
ILLINOIS JOURNAL OF MATHEMATICS
Volume 33, Number 2, Summer 1989

SYSTEMS OF EQUATIONS OVER FINITELY
GENERATED SOLVABLE GROUPS

BY

WOJTEK JASTRZEBOWSKI AND JOHN LAWRENCE2

Let G be a group. An equation in n variables over G is an expression of the
form p(xl,..., xn)= 1, where p(xl,..., x,,) is an dement of the coproduct
G * (x,..., x). Consider the set L*(G, n) of solution sets of systems of such
equations. L*(G, n) is a complete lattice with the greatest lower bound of a set
of dements defined in the obvious way and the least upper bound defined as
the greatest lower bound of the upper bounds.
Now consider equations without coefficients, that is, where p(xx,..., x,,) is

an element of the free group (x,..., x). Denote by L(G, n) the (complete)
lattice of solution sets of systems of equations over G. If G is finitely
generated by k elements, there is a natural map from L(G, n + k) to
L*(G, n) which takes k variables to generators of G. Thus if L(G, n + k) is
of finite length, so is L*(G, n). For this reason, when we are dealing with
finitely generated groups, we may assume that our equations are without
coefficients.
Our study of L(G, n) was motivated by the study of equations over a free

monoid and this in turn was motivated by Ehrenfeucht’s ’Conjecture (see [1]).
J. Lewin and T. Lewin have proved that a noncommutative free monoid can
be embedded into a Cartesian power of a finitely generated solvable group if
and only if the group is not nilpotent-by-finite. As the lattice LO-IG, n) (where
1-IG is a Cartesian power of G) is isomorphic to L(G, n), a careful study of
L(G, n) might yield some information about the lattice of solution sets of
systems of equations over a free monoid.

In [1], a characterization of the Abelian groups G for which L(G, n) is of
finite length for all n was given. In particular L(G, n) is of finite length if G is
torsion-free Abelian or finitely generated Abelian. Moreover, for Abe[ian

groups, if L(G, 1) is of finite length, L(G, n) is of finite length for all n.
In this paper G will denote a group, G will denote the direct product of n

copies of G, G’ will denote the commutator subgroup of G and Z(G) will
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denote the centre of G. The generalized commutator [xx, x2,..., x,] is defined
inductively by

[x, x2] xfx;xx2

and

[X1,---, Xn] [[X1,... Xn-1], Xn].

We start off by considering subgroups of finite index.

THEOREM 1. Let G be a group with a normal subgroup H offinite index. If
L(H, n) is offinite length for all n, then L(G, n) is offinite length for all n.

Proof. Let 1 be the index of H in G and let

C 1 C2,..., Cl)

be a fixed set of coset representatives.
Suppose that p(xx,..., x,) 1, 1, 2,..., r, is a sequence of equations

with a.=(ajl,...,aj,)G" a solution to Pi=l if i<j and a not a
solution to p 1, j 1, 2,...,_ r.
Under the natural map G G/H consider

ot- ( a--jl, 6j,, ) (G/H)".

For some subset 50c (1,2,..., r) of cardinality s > rl-" we will have
constant for all j 5. Note that if 50= { il, i2,..., }, then aim is a solution
to Pi. 1 if j < m but aim is not a solution to Pim 1. For this reason, we
may assume, without loss of generality, that 5 {1, 2,..., s }.
We now want to transform our equations over G in variables X to

equations over H in a new (finite) set of variables. In order to do this make the
following replacements. Replace X by cYj, where ?j fflj and Yj is a new
variable, replace Yc by cjZij, (i 1,2,..., n; j 1,..., l), where Zij is a
new variable and replace ccj by c,(i, )W (i, j 1,..., l), where ij q(i, j)
and W is a new variable. Note that for fixed n, the number of new variables
introduced is a function of r and 1 only. Using these formal substitutions we
transform a word in the X’s to a word in cjYj.’s and then move the coset
representatives to the left side by starting at the right and moving left. For
example the word XIXg.X becomes ClYlC2Y2c3Y3 which then becomes an
expression of the form c,W,Z,W,Z,Y3. As XIX2X 1 has a solution, c 1.
We now have a system of equations pt*(Y, Z, W/j.) 1, 1,2,..., s in

n + nl + variables with a strictly descending chain of solution sets over the
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group H. As L(H, n + nl +/2) is of finite length, s is uniformly bounded.
But r <_ sln; hence, r is uniformly bounded.

This completes the proof of the theorem.

If A is a torsion-free Abelian group, then L(A, n) is of finite length for all
n. We now generalize this.

THEOREM 2. Suppose that G is a torsion-free nilpotent group. Then L(G, n)
is offinite length for all n.

Proof. We use induction on the nilpotent length l of G. The induction has
been started at 1. A polynomial in n variables, Xi, over a nilpotent group
of nilpotent class is equivalent to one of the form

,

where is a product of generalized commutators with entries Xi and X-
and of length at most l + 1. Replace each of these generalized commutators
by a variable Yj. Thus is a word in the variables Yj. Note that the number of
new variables introduced is a function of n and l only.

Suppose that p(X,..., Xn) 1, 1, 2,..., s is a sequence of equations
with a strictly descending chain of solution sets. If

( ) xT , .
where , is a product of generalized commutators, we let

(p,) (mi,..., mi).

Suppose that for some integer the n-tuple (mu,..., m) is in the span of
((m,..., m): 1 _< < l}. Then there is a positive integer r and integers ri,
I _< < l, such that

1--i

r,(ml,..., m,,) E ri(m,,..., m,,).
i----1

Now suppose that

fl= (al,...,an) Gn

is a solution to p(X,..., X) 1 for 1, 2,..., 1. Then fl is a solution
to pt(X1,..., X) 1 if and only if it is a solution to [pt(X1,..., X)] rl 1 (it
is here that we use the fact that the group G is torsion-free) and this occurs if
and only if fl is a solution to

1-1

’ I-I [p,(Xx,..., x,)]-r,
i----1
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Note that the polynomial on the left is equivalent to one involving only the
variables Y. We conclude that if a(pz) is in the span of {a(pi): 1 < < l},
then the polynomial Pt(X1,..., Xn) may be replaced by one involving only the
variables Y. and we will still get a strictly descending chain.
Now by induction on the nilpotent length of G, there is a uniform bound on

the length of a strictly descending chain of solution sets for a sequence of
equations involving only the Y’s, for in this case we are essentially solving in
the commutator subgroup of G. However a(pz) is in the span of {a(pi):
1 < < 1 ) except in at most n + 1 cases, so there is a uniform bound on the
length of our chain s 1.

This completes the proof of the theorem.

THEOREM 3. If G is a finitely generated nilpotent-by-finite group, then
L(G, n) is offinite length for all n.

Proof Suppose that G is a finite extension of the nilpotent group H. As G
is finitely generated, so is H. The group H embeds into a direct product
A B, where A is torsion-free nilpotent and B is finite [2, Theorem 2.1]. By
Theorem 2, L(A, n) has finite length and by two applications of Theorem 1,
we see that L(G, n) has finite length.

If L(G, n) is of finite length, what can be said about G? If G is torsion-free,
then L(G, 1) has finite length. If G is a non-Abelian free group, then L(G, 2)
has finite length, while L(G, 3) does not [1].

Example. Let G Z Z denote the restricted wreath product of the
infinite cyclic groups. This group is finitely generated metabelian. Let ei(S, Y)

Xiy- and let

Ei(X,Y ) [X,Y, el(X,Y),...,i(X,Y),...,en(X,Y)], i= 1,...,n,

where e(X, Y) means that ei(X, Y) is omitted in the above equation. Then
the system of equations

E(X, Y) 1, E2(X, Y) 1,..., E,(X, Y) 1

has the property that for each k, there exists (ak, bk) - G2 which is a solution
to Ei(X, Y) 1, 4: k but is not a solution to Ek(X, Y) 1.

THEOREM 4. Suppose that G is a group for which L(G, 3) has finite length k.
Let n k be a sequence of distinct integers. Then for some l, 1 < < k, G
satisfies the identity
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Proof Consider the system of equations

Ei: X, Y"IZ-1,..., Y",Z-x] =1, i=1,2,...,k.

If < j, then the solution set of Ei is contained in the solution set of Ej. Thus,
taking from k to 1 we have a descending chain of solution sets. If we add the
equations X 1 and Y 1 at the end, then we are looking at k + 2 solution
sets. As L(G, 3) has finite length k, for some the solution set of E equals the
solution set of Et_ (1 < < k). If a and b are dements of G, then X a,
Y b, Z b is a solution to Et; hence, it is a solution to Et_ 1. It follows
that for all a, b in G, we have

This completes the proof of the theorem.

THEOREM 5. Let G be a finitely generated solvable group satisfying an
identity [x, y,l,..., y,k] 1 where n > O. Then G is nilpotent-by-finite.

Proof Induct on solvability length of G. If G’ 1 then nothing to prove.
Hence assume there is a normal Abelian subgroup A of G such that G/A is
nilpotent-by-finite. Pass to a subgroup of finite index, if necessary, and assume
G/A is torsion-free nilpotent. Now G satisfies the maximal condition for
normal subgroups, so we may assume that every proper quotient of G is
nilpotent-by-finite.

There is a central series

A <1X (A, gl) <1X2= Xl, g2)... <1Xr= Xr_l, gr) G

from A to G with infinite cyclic factors. Let

d lcm{ nl,... r/k }.

Then every element of (A, Gd’) J is the d-th power of an element of G
modulo A. (See [5]; originally proved by Malcev in 50’s.)

Let Y X C3 J. Then for any Yi Y there exists x X such that

x] =- y (mod A).

Pick a 4= 1 from A. Then [a, x’l,..., x’k] 1 implies CA(Yi) 4= 1. In particu-
lar C1 CA(Y) 4= 1. Since C < G, 1 =/= C2 Ccx(Y2) < G. Inductively we
obtain
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But Cr < Z(J). By our choice of G, J/Cr is nilpotent by finite. Hence J is
nilpotent-by-finite.

COROLLARY. Suppose that G is a finitely generated solvable group satisfying
an identity of the form [X, Y", Y’,..., Y"] 1. Then G is nilpotent-by-finite.

The above corollary generalizes the special case where n 1. In this case it
is known that the group must be nilpotent (see [4] for example).

THEOREM 6. Suppose that G is a finitely generated solvable group such that
L(G, 3) is offinite length. Then G is nilpotent-by-finite.

Proof This follows from Theorem 5.

Acknowledgement. The authors would like to thank the referee for simpli-
fying the proof and generalizing the statement of Theorem 5.
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