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FIXED POINTS OF ISOMETRIES AT INFINITY IN
HOMOGENEOUS SPACES

BY

MARIA J. DRUETTA

Introduction

Let M be a simply connected homogeneous riemannian manifold of non-
positive curvature. Since M admits a simply transitive and solvable Lie group
G of isometrics, it can be represented as the Lie group G endowed with a left
invariant metric of nonpositive curvature. If is the Lie algebra of G then
,q [,, ,,a] e where , the orthogonal complement of [, ,q] in ,,a with
respect to the metric, is an abelian subalgebra of

In this paper, we describe the set of fixed points of G at infinity and we
classify all isometrics defined by elements of G when M has no de Rham flat
factor; more precisely, we show that the elements of [G, G] are parabolic and
the hyperbolic elements of G are those conjugate to exp(u).

In Section 1, we study the action of right invariant vector fields on the
geodesics /z(t)= exp tZ with Z e. All stable Jacobi fields on 3’z are
determined on certain regular dements Z of e (Corollary 1.3). Section 2 is
devoted to describe, for each Z in e, the subgroups of G that fix
(Corollary 2.6). In the third section, the set of fixed points of G at infinity is
described (Theorem 3.4) and all isometrics coming from left translations by
elements of G are classified (Corollaries 3.7 and 3.9). In particular, if M is not
a visibility manifold and I(M) (or Io(M)) has a fixed point at infinity (for
instance if M is not symmetric) this point is necessarily a fiat point at infinity
(Corollary 3.5).

Finally, in Section 4 we summarize some results about the points at infinity
that can be joined by a geodesic to a fixed point of G.

Preliminaries

Let M denote a complete and simply connected riemannian manifold of
nonpositive curvature (K < 0). All geodesics in M are assumed to have unit
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FIXED POINTS OF ISOMETRIES 211

speed and the distance induced by the riemannian metric is denoted by
d( ). M(oo) will denote the set of points at infinity, that is the set of
asymptote classes of geodesics. The space M Mtd M(o) together with the
cone topology is a compactification of M that is homeomorphic to the closed
ball of dimension n dimension M. The angle at p M subtended by q and
r in M is defined by <v(q, r)= <p(3";q(O), 3’;r(0)) where 3’pq denotes the
unique geodesic in M joining p with q. I(M) and Io(M) will denote the
isometry group of M and the connected component of the identity respec-
tively. Both are Lie groups with the compact open topology. Isometries of M
extend to homeomorphisms of M by defining tp(3’(o)) (tp 3’)(o) for any
isometry tp and any point 3’(o) in M(oo). Any subgroup D of I(M)
determines a limit set L(D), which is the set of points in M(o) that are
cluster points of an orbit D(p). The definition of L(D) does not dependon
the choice of the point p in M and L(D) is nonempty if and only if D is
noncompact in I(M).
A Jacobi vector field J on a geodesic 3’ of M is said to be stable (unstable)

if there exists a constant c > 0 such that IJ(t)l < c for all > 0 (all < 0).
We recall the following known fact under the hypothesis K < 0. If 3’ is a

geodesic in M then for every c Tv(oM there is a unique stable Jacobi vector
field J on 3’ such that J(0)= v (See [9, Lemma 2.2]). Moreover, if J is an
unstable vector field on ,, since [J(t)l is a convex function of R it then
follows that lim / [J(t)l oo, if IJ(t)l is nonconstant.
Assume that M G is a solvable Lie group with a left invariant metric

( ) of nonpositive curvature and let ,q be the Lie algebra of G. We recall
that if X, Y, Z ,q then the riemannian connection X7 is given by

2(XTxY, Z> (iX, Y], Z) ([Y, Z], X) + ([Z, X], Y)

and the sectional curvature K reduces to

Ix ^ Yl:I (X, Y) (R(X, Y)Y, x)
1/4](adx)*Y + (adv)*X[-- ((adx)*X, (adr)*Y)

ll[x, rl [Ix, rl, rl, x)

wh’ere R(X, Y) [XTx, XTy] X7tx y] and * denotes the adjoint with respect
to the metric.

Since g’ [,,a, g] is an ideal of g, e is a totally geodesic subalgebra of ,g
(that is XTxY whenever X, Y u) and the connected Lie subgroup A with
Lie algebra e is a flat totally geodesic submanifold of G. Observe that
A exp() where exp: ,, - G is the exponential map of G.
We recall that since G is simply connected, G can be represented by

G [G, G]exp() with [G, G] 3 exp() { e } (e is the identity of G) where
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[G, G] is the connected (and closed) Lie subgroup of G with Lie algebra
[y, y]. Moreover, since [G, G] is nilpotent and simply connected, the map exp"
[y, y] -o [G, G] is a diffeomorphism (See [11, Chap. 3]).
We note that in general, in a Lie group G if for any g G, Lg and Re,

denote the left and right translations respectively and Ig Ls Rg-1, then the
adjoint representation of G defined by Ad(g)= (dlg)e satisfies Ig(exp X)=
exp(Ad(g)X) and Ad(expX)= Exp(adx) for every X in y, where Exp
denote the exponential map in Gl(y) and adx the adjoint map of y.
For details and references in the subject the reader is referred to [1], [4], [6],

[8].
In the sequel G will be a solvable and simply connected Lie group with a

left invariant metric of nonpositive curvature. The complexification of y’, y,c,
decomposes as y,c= Exy,c, where

Y,c ( U y,c. (adn X(H) I)ku 0 for some k > 1 and for all H e )
is the associated root space for the root , (*)c under the abelian action of
e ony’.If ,=a4-iflisarootofeiny’,

is the generalized root space of , in y’ and
We assume that G has no de Rham fiat factor; hence the factors

a0= (He" a(H) =0forallrootsa+ifl)

are zero and y’ E, 0y’a- (For a proof see [2, Theorem 4.6]).

1. Right invariant vector fields on G

If X is in y then X will denote the right invariant vector field on G such
that e X, that is (dRg)eX for all g G. Since the one-parame_ter
flow associated to . is given by %(g) exp s.Xg (s R) it follows that X is
a Killing vector field on G and consequently X is a Jacobi vector field on any
geodesic of G. We note the following.

(i) Igl I(dZg)(A.d(g-))XI IAd(g-X)XI for all g G.
(ii) XexpsXg Xgl for allsR, gG.
(iii) If is a geodesic in G with 3,(0) e, V’(0) Z then X,(t is a Jacobi

field on 3’ such that

x, v z.
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In fact, if Z denotes the left invariant vector field associated to Z, (Vv,X)(O)
(VzX)e 7xZ since [Z, X]e O.

(iv) ((t,, 7’(t)) (X, Z) for all R ((V,X, 7’) 0).

Now we fix H in a, H 4: O. For each X 2, X not a multiple of H, jx
will denote the Jacobi vector field on 7H(t) exp tH defined by Jx(t) vn(t)-
Then, from the remark above, jx satisfies:

(i) jx(o)=x.
(ii) (vvI,JX)(o) -DHX where Dn is the symmetric part of adH.
Note that Vn Sn, the skew symmetric part of adH.
(iii) IJX(t)l IAd(exp- tH)XI IExp(-tadn)XI.
(iv) jx(t),,/b(t)) (X, H) for all t R.

We have the decomposition

where

E e’ o, e+"= E E eo .’
a(H) --0 a(H) > 0 a(H) < 0

We next study the behavior of jx along Yn- For that, the following lemma
is very useful.

LEMMA 1.1. (i) If a(H) 0 and X y# then limt__, +oo Exp(- adn)X
exists if and only if fl(H) 0 (in which case adnle; 0).

(ii) If a(H) > 0 then

lim Exp(- adn) X 0 for all X

(iii) If a(H) < 0 then

lim Exp(-t adH) X oo ( lim Exp(, adz) X O)
t--* +o0 t---*

for all X 2’,,,"

Proof (i) If Xyt then U=X+iYy,c (,=a+ifl) for some
Y 2’- Since a(H) 0, adH[,,c ifl(H)I and adH must be skew symmetric
on ,et by Lemma 4.4 and Theorem 5.2 of [1]. Then,

Exp( tadH) I,,c e-ia(H)tI
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and

Exp(-t adz)X= (costfl(H))X + (sin tfl(H))Y.

Therefore, limt__,+oo Exp(-t adn)X exists in G if and only if fl(H)= 0, in
which case adnl,, 0 and Exp(-t adn)X X for all t R.

(ii) From the’adefinition of ,,c, N (adn -A(H)I)l,c is a nilpotent
operator on ,,c. Then

adnl,,c ,(H)I + N and Exp(-t adv)l,c e-tx(H) Exp(-tN).

Since e- t#(n) 1 it follows that

lim Exp( adn) ct--- + oO

if and only if

lim e-t,,(u) Exp( tN) 0 in ,t’(,c).
t--.. -q- oo

We compute this limit in each coordinate (ij). Since N is nilpotent,

ktk- kExp(-tN) (-1) lV
k--O

(Ns+l 0)

and

Exp(- tN ) ij (- 1) k
k

F(Nk)ij pi.(t)
k=O

is a polynomial in of degree s > 0. Then

lim e-’atn)(Exp(-tN))ij lim e-tatIC)p(t) 0
t--- +oo t--

since a(H) > 0.
Hence, limt__, +oo Exp(-t adn)U 0 for all Uc such that , a + ifl

is a root and consequently,

lim Exp( adn) X 0 for all X y’,,o.

(iii) We will show that limt_.+oolExp(-t adn)UI oo for any U ,q,c
such that a + ifl and a(H) < O; here we consider in ,c the complex
inner product inherited from ( ) in ,. If { et,..., em} is an orthonormal
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basis of g,c and U Y’.im=luiei then

[Exp(-t adn)UI2 E Exp(- adH)ijUjl2.
J

Since

Exp( t adH ) e-tot(H)e- it(H) Exp( tN ),

as in (ii), we have

Exp( tadH) ijUj
J

e-tot(H)EpiSj (l) Uj
J

e-t<H)lq::.(t)[

where qj(t) Z,jp]j(t)uj is a polynomial in of degree s > 0. Since

it follows that

lim [Exp( adn) X c for all X in
t-- + oo

The fact that lim + oo Exp(t adn)X 0 follows from (ii) since a( H) > 0.
We observe that the proof of (ii) and (iii) does not depend on the fact that

K<0.
Let J(n) denote the 2n-dimensional space of Jacobi vector fields on n.

The subspaces of J(’tn) of parallel, stable and unstable vector fields on 3’n
will be denoted by Je(ln), JS(/n) and JV(/n) respectively.

PROPOSITION 1.2. The map J: J(’n), X- jx is an injective linear
map satisfying:

(i) J( ) c eTH"
() j() js and lim IJX(t)l 0 for XYH t+

Off) J() c J and Umt + Ijx(t)l #r X y
As a consequence, jx is stable on Yn if and only if X a.

Proof Since any Jacobi field on n is completely determined by J(0) and

XTvhJ(O) -DnX, it follows that J is a linear map.
(i) We observe first that since is abelian, if X , jx(t)= Xexptn

where X, the left invariant field associated to X, is a parallel field on



216 MARIA J. DRUETTA

H(VHX 0).
If a(H)= 0 then adHl,,.a is skew-symmetric (adnl,c i(H)I if

a + i}8); hence Exp(-t adn)], is orthogonal, and for any X we have

Ijx(t)l =lExp(--tadH)Sl ISl forall R.

Then

o= -lJ t) =2lXT,jx(t ) +2(R(%r J vb J (t)

and therefore jx is parallel on 3’n- If X ,q then X E(n)=oX,q and

jx jx,a
a(H)=0

is parallel on
Now, (ii) and (iii) are immediate from Lemma 1.1, (ii) and (iii) respectively.

The last assertion is clear since J(yon , ,+n, a) j(,q_n) 0.

COROLLARY 1.3. If H a satisfies a(H) > 0 whenever a + ifl is a root
and a O, then J(,p) JS(n).

(Such an H exists by [1, Proposition 5.6].)

Proof Since g’ g+n it follows from Proposition 1.2 that J(,e) c JS(/n).
Conversely, the fact that there exists a unique stable Jacobi field J on ’n with
the initial condition J(0) implies that J js(0) and the assertion follows.

2. Subgroups of G fixing ’n()

Let x be a point at infinity and Gx { g G: g(x) x }. Since the action
of G at infinity is continuous, G is a closed Lie subgroup of G with Lie
algebra ,ex (X ,e: exp sX(x) x for all s R).
We want to determine ,ex and G when x 3,n(c) for all H a. First we

give some preliminaries.

LEMMA 2.1. If lim + exp( tH)g exp tH exists in G, then gfixes /1(o).
(See [8, Proposition 2.17.3]).

Proof Suppose that go lim + exp( tH)g exp tH; then

d ( g exp tH, exp tH) d(exp( tH) g exp tH, e) ---> d ( go, e) as ---> + .
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Hence the geodesics 7n and g ’in are asymptotic, which means that g fixes

The converse is valid in some cases as we will see later (Proposition 2.4).

LEMMA 2.2.
Then

Let g G be such that g exp Xexp Ho where X ,,e’, Ho a.

lim exp( tH)g exp tH

exists in G if and only if
lim Ad(exp(- tH))X lim Exp( adn) X

t--* + oo

exists in

Proof We recall that Ad(exp(- tH))X Exp( adn) X. Since

exp( tn) g exp tn (exp( tn)exp Xexp tn)exp no,
lim + exp( tH)g exp tH exists in G if and only if

lim exp( tH)exp Xexp tH

exists in G. We know that

exp(- tH)exp Xexp tH Iexp(_tH (exp X) exp(Ad(exp(- tH))X)

and exp: ,e’ -> [G, G] is a diffeomorphism, so the lemma follows since

Ad(exp(-tH))X= Exp(-tadn)X and X

PROPOSITION 2.3. Let X . Ifjx is a stable field on [n then

exp sX(n(c)) ,/n() for all s R.

Conversely, if X ’ satisfies exp X(yn(c)) ,[n(c) then jx is stable on n.
Hence exp sX(H(C)) n(O) for all s R.

Proof Assume that JX is stable. If a(s, t) exp sXexp tH then the first
assertion follows since,

d(exp sXexp tH, exp tH ) < fist filla ( u t) du X<, u) du
"0 "0

flsl iexptHi du IslljX(t)l for all s R.
"0
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Conversely, if exp X(t(oo)) ,/n(OO) then d(exp(-tH)exp Xexp tH, e) <
c for some c > 0 and any > 0. By [10, Theorem 2.2, Ch. II], there exists a
subsequence (n k } C N and an element go [G, G] so that

g,, exp( nkH)exp Xexp nkH -- ,gO as k .
Since g, exp(Ad(exp(-n,H))X) and exp: ’- [G,G] is a diffeomor-
phism it follows that

]jX(n)l=lmd(exp(-nn))xI IZl as k o if go exp Z, Z y’.

Then, the convex function Ijx(t)l is bounded above for > 0 and jx is
stable on ,/.

PROPOSITION 2.4. Suppose H a satisfies one of the following conditions:
(1) a(H) 4:0 whenever a + ifl is a root.
(2) a(H) 0 implies fl(H) 0 whenever a + ifl is a root.

Then, limt_, + ooexp(- tH)g exp tH exists in G ifand only ifg(ln())
In the particular case when all roots are real the last assertion holds.

Proof Assume that g(,/n(o)) 3’n(O) where g exp Xexp Ho with X
y’, Ho a. Since expHo(,n())= 3,n(O) then exp X(,//())= 3,/(o)
and consequently jx is stable on 3’n. Hence X Xo + X where Xo yon,
Xx y+ and Exp( adn)X Exp( adn) Xo + Exp( adn) X1- By
Lemma 1.1,

lim Exp(- adn) X1 0

and therefore

lim Exp( tad/_/) X

exists in y’ if and only if

lim Exp( ad,) Xo
t-- + oo

exists in
If a(H) 4:0 for all roots a + ifl then y 0 and consequently Xo 0.
If a(H) 0 for some root a + ifl, then fl(H) 0 and by Lemma 1.1,

Exp(- adn)Xo Xo for all R.
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In both cases lirnt... +oo Exp(-t adn)X exists and from Lemma 2.2,

lim exp( tH)exp Xexp tH
t--- + oo

exists in G; since exp Ho exp tH exp tHexp H0 (,z is abelian) the assertion
follows. Lemma 2.1 completes the proof.

Next, we describe x and G when x ,n().

PROPOSITION 2.5. If )’n(t) exp tH (H ) and x n(o) then

Proof If Ho , since a is abelian,

d(exp sHoexp tH, exp tH) d(exp(-tH)exp sHoexp tH, e)
d(exp Silo, e).

Hence exp sHo(x) x for all s R.
If X ,oH ,+H then jx is stable on 3’n (Proposition 1.2) and by Proposi-

tion 2.3, exp sX(x) x for all s R.
For the converse, let X

#,n+, X2gn_ and H0. By the work above, XI+Ho,x and hence
X2 X- (Xi + Ho) ,e. By Proposition 2.3, jx is stable on 3’n and so
X2 0. Hence X

COROLLARY 2.6. For each H , if x n(oo) then
(i) [G, G] exp(gon g+n)

and
(ii) [a, alx exp(,).

Proof. (i) It is obvious from Proposition 2.5 that exp(#,0n ,#,+n)c
[G, G]x. For the converse, from Proposition 2.3, if exp X fixes x (X g’) then
jx is stable on Vn and so X g0

n g+n (Proposition 1.2). Then (i) follows
since G, G exp(,e’).

(ii) This is immediate from (i), since G [G, G]exp(e) and exp() fixes x.

The following results, which is a consequence of Proposition 2.5, allows us
to describe the set of fixed points of G at infinity; this description will be
completed in section 3 (Theorem 3.4).

PROPOSITION 2.7. If H then G(ln(c)) /n(o) if and only if a(H)
> 0 whenever a + ifl is a root of .
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Proof Let x yn(o). Note that G(x) x if and only if G Gx. Since
is a dosed Lie subgroup of G, the last assertion is equivalent to ,,a Yx or

y,= yon y+n. But this occurs if and only if g_n= 0 which is equivalent to
H) > 0 for all roots a + ifl.

3. Fixed points of G at infinity

Let a’ (H a: a(H) >_ 0 whenever a + ifl is a root}. In this section we
describe the fixed points of G at infinity as the set of yn(o) with H ’. Our
starting point is the following lemma which is very useful for such a descrip-
tion; its proof is in [7, Lemma 5.4.a].

LV.MMA 3.1. Let y be a geodesic in M and z y (+_ ) in M(o) such that

< v(t) (Y(), z) for every R.

Then y is the boundary of a flat half plane that contains all rays joining
with z.

That is, there exists an isometric totally geodesic imbedding

F:R [O, oo)-oM

with F( t, O) y(t) for all R. In our case, F is defined by

F(s, t) expv(o(sZ(t))

where Z(t) is the initial speed of the ray joining y( t) with z.

PROPOSITION 3.2. Let y be a geodesic in G with y(0) e. IfH is such
that exp sHfixes x /() for all s R then [H, y’(0)] 0 and H, the right
inoariant field on G with H H, is parallel on y] to, oo)-

Proof Since a is abelian we may assume X -/’(0) . We will show first
that yn(s) exp sH (Inl 1) is the boundary of a fiat half plane containing
the rays joining exp sH with x.

Let a(s, t) exp sHy(t) the geodesic variation of 3’(t) whose variational
field on y is Hr(t). We observe that the geodesics

as(t ) exp sHy(t)

satisfy

a(O) exp sH, a(oo) exp sH(x) x
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and

,.:(o)
.-o

(dgexpsH)ex.

Then

: ytt(s) (’yH ( O0 ) X) "eKexpsH ( ( dLexpsH ) eH ( dLexpsH ) eX) .qS.e ( H X)

and from Lemma 3.1, Yn is the boundary of the flat half plane P determined
by a(s, t) for s R, >_ 0. Hence

the left invariant field restricted to Yn, is parallel on 3’ and then SnX XTnX
0. Now, since K(H, X) ]SHX] 2 ][H, X]] 2 0, it follows that [H, X]

--0.
Next, we will see that Hv<0 is parallel on , for >_ 0. In fact, since

R(&tt),Y’(t))y’(t) 0 for all > 0

(P is_ flat and Hv(,) Tv(,)P) and Hv(t) is a Jacobi field on 7 it follows that
V,H(t) is parallel on y for all > O. Then,

[Vv,/(t)[ =[Vv,/(O)[ forall >_ 0

and from the fact that. X7v,(0)= vnX 0 (see (iii) at the beginning of
Section 1) we have Vv,H(t) 0 for all >_ 0 and the last assertion follows.

COROLLARY 3.3. If Ho is a regular element of a (that is, adH0[,, is
non-singular) then (exp sHo) 1 does not have fixed points at infinity distinct

from YH() with H a.

Proof Assume exp sHo(x) x for all s R and let y be the geodesic in
G with y(0) e, y()= x. Let y’(0)= X X + H1, where X ,p’ and

Hx ,z. By Proposition 3.2, 0 adno(X) adno(X1), which implies that

X 0 and X H a by the regularity of Ho. Since exp(a) is totally
geodesic in G it follows that "t(t) exp tH and x 7n1().

THEOREM 3.4. Let G be a solvable and simply connected Lie group with a left
invariant metric of nonpositioe curvature without de Rham flat factor. Then the
fixed points of G at infinity are 7n(o) with H
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Proof Assume that G(x) x and let Ho be a regular dement of (such
an Ho exists since G has no flat factor). Since exp Silo(X) x for all s R, it
follows from Corollary 3.3 and Proposition 2.7 that x 3’t(oo) for some
H satisfying a(H) > 0 for all roots a + ifl. By Proposition 2.7, Theorem
3.4 holds.

COROLLARY 3.5. Let M be a simply connected homogeneous space of non-
positioe curoature that has no de Rham fiat factor. If I(M) (Io(M)) has a fixed
point x in M(o) then x is a fiat point, prooided that M is not a oisibility
manifold.

We recall that x is a flat point (at infinity) if every geodesic 3’ belonging to
x is the boundary of a flat half plane. (See [4, Section 3].)

Proof We note that M is isometric to a solvable Lie group G with a left
invariant metric, where G is a closed connected Lie subgroup of I(M). Since
M does not satisfy the visibility axiom then y [y, y] where dim a > 2
(see [5, Theorems 2.4 and 3.1]) and therefore the fixed points of G at infinity
given by Theorem 3.4 are flat points: if x 3’H(oo), H ’ then g o3’H is
asymptotic to -/ through g G.

Since a fixed point of I(M) (Io(M)) corresponds to a fixed point of G at
infinity, the corollary follows immediately.
We note that if M is not symmetric then I(M) has a fixed point in M(o)

(see [8, Remark 1.9.18]).

TI-EOREM 3.6. If G has no fiat de Rham factor and g G translates a
geodesic 3" with 3"(0) e, then 3’(t) exp tH and g exp tollfor some H ,
toUR.

In particular, the only one-parameter subgroups of G which are geodesics are
3’(t) exp tH with H .

Proof Let o > 0 be such that g3"(t) 3"(t + to) for all R. Since G
has no flat factor, we can choose H such that a(H)> 0 for all roots

a + ifl (such an H exists by Proposition 5.6 of [1]).
If x 3’n(o) we may assume x =/= 3’(+ oo) (otherwise there is nothing to

prove); so G(x) x and from the fact, g(3’(oo)) 3’(00) we have

<3,(t)(X, 3’(00)) < gnv ( gn ( x ) gn ( 3’ ( O0 ) ) ) ". y . (X 3’(010))

for any R and n N. Since the function --* <),(t)(x, 3’(00)) is nonde-
creasing, it converges to some number fl > 0 as n-o oo. Hence, for every
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t R,

3’(00)) lim <v<t+nc)(x, 3’(00)) ft.

Then, Lemma 3.1 implies that 3’ is the boundary of a flat half plane P which is
determined by a(s, t) 3’(t)exp sH for s > 0 and R (at(O) 3"(t), at(oo)

X)o
We compute

t=0
( dRexp sH)e" 3’’(0) Jx(s )

if X= 3"(0). Then R(jX(s), 3"[_l(S))3"[l(S)= 0 for s > 0 and since jx is a
Jacobi field on 3"n, Vv;,Jx is parallel on ’HIt0, oo); therefore jX(s) is parallel for
s > 0 (jx is stable on 3’n by Corollary 1.3). By writing X X + Ho with
Xt ,’ and Ho z, we have

which is parallel for s > 0. Since lims_. +oolJX(s)l 0 it follows that X Ho;
consequently, 3’(t) exp tHo and g exp tollo since g g3’(0)
The last assertion is immediate since if 3’(t)= exp tX is a geodesic then

exp X translates 3’.

COROLLARY 3.7. The axial (hyperbolic) elements of G are those which are
conjugate to elements in exp(a).

Proof If g G translates a geodesic 3’ with 3,(0)= go then glggo
translates the geodesic a(t) g-3’(t) with a(0) e. By Theorem 3.6,

a(t) =exptH and glggo=exptoH

for some H a, o > 0. Then g go(exp toH)g which is conjugate to
exp toH exp(a).

Clearly, if g go exp Hgff (H ,z) then g translates 3’(t) go exp tH.

Remark 3.8. We recall that g (or Lg) is hyperbolic (parabolic) if the
function dg (h d(h, gh)) assumes (does not assume) the infimum. It is clear
that if dg assumes the minimum at go then g translates the geodesic joining
go with ggo in G. Conversely, if g translates a geodesic 3’ then dg assumes the
infimum on each point of 3’ (see [3, Proposition 4.2]).
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COROLLARY 3.9. The elements of [G, G] different from the identity are all
parabolic. Moreooer, the parabolic elements of G are those which are not
conjugate to an element of exp().

Proof Let g : e be in [G, G]. If g is hyperbolic then g translates a
geodesic 3’ with 3’(0) go; hence g go exp Hgff for some H a and
therefore gffXggo exp H. Since [G, G] is normal in G and [G, G] N exp(e)
(e }, we have a contradiction and consequently g is parabolic. From the fact
that any g e in G is either hyperbolic or parabolic (Remark 3.8) the
corollary follows.

4. Joining points at infinity

In this section we summarize some results about the points at infinity which
can be joined to a fixed point of G. We recall that two points x : y in M(o)
can be joined (by a geodesic of M) if there exists a geodesic 3’ of M with
3’(00) x and 3’(-00)= y. If M is a visibility manifold, any two distinct
points in M(oo) can be joined. Two points x, y in M() are said to be G-dual
if there exists a sequence ( g ) c G such that g(p) - x and gt(p) y as
n oo for some p in M.

Let M G be a solvable Lie group with a left invariant metric of non-posi-
tive curvature.

LEMMA 4.1. Let x be a fixed point of G at infinity. If y can be joined to x
then gl x as n oo for every sequence { gn } c G such that gn y as
n oo. In particular, ify can be joined to x then y is G-dual to x.

Proof. Let 3’ be a geodesic joining y with x and set go 3’(0); then

<go(g:Igo, x) :go(g-go, g:l(x))
x)

< r <go(ggo, x)
<go(gngo’ Y) 0 as n o.

Hence, g go - x as n oo and consequently gf
_

x as n o.

PROPOSITION 4.2. Let x 3’H(oo) where H ’. Then:
(i) The set of points (at infinity) to which x can be joined is the orbit

(ii) If y can be joined to x then the closure of the orbit G(y) is the set of
points at infinity that are G-dual to x. In particular, this set coincides with the
closure of the orbit G(3"H(-oo)).



FIXED POINTS OF ISOMETRIES 225

Proof. Let y 3’n(- o).
(i) It is clear that for any g G, g o3’H is a geodesic joining g(y) and x.

Conversely, if 3’ is a geodesic joining z to x and 3’(0) g, then 3’(t) g exp tH
(g(x) x) which means z 3’(-oo) g(3’n(-)).

(ii) Assume that z is G-dual to x and we will show that z G(y)- (the
closure of the orbit in M(o)). Let { gn} c G be such that gn z and
gn

_
x as n - oo. Then,

<e(gn, g,,(Y)) :.gz(e, y) < r <e(g; 1, y)

<e(g-1 ),x --->0 asn oo.

Hence, z lim_.oo g lim_.oo g(y).
Now (ii) follows from Lemma 4.1 since the set of points at infinity which are

G-dual to x is G-invariant and closed.
Now, we consider the limit sets L([G, G]) and L(A) of the subgroups

[G, G] and A exp(e) respectively. We observe first that L(A) coincides
with the set A(c)= (3’n(c): H a). It follows from Lemma 4.1 that if
x 3’n(c) is a fixed point of G then the only point of L(A) that can be
joined to x by a geodesic is 3’n(-o). In fact, if z 3’no(OO) can be joined to
x, since exp nHo ---> z as n oo, then exp(-nHo) --. x as n - oo and there-
fore Ho H.

In the special case x 3’n(oo) with a(H) > 0 whenever a + ifl is a root, no
point in L([G, G]) can be joined to x.

PROPOSITION 4.3. Let x 3’n(oo) be such that a(H) > 0 whenever a + ifl
is a root. Then:

(i) 3"i-i(- oo) q L([G, G]).
(ii) L([G, G])C G(3’n(-oo))= . In particular, there are no points of

L([G, Gl) which can be joined to x.

Proof. (i) Let T be the center of [G, G] (T #: { e ) since [G, G] is nilpo-
tent); it is dear that any element of T fixes all points of L([G, G]). Assume
that 3"i-i(-) L([G, G]). If g exp X, X ,p’ is an dement of T (g : e),
g(3"n(-oo)) 3"i-i(-oo) and g(3"n(oo)) 3’n(oo); it follows then from Propo-
sition 1.2 that X qg, contradicting the choice of H(g0n 0). Hence

(ii) This is an immediate consequence of (i) since L([G, G]) is invariant
under G.
We observe that as a consequence of (i), L([G, G]) n L(A) is contained in

the set { 3’H(OO)" a(H) > 0 for some root a + ifl }.
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Remark 4.4. If G satisfies the visibility axiom it follows from Proposition
4.3 (ii) that L([G, G]) contains a unique point x which is a fixed point of G.
(L([G, G]) is G-invariant). Let x yn(oo), H e’; then L(A)=
and by Proposition 4.2 (i), G(vn(-o))= M(o)- {Vn(oo)). Since all ele-
ments of [G, G] are parabolic (Corollary 3.9), it follows from Theorem 6.5 of
[6] that x is the unique fixed point of every g id in [G, G]. (Compare with [5,
Theorem 1.5].)

REFERENCES

1. R. AZENCOTT and E. WILSON, Homogeneous manifolds with negative curvature I, Trans. Amer.
Math. Soc., vol. 215 (1976), pp. 323-362.

2. Homogeneous manifolds with negative curvature H, Mem. Amer. Math. Soc., no. 178,
1976.

3. R.L. BISHOP and B. O’NEILL, Manifolds of negative curvature, Trans. Amer. Math. Soc., vol.
145 (1969), pp. 1-49.

4. S. CI-IEN and P. EBERLEIN, Isometry groups of simply connected manifolds of nonpositive
curvature, Illinois J. Math., vol. 24 (1980), pp. 73-103.

5. M.J. DRUETTA, Homogeneous Riemannian manifolds and the visibility axiom, Geom. Dedicata,
vol. 17 (1985), pp. 239-251.

6. P. EBERLEIN and B. O’NEILL, Visibility manifolds, Pacific J. Math., vol. 46 (1973), pp. 45-109.
7. P. EBERLEIN, Rigidity of Lattices of nonpositive curvature, J. Ergodic Theory and Dyn. Syst.,

vol. 3 (1983), pp. 47-85.
8. Surveys in geometry, Lecture Notes, Tokyo, 1985, preprint.
9. E. HEINTZE and H. IM HOF, Geometry of horospheres, J. Diff. Geometry, vol. 12 (1977), pp.

481-491.
10. S. I-IELGASON, Differential geometry and symmetric spaces, Academic Press, New York, 1982.
11. V.S. VARADARAJAN, Lie groups, Lie algebras and their representations, Prentice Hall, N.J.,

1974.

FAC. MATEITICA, ASTRONOMiA Y FiSICA
UNIVERSIDAD NACIONAL DE C6RDOBA
AVDAS. VALPARAISO Y R. MARTINEZ
CIUDAD UNIVERSITARIA

5000 C)DOBA, ARGENTINA


