left\|\left(\sum_{k}\left|\left(\Delta_{k}^{n-1} \otimes p_{k}\right) * S_{j+k} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p_{0}}\left(L^{1}\right)} \leq C\left\|\left(\sum_{k}\left|M_{n} S_{j+k} f\right|^{2}\right)^{1 / 2}\right\|_{p_{0}} \leq C\|f\|_{p_{0}}
$$

where $\left|1 / 2-1 / p_{0}\right|=1 / 4$. Hence

$$
\left\|T_{j} f\right\|_{L^{p_{0}}\left(L^{1}\right)} \leq C\|f\|_{p_{0}}
$$

Interpolation between above inequality and (2.6), yields

$$
\begin{equation*}
\left\|T_{j} f\right\|_{L^{p}\left(L^{1}\right)} \leq C \min \left\{2^{-\varepsilon a_{n} j}, 2^{\varepsilon a_{n} j / n}\right\}\|f\|_{p} \tag{2.7}
\end{equation*}
$$

where $|1 / p-1 / 2|<1 / 4$ and $0<\varepsilon<1, \varepsilon$ depending on $p$. Hence, from (2.5), we have

$$
\begin{equation*}
\left\|\sup _{k}\left|\Delta_{k} * f\right|\right\|_{L^{p}\left(L^{1}\right)} \leq\left\|\sup _{k} \mid\left(\Delta_{k}^{n-1} \otimes p_{k}\right) * f\right\|_{L^{p}\left(L^{1}\right)}+\sum_{j}\left\|T_{j} f\right\|_{L^{p}\left(L^{1}\right)} \leq C\|f\|_{p} \tag{2.8}
\end{equation*}
$$

if $|1 / p-1 / 2|<1 / 4$. Again, applying (2.8) to Lemma 4 (II), finding the new range of $p$ of inequality (2.7) and repeating the procedure as above, we conclude that (2.8) holds if $1<p<\infty$. Lemma 2 is proved.

Proof of Lemma 3. If $n>\operatorname{Re} \alpha>0$. Let $G^{\alpha}$ denote the Bessel potentials, (See [6], page 132). Then

$$
\widehat{G^{\alpha}}(y)=\left(1+|y|^{2}\right)^{-\alpha / 2}
$$

and let

$$
\widehat{G_{k}^{\alpha}}(y)=\left(1+\left|\delta_{2^{k}} y\right|^{2}\right)^{-\alpha / 2}
$$

Then

$$
\begin{aligned}
T_{k, v}^{\alpha} f(x) & =\int_{1}^{2} \int_{R^{n}} f\left(x-y-\delta_{2^{k}{ }_{t}} v\right) G_{k}^{\alpha}(y) d y d t \\
& =\int_{R^{n}} f\left(x-\delta_{2^{k}} y\right) \int_{1}^{2} G^{\alpha}\left(y-\delta_{t} v\right) d t d y
\end{aligned}
$$

It is well known that $G^{\alpha}(x)$ is controlled by

$$
\frac{1}{|x|^{n-\operatorname{Re} \alpha}} \quad \text { as }|x| \rightarrow 0
$$

and is rapidly decreasing as $|x| \rightarrow \infty$. Therefore, $\int_{1}^{2} G^{\alpha}\left(y-\delta_{t} v\right) d t$ is dominated by

$$
\int_{1}^{2} \frac{x_{|y|<c}}{\left|y-\delta_{t} v\right|^{n-\operatorname{Re} \alpha}} d t+C^{\prime} \frac{\chi_{|y|>1}}{|y|^{n+1}}
$$

Since $v=\left(v_{1}, \ldots, v_{n}\right) \in S^{n-1}$, there exists $v_{i}$, say $v_{1}$, such that $v_{1}^{2} \geq 1 / n$. So the integration term is not bigger then

$$
\int_{1}^{2} \frac{\chi_{|y|<C}}{\left|y_{1}-t^{a_{1}} v_{1}\right|^{n-\operatorname{Re} \alpha}} d t
$$

It is easy to see that if $n-1<\operatorname{Re} \alpha<n$, the above integral is bounded by a constant which doesn't depend on $v \in S^{n-1}$. Hence $T_{k, v}^{\alpha} f(x) \leq C M f(x)$. Lemma 3 is proved.

## References

1. M. Christ, J. Duoandikoetxea and J.L. Rubio de Francia, Maximal operators related to the randon transform and Calderon-Zygmund method of rotations, Duke Math. J., vol. 53 (1986), 189-209.
2. R. Fefferman, On an operator arising in the Calderón-Zygmund method of rotations and the Bramble-Hilbert lemma, Proc. Nat. Acad. Sci. U.S.A., vol. 80 (1983), pp. 3877-3878.
3. S. Sato, Maximal functions associated with curves and the Calderón-Zygmund method of rotations, Tran. Amer. Math. Soc., vol. 293 (1986), pp. 799-806.
4. E.M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc., vol. 84 (1978), 1239-1295.
5. J. Duoandikoetxea and R.L. Rubio de Francia, Maximal and singular operators via Fourier transform estimates, Invent. Math., vol. 84 (1986), pp. 541-561.
6. E.M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1975.

Oregon State University
Corvallis, Oregon


[^0]:    Received April 6, 1987.

