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FIXED POINTS OF ISOMETRIES AT INFINITY IN
HOMOGENEOUS SPACES

BY
MARIA J. DRUETTA!

Introduction

Let M be a simply connected homogeneous riemannian manifold of non-
positive curvature. Since M admits a simply transitive and solvable Lie group
G of isometries, it can be represented as the Lie group G endowed with a left
invariant metric of nonpositive curvature. If g is the Lie algebra of G then
# =g, #]1 ® a where a, the orthogonal complement of [4, ] in g with
respect to the metric, is an abelian subalgebra of g.

In this paper, we describe the set of fixed points of G at infinity and we
classify all isometries defined by elements of G when M has no de Rham flat
factor; more precisely, we show that the elements of [G, G] are parabolic and
the hyperbolic elements of G are those conjugate to exp(z).

In Section 1, we study the action of right invariant vector fields on the
geodesics y,(t) = exptZ with Z € a. All stable Jacobi fields on y, are
determined on certain regular elements Z of &z (Corollary 1.3). Section 2 is
devoted to describe, for each Z in &, the subgroups of G that fix y,(o0)
(Corollary 2.6). In the third section, the set of fixed points of G at infinity is
described (Theorem 3.4) and all isometries coming from left translations by
elements of G are classified (Corollaries 3.7 and 3.9). In particular, if M is not
a visibility manifold and I(M) (or I(M)) has a fixed point at infinity (for
instance if M is not symmetric) this point is necessarily a flat point at infinity
(Corollary 3.5).

Finally, in Section 4 we summarize some results about the points at infinity
that can be joined by a geodesic to a fixed point of G.

Preliminaries

Let M denote a complete and simply connected riemannian manifold of
nonpositive curvature (K < 0). All geodesics in M are assumed to have unit
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FIXED POINTS OF ISOMETRIES 211

speed and the distance induced by the riemannian metric is denoted by
d( , ). M(o0) will denote the set of points at infinity, that is the set of
asymptote classes of geodesics. The space M = M U M(o0) together with the
cone topology is a compactification of M that is homeomorphic to the closed
ball of dimension n = dimension M. The angle at p € M subtended by g and
r in M is defined by «,(q, r) = <,(7,,00), v,,(0)) where y,, denotes the
unique geodesic in M joining p with gq. I(M) and I,(M) will denote the
isometry group of M and the connected component of the identity respec-
tively. Both are Lie groups with the compact open topology. Isometries of M
extend to homeomorphisms of M by defining ¢(y(o0)) = (¢ ° y)(0) for any
isometry ¢ and any point y(c0) in M(c0). Any subgroup D of I(M)
determines a limit set L(D), which is the set of points in M(o0) that are
cluster points of an orbit D(p). The definition of L(D) does not depend on
the choice of the point p in M and L(D) is nonempty if and only if D is
noncompact in I(M).

A Jacobi vector field J on a geodesic y of M is said to be stable (unstable)
if there exists a constant ¢ > 0 such that |J(z)| < ¢ for all 1 > 0 (all # < 0).

We recall the following known fact under the hypothesis K < 0. If y is a
geodesic in M then for every v € T, ,, M there is a unique stable Jacobi vector
field J on y such that J(0) = v (See [9, Lemma 2.2]). Moreover, if J is an
unstable vector field on v, since |J()| is a convex function of ¢ € R it then
follows that lim, , , |J(¢)| = oo, if |J(¢)] is nonconstant.

Assume that M = G is a solvable Lie group with a left invariant metric
( , ) of nonpositive curvature and let g be the Lie algebra of G. We recall
that if X, Y, Z € 4 then the riemannian connection V is given by

2wy, Z2) =([X,Y],Z) - ([Y, Z], X) + ([ Z, X],Y)

and the sectional curvature K reduces to

|X A Y’K(X,Y) =(R(X,Y)Y, X)

= 4(ad)*Y + (ady)*X|" = {(ad )*X, (ady)*Y)
2
—%<[[Y’ X]a X]’ Y>

where R(X, Y) =[Vy,Vy] — V|x y; and * denotes the adjoint with respect
to the metric.

Since g’ = [ g, #] is an ideal of g, a is a totally geodesic subalgebra of g
(that is VY € & whenever X, Y € 2) and the connected Lie subgroup 4 with
Lie algebra 2 is a flat totally geodesic submanifold of G. Observe that
A = exp(a) where exp: g — G is the exponential map of G.

We recall that since G is simply connected, G can be represented by
G =[G, Glexp(=) with [G, G] N exp(2) = {e} (e is the identity of G) where
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[G, G] is the connected (and closed) Lie subgroup of G with Lie algebra
[#, #]. Moreover, since [G, G] is nilpotent and simply connected, the map exp:
[#, #] = [G, G] is a diffeomorphism (See [11, Chap. 3]).

We note that in general, in a Lie group G if for any g€ G, L, and R
denote the left and right translations respectively and I, = L, ° R -1, then the
adjoint representation of G defined by Ad(g) = (dl,), satisfies I (exp X) =
exp(Ad(g)X) and Ad(exp X) = Exp(ady) for every X in g, where Exp
denote the exponential map in Gl(¢) and ad, the adjoint map of g.

For details and references in the subject the reader is referred to [1], [4], [6],
[8].

In the sequel G will be a solvable and simply connected Lie group with a
left invariant metric of nonpositive curvature. The complexification of ¢, ;'C,
decomposes as 5’ = L, 1€, where

#€= {UE;’C: (ady; — A(H)I)*U = 0 for some k > landforallHEa}

is the associated root space for the root A € (2*)€ under the abelian action of
aon g If A =aztifisarootof 2 in g

2w =gp=9 0 (5 ®4)

is the generalized root space of @ in g’ and ' = ¥, _, . ;p95s-
We assume that G has no de Rham flat factor; hence the factors

=Y 46g» ao={H €a: a(H) =0 for all roots a + i}
iB

are zero and g’ = ¥, g.g- (For a proof see [2, Theorem 4.6]).

1. Right invariant vector fields on G

If X isin g then X will denote the right invariant vector field on G such
that X X, that is X = (dR,) X for all g € G. Since the one-parameter
flow assocnated to X is glven by ¢,(g) = exp ng (s € R) it follows that X is
a Killing vector field on G and consequently X is a Jacobi vector field on any
geodesic of G. We note the following.

@) |X,| = |(dL,), (Ad(g'l))Xl |Ad(g~") X| for all g € G.

(ii) |Xexp sXg| = |Xg| forall s€ R, g€ G.

(i) If y is a geodesic in G with y(0) = e, y'(0) = Z then X, v(n) 18 @ Jacobi
field on y such that

~

X=X (v,X)0)=vyz
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In fact, if Z denotes the left invariant vector field associated to Z, (v, X)0)
= (v,X), = VyZ since [Z, X], = 0.

() (X, v'(1)) = (X, Z) forallteR((v, X, v)=0).

Now we fix H in @, H # 0. For each X € g, X not a multiple of H JX
will denote the Jacobi vector field on v, (¢) = exp tH defined by J*(¢) = X,y
Then, from the remark above, J¥ satisfies:

i JX0) =
() (v,,J*)0) = —DyX where Dy is the symmetric part of ad .

Note that Vu = Sy, the skew symmetric part of ad ;.

(i) |[JX(t)| = |Ad(exp — tH)X| = |Exp(—tad ) X]|.

@) (JX(@), v4(1)) =(X, H) for all t € R.

We have the decomposition

7 =95 05701
where

0= X g 7= XL g 7= L s
a(H)=0 a(H)>0 a(H)<0

We next study the behavior of JX along v,,. For that, the following lemma
is very useful.

Lemma 1.1. (i) If a(H) =0 and X € g4 then lim, _, , . Exp(—tady) X
exists if and only if B(H) = 0 (in which case ad #lg, = 0
(i) If a(H) > 0O then

lim Exp(—tady)X =0 forall X € gl,.

t— + o0

(i) If a(H) < 0 then
lim |Exp(—tady,)X|= ( lim Exp(zady)X = 0) forall X € 4lp.
t— +o00 t— +o0

Proof. (1) If X€g.p then U= X+ iY €2:¢ (A =a +iB) for some
Y ey Since a(H) = 0, ad ;| .c = iB(H)I and ad ; must be skew symmetric
on g, by Lemma 4.4 and Theorem 5.2 of [1]. Then,

Exp(—tady)|c = e P
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and
Exp(—tady)X = (costB(H)) X + (sinzB(H))Y.

Therefore, lim, _, , Exp(—tad)X exists in G if and only if B(H) =0, in
which case ady|,, = 0 and Exp(—tady)X = X for all t € R.

(i) From the definition of 4i€, N = (ad, — A(H)I)| ¢ is a nilpotent
operator on g4C. Then

adylyc=A(H)I+N and Exp(—tady)|,.c=e " Exp(-iN).

Since |e~UD| = 1 it follows that

lim Exp(—tady)
t— + o0

=0
75¢
if and only if

lim e " Exp(—tN) =0 in g¢(g5C).

t— + o0
We compute this limit in each coordinate (ij). Since N is nilpotent,
s . ¢k .
Exp(—tN) = ) (-1) HNk (N**1 =0)
k=0
and
- k tk k s
Exp(—N);; = kZO(—l) 7T (N )i = pi(1)

is a polynomial in ¢ of degree s > 0. Then

lim e_’“(”)(Exp(—tN))ij = lim e”""(H)pfj(t) =0
t— +o00 t— + o0
since a(H) > 0.
Hence, lim, _, , , Exp(—tad4)U = 0 for all U € 4}C such that A = a + i
is a root and consequently,

lim Exp(—rady)X =0 forall X € g/,.

t— + o0

(i) We will show that lim,_, , . |Exp(—?ad4)U| = oo for any U € g4¢
such that A = a + iB and a(H) < 0; here we consider in g{C the complex
inner product inherited from ( , ) in g. If {e,,..., e, } is an orthonormal
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basis of ¢4€ and U = L u,e, then
) 2
L
Since

Exp(—tad,) = e "« itBH) Exp(—tN),

as in (ii), we have

Y2 Exp(—tady),u,
J

e_m(H)EPfj(t)“j
J

= =g (1)

where g;;(t) = ¥;p;;(¢)u; is a polynomial in ¢ of degree s > 0. Since

lim e~ 0Pqi,(1)| -

t— +o0

it follows that
lim |Exp(—rady)X|= o0 forall Xin gls.
t— +o0

The fact that lim, _, , . Exp(¢ ad ;) X = 0 follows from (ii) since a(—H) > 0.

We observe that the proof of (ii) and (iii) does not depend on the fact that
K<0.

Let J(vyg) denote the 2n-dimensional space of Jacobi vector fields on yy.
The subspaces of J(yy) of parallel, stable and unstable vector fields on vy
will be denoted by J¥(vg), J5(vy) and JY(yy) respectively.

PROPOSITION 1.2. The map J: g = J(vy), X = J* is an injective linear
map satisfying:
i) J(gy ®a)c ).
i) J(g) C IS and lim, . , olJ¥(0)| = 0 for X € 5
(i) J(gH) c JU and lim,_, , |J*(2)| = ooforXGf
Asa consequence ! JX is stable on Yg if and only if X € g ® g7 ® a.

Proof. Since any Jacobi field on vy, is completely determined by J(0) and
V,;J(0) = —DgX, it follows that J is a linear map.

(1) We observe first that since o is abelian, if X € 2, JX(1) = X un
where X, the left invariant field associated to X, is a parallel field on
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Yu(VgX = 0).
If a(H) =0 then adH|,;,, is skew-symmetric (ad | = iB(H)I if A =
a + if); hence Exp(—tady)| s is orthogonal, and for any X € g/, we have

|7X(¢)| =|Exp(—tady) X| = |X| forallt<R.

Then

d2 X 2 X, 2 ’ X\ X
0= Zﬁ“ (O =2|v,,7%@) | + 2R (v, 7¥) v T)(2)
and therefore J ¥ is parallel on yy. If X € 4§ then X =X, m)y=0Xqg and

JX= Y JXe
o(H)=0

is parallel on vg.
Now, (ii) and (iii) are immediate from Lemma 1.1, (ii) and (iii) respectively.
The last assertion is clear since J( g @ g7 ® 2) N J(g¥) = 0.

COROLLARY 1.3. If H € & satisfies a(H) > 0 whenever a + if is a root
and a # 0, then J(g) = J5(vy).
(Such an H exists by [1, Proposition 5.6].)

Proof. Since g’ = 4¥ it follows from Proposition 1.2 that J(g) C J5(vg).
Conversely, the fact that there exists a unique stable Jacobi field J on yg, with
the initial condition J(0) implies that J = J’© and the assertion follows.

2. Subgroups of G fixing vy (c0)

Let x be a point at infinity and G, = {g € G: g(x) = x}. Since the action
of G at infinity is continuous, G, is a closed Lie subgroup of G with Lie
algebra g, = { X € g: expsX(x) = x for all s € R}.

We want to determine g, and G, when x = yy(o0) for all H € 4. First we
give some preliminaries.

Lemma 2.1, If lim,_, ,  exp(—tH)gexp tH exists in G, then g fixes vy (o0).
(See [8, Proposition 2.17.3]).

Proof. Suppose that g, = lim,_, ,  exp(—tH)gexp tH; then

d(gexptH,exptH) = d(exp(—tH)gexptH,e) — d(g,,e) ast— +co.
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Hence the geodesics y;, and g ° vy, are asymptotic, which means that g fixes
Yr(00). )
The converse is valid in some cases as we will see later (Proposition 2.4).

LEMMA 2.2. Let g € G besuch that g = exp Xexp Hywhere X € ¢/, H, € a.
Then

lim exp(—tH)gexptH
t— + o0
exists in G if and only if
lim Ad(exp(—tH))X = lim Exp(—tady)X
t— +o0 t— +00
exists in g'.
Proof. We recall that Ad(exp(—tH))X = Exp(—t ad ;) X. Since
exp(—tH)gexptH = (exp(—tH )exp X exp tH )exp H,,
lim, , , exp(—tH)gexp tH exists in G if and only if
lim exp(—tH )exp XexptH
t— + o0
exists in G. We know that
exp(—tH )exp Xexp tH = I, _ s, (exp X) = exp(Ad(exp(—tH)) X)
and exp: ¢’ — [G, G] is a diffeomorphism, so the lemma follows since

Ad(exp(—tH))X = Exp(—tad4z)X and X ey

PROPOSITION 2.3. Let X € g. If J¥ is a stable field on vy then

exp sX(yy(0)) = y4(0) foralls € R.

Conversely, if X € g’ satisfies exp X(yy(0)) = Yg(0) then J X is stable on vy.
Hence exp sX(yg(00)) = yy(o0) for all s € R.

Proof. Assume that JX is stable. If a(s, t) = exp sXexp tH then the first
assertion follows since,

d(exp sXexptH,exptH) < f'sl -g%a(u,t)
0

sl
du = fo 1 X s ]

= [ Repil du = 11| 7X(1)| forall s € R,
0
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Conversely, if exp X(yg(0)) = vy (o) then d(exp(—tH)exp Xexp tH, e) <
¢ for some ¢ > 0 and any ¢ > 0. By [10, Theorem 2.2, Ch. II}, there exists a
subsequence {n,} C N and an element g, € [G, G] so that

8n, = exp(—n, H)exp Xexpn, H - g, ask > 0.

Since g, = exp(Ad(exp(—n,H))X) and exp: g — [G,G] is a diffeomor-
phism it follows that

| 7X(n,)| =|Ad(exp(—n H))X| > |Z| ask > 0 if g =expZ, ZE 4.

Then, the convex function |J*(¢)| is bounded above for ¢ > 0 and JX is
stable on yg.

PROPOSITION 2.4. Suppose H € a satisfies one of the following conditions:
(1) a(H) # 0 whenever a + if is a root.
(2) «(H) = 0 implies B(H) = 0 whenever a + if is a root.

Then,lim, _, , exp(—tH)gexp tH exists in G if and only if g(y5(0)) = v5(o0).
In the particular case when all roots are real the last assertion holds.

Proof. Assume that g(yy(o0)) = y4(00) where g = exp Xexp H, with X
€ g, H, € a. Since exp Hy(vy(0)) = v54(o0) then exp X(yg(o0)) = vu(oo)
and consequently J* is stable on y,. Hence X = X, + X; where X, € ¥,
X, € g7 and Exp(—tady)X = Exp(—tady)X, + Exp(—t ad;)X,. By
Lemma 1.1,

lim Exp(—tad,)X, =0

t— +o00
and therefore

lim Exp(—tady)X

t— + o0
exists in g’ if and only if

lim Exp(—tady)X,
t—> + o0

exists in g'.
If a(H) # 0 for all roots a + iB then g{ = 0 and consequently X, = 0.
If a(H) = 0 for some root a + if3, then B(H) = 0 and by Lemma 1.1,
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In both cases lim, _, , . Exp(—¢ ad ;) X exists and from Lemma 2.2,

lim exp(—tH )exp Xexp tH
t— + o0

exists in G; since exp Hyexp tH = exp tHexp H, (2 is abelian) the assertion
follows. Lemma 2.1 completes the proof.
Next, we describe g, and G, when x = yy(o0).

PROPOSITION 2.5. If y4(t) = exptH (H € a) and x = yy(0) then

Fx =y€1 @yf% a.
Proof. If H, € a, since & is abelian,

d(exp sHyexp tH,exp tH) = d(exp(—tH )exp sHyexp tH, e)
= d(exp sH,, e).

Hence exp sHy(x) = x for all s € R.

If X € g ® g7 then J¥ is stable on vy, (Proposition 1.2) and by Proposi-
tion 2.3, exp sX(x) = x for all s € R.

For the converse, let X € 4, and write X = X; + X, + Hywith X, € g{ &
27, X, €4” and H; € a. By the work above, X, + Hy € g, and hence
X, = X — (X, + H,) € g,. By Proposition 2.3, J¥ is stable on v, and so
X, =0.Hence X € 4 ® 47 ® a.

COROLLARY 2.6. For each H € a, if x = yg(o0) then
() [G,Gl, = exp(g§ @ g)

and
(i) G, =[G,G], - exp(a).

Proof. (i) It is obvious from Proposition 2.5 that exp(gd @ g7) c
[G, G],. For the converse, from Proposition 2.3, if exp X fixes x (X € »’) then
JX is stable on yy and so X € g @ g% (Proposition 1.2). Then (i) follows
since [G, G] = exp(g').

(ii)) This is immediate from (i), since G = [G, Glexp(2) and exp(z) fixes x.

The following results, which is a consequence of Proposition 2.5, allows us
to describe the set of fixed points of G at infinity; this description will be
completed in section 3 (Theorem 3.4).

PROPOSITION 2.7. If H € a then G(yg(0)) = yg(o0) if and only if a(H)
> 0 whenever o + if is a root of a.
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Proof. Let x = yy(o0). Note that G(x) = x if and only if G = G,. Since
G, is a closed Lie subgroup of G, the last assertion is equivalent to ¢ = ¢, or
# =28 @ g% But this occurs if and only if g¥= 0 which is equivalent to
a(H) = 0 for all roots a + if.

3. Fixed points of G at infinity

Let o’ = {H € a: a(H) > 0 whenever a + if is a root}. In this section we
describe the fixed points of G at infinity as the set of y,(o0) with H € &’. Our
starting point is the following lemma which is very useful for such a descrip-
tion; its proof is in [7, Lemma 5.4.a).

LEMMA 3.1. Let vy be a geodesic in M and z # y (£ 00) in M(o0) such that

Ly (¥(0),2) = B foreveryt € R.

Then v is the boundary of a flat half plane that contains all rays joining y(t)

with z.
That is, there exists an isometric totally geodesic imbedding

F:RX[0,00) > M
with F(t,0) = y(¢) for all t € R. In our case, F is defined by
F(s,t) = exp,,(sZ(1))
where Z(t) is the initial speed of the ray joining y(t) with z.

PROPOSITION 3.2. Let y be a geodesic in G with y(0) = e. If H € a is such
that exp sH fixes x = ¥(o0) for all s € R then [H,vy'(0)] = 0 and H, the right
invariant field on G with H, = H, is parallel on Y| .

Proof. Since a is abelian we may assume X = y’(0) & «. We will show first
that y,(s) = exp sH (|H| = 1) is the boundary of a flat half plane containing
the rays joining exp sH with x.

Let a(s, t) = exp sHy(t) the geodesic variation of y(#) whose variational
field on v is H, . We observe that the geodesics

a,() = exp sHy(t)
satisfy

a,(0) = expsH, a,(0) =expsH(x) =x
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and

a;(O) = %(LexpsHY(t))lt_O = (dLexpsH)eX'

Then

{'YH(S)(‘YH(w)’ x) = <texp.\’H((dLexpsH)el'{’(dLexp.s‘H)e’Y) = <):e(}I’ X)

and from Lemma 3.1, y; is the boundary of the flat half plane P determined
by a(s, t) for s € R, t > 0. Hence

da
XexpsH = -8?(390)5

the left invariant field restricted to vy, is parallel on v, and then Sy X = v, X
= 0. Now, since K(H, X) = |S;X|? — |[H, X]|* = 0, it follows that [H, X]
= 0.

Next, we will see that Hy(,) is parallel on y for ¢ > 0. In fact, since

R(ﬁy(t),Y'(t))Y'(t) =0 forallt>0

(P is flat and H y € T,(nP) and H, ) is a Jacobi field on v it follows that
vy H(t) is parallel on y for all t > 0 Then,

|v, H(t)| =|v,H(0)| forallt>0

and from the fact that v, H(0) = v, X =0 (see (iii) at the beginning of
Section 1) we have v, H (t) = 0 for all + > 0 and the last assertion follows.

CoroLLARY 3.3. If H, is a regular element of a (that is, ady|,
non-singular) then {exp sH,}, g does not have fixed points at infinity dtstmct
from vy (00) with H € a.

Proof. Assume exp sHy(x) = x for all s € R and let y be the geodesic in
G with y(0) = e, y(0) = x. Let y'(0) = X = X, + H,, where X, € ¢’ and
H, € a. By Proposition 3.2, 0 = ad,(X) = ady(X;), which implies that
X, =0and X=H, €z by the regufarity of H,. Since exp(z) is totally
geodesic in G it follows that y(¢) = exp tH; and x = yg(c0).

THEOREM 3.4. Let G be a solvable and simply connected Lie group with a left
invariant metric of nonpositive curvature without de Rham flat factor. Then the
fixed points of G at infinity are vy, (o) with H € a'.
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Proof. Assume that G(x) = x and let H, be a regular element of & (such
an H, exists since G has no flat factor). Since exp sH,(x) = x for all s € R, it
follows from Corollary 3.3 and Proposition 2.7 that x = yy(c0) for some
H € a satisfying a( H) > 0 for all roots a + i. By Proposition 2.7, Theorem
3.4 holds.

COROLLARY 3.5. Let M be a simply connected homogeneous space of non-
positive curvature that has no de Rham flat factor. If (M) (1,(M)) has a fixed
point x in M(o0) then x is a flat point, provided that M is not a visibility
manifold.

We recall that x is a flat point (at infinity) if every geodesic y belonging to
x is the boundary of a flat half plane. (See [4, Section 3].)

Proof. We note that M is isometric to a solvable Lie group G with a left
invariant metric, where G is a closed connected Lie subgroup of I(M). Since
M does not satisfy the visibility axiom then g = [g, ] ® « where dim & > 2
(see [5, Theorems 2.4 and 3.1]) and therefore the fixed points of G at infinity
given by Theorem 3.4 are flat points: if x = yg(00), H € 2’ then goyy is
asymptotic to yy through g € G.

Since a fixed point of I(M) (I,(M)) corresponds to a fixed point of G at
infinity, the corollary follows immediately.

We note that if M is not symmetric then I(M) has a fixed point in M(o0)
(see [8, Remark 1.9.18)).

THEOREM 3.6. If G has no flat de Rham factor and g € G translates a
geodesic y with y(0) = e, then y(t) = exp tH and g = exp t,H for some H € a,
t, € R

In particular, the only one-parameter subgroups of G which are geodesics are
Yg(t) = exptH with H € a.

Proof. Let ty > 0 be such that gy(¢) = y(¢ + t,) for all ¢t € R. Since G
has no flat factor, we can choose H € 2z such that a(H) > 0 for all roots
A = a + i (such an H exists by Proposition 5.6 of [1]).

If x = y4(o0) we may assume x # y(+ o0) (otherwise there is nothing to
prove); so G(x) = x and from the fact, g(y(o0)) = y(o0) we have

":y(z)(x’ Y(°°)) = (g"y(t)(gn(x)’ g"(y(oo))) = <':y(t+nc)(xa Y(°°))

for any 1 € R and n € N. Since the function ¢ - «_,(x, Y(0)) is nonde-
creasing, it converges to some number 8 > 0 as n — oo. Hence, for every
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t € R,
<[-y(t)(x’ ‘Y(OO)) = nlin:o{y(t+nc)(x’ Y(OO)) = B'

Then, Lemma 3.1 implies that y is the boundary of a flat half plane P which is
determined by a(s, t) = y(t)exp sH for s > 0 and ¢ € R («,(0) = v(2), a,(0)
= X).

We compute

%a(s’ t)|‘_0 = (dRexpsH)e : Y,(O) = JX(S)

if X =v(0). Then R(J*(s), Y/ (5s))Y4(s) =0 for s > 0 and since J¥ is a
Jacobi field on vy, v,, J¥ is parallel on vy, ,; therefore J*(s) is parallel for
s > 0 (J¥ is stable on v, by Corollary 1.3). By writing X = X; + H, with
X, € ¢’ and H; € o, we have

JH(s) =JTX(s) — JHo(s)

which is parallel for s > 0. Since lim, _, |, |J%(s)| = 0it follows that X = H,;
consequently, y(¢) = exp tH, and g = exp t,H, since g = gv(0) = v(,).

The last assertion is immediate since if y(z) = exptX is a geodesic then
exp X translates 7y.

COROLLARY 3.7. The axial (hyperbolic) elements of G are those which are
conjugate to elements in exp(a).

Proof. If g€ G translates a geodesic y with y(0) = g, then g;'gg,
translates the geodesic a(?) = gy 'y(¢) with a(0) = e. By Theorem 3.6,

a(t) =exptH and g;'gg, = expt H

for some H € a, t,> 0. Then g = gy(exptoH)g,' which is conjugate to
exp toH € exp(a).
Clearly, if g = goexp Hg, ! (H € ) then g translates y(¢) = g, exp tH.

Remark 3.8. We recall that g (or L,) is hyperbolic (parabolic) if the
function d, (h — d(h, gh)) assumes (does not assume) the infimum. It is clear
that if d, assumes the minimum at g, then g translates the geodesic joining
8o with gg, in G. Conversely, if g translates a geodesic y then d, assumes the
infimum on each point of y (see [3, Proposition 4.2]).
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COROLLARY 3.9. The elements of [G, G] different from the identity are all
parabolic. Moreover, the parabolic elements of G are those which are not
conjugate to an element of exp(z).

Proof. Let g+ e be in [G,G]. If g is hyperbolic then g translates a
geodesic y with y(0) = g,; hence g = g,exp Hg;' for some H € 2 and
therefore g; 'gg, = exp H. Since [G, G] is normal in G and [G, G] N exp(a) =
{e}, we have a contradiction and consequently g is parabolic. From the fact
that any g # e in G is either hyperbolic or parabolic (Remark 3.8) the
corollary follows.

4. Joining points at infinity

In this section we summarize some results about the points at infinity which
can be joined to a fixed point of G. We recall that two points x # y in M(0)
can be joined (by a geodesic of M) if there exists a geodesic y of M with
v(0) = x and y(—o0) = y. If M is a visibility manifold, any two distinct
points in M(o0) can be joined. Two points x, y in M(c0) are said to be G-dual
if there exists a sequence { g,} C G such that g,(p) = x and g, }(p) = y as
n — oo for some p in M.

Let M = G be a solvable Lie group with a left invariant metric of non-posi-
tive curvature.

LEMMA 4.1. Let x be a fixed point of G at infinity. If y can be joined to x
then g;' = x as n — o for every sequence {g,} C G such that g, >y as
n — oo. In particular, if y can be joined to x then y is G-dual to x.

Proof. Let y be a geodesic joining y with x and set g, = y(0); then

< go( 8780, X) = %487 %0, 8 (%))
= <':z,',.;.i,'o(g()’ x)
=7- <’:go(gng09 x)

= %, (8,80, ) 20 asn— co.
Hence, gt d ly gt
, 8. '8, = x as n > oo and consequently g;! — x as n - 0.

PROPOSITION 4.2. Let x = yy(o0) where H € a’. Then:

(i) The set of points (at infinity) to which x can be joined is the orbit
G(Yp(— ).

(ii) If y can be joined to x then the closure of the orbit G(y) is the set of
points at infinity that are G-dual to x. In particular, this set coincides with the
closure of the orbit G(yg(— )).
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Proof. Let y = yy(— o0).

(i) It is clear that for any g € G, go vy is a geodesic joining g(y) and x.
Conversely, if vy is a geodesic joining z to x and y(0) = g, then y(¢) = gexp tH
(g(x) = x) which means z = y(— ) = g(yp(— )).

(ii) Assume that z is G-dual to x and we will show that z € G(y)~ (the
closure of the orbit in M(0)). Let {g,} € G be such that g, » z and
g, = x as n > 0. Then,

<.(80 8(¥)) = €,-(e, y) <7 — x (g% y)

=<e(g,,‘1,x)—>O asn — .

Hence’ z= limn—boo &n = 1iInn—»oo gn(y)

Now (ii) follows from Lemma 4.1 since the set of points at infinity which are
G-dual to x is G-invariant and closed.

Now, we consider the limit sets L([G,G]) and L(A) of the subgroups
[G,G] and A4 = exp(a) respectively. We observe first that L(A) coincides
with the set A(o0) = {y4(0): H € a}. It follows from Lemma 4.1 that if
x = yy(o0) is a fixed point of G then the only point of L(A4) that can be
joined to x by a geodesic is yy(— o). In fact, if z = yy (00) can be joined to
x, since exp nHy — z as n — oo, then exp(—nH,) = x as n = oo and there-
fore Hy= —H.

In the special case x = y4(00) with a( H) > 0 whenever a + if is a root, no
point in L([G, G]) can be joined to x.

PROPOSITION 4.3. Let x = yy(00) be such that a(H) > O whenever a + if8
is a root. Then:

(1) vg(=o0) & L(G, G).

(i) L(G,G) N G(yg(— o)) = B. In particular, there are no points of
LG, G)) which can be joined to x.

Proof. (i) Let T be the center of [G, G] (T # {e} since [G, G] is nilpo-
tent); it is clear that any element of T fixes all points of L([G, G]). Assume
that y,(— o) € L(IG,G]). If g =exp X, X € ¢’ is an element of T (g # e),
8(vg(— 0)) = vg(— ) and g(yy(0)) = yy(o0); it follows then from Propo-
sition 1.2 that X € g¥, contradicting the choice of H(g{' = 0). Hence

Yu(—o0) & L([G, G]).

(i) This is an immediate consequence of (i) since L([G, G]) is invariant
under G.

We observe that as a consequence of (i), L({G, G]) N L(A) is contained in
the set {y4(00): a(H) = 0 for some root a + i }.
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Remark 4.4. If G satisfies the visibility axiom it follows from Proposition
4.3 (ii) that L([G, G]) contains a unique point x which is a fixed point of G.
(L(G, G)) is G-invariant). Let x = yg4(00), H € a’; then L(A) = y5(+ )
and by Proposition 4.2 (i), G(v5(—0)) = M(0) — {y4(c0)}. Since all ele-
ments of [G, G] are parabolic (Corollary 3.9), it follows from Theorem 6.5 of
[6] that x is the unique fixed point of every g # id in [G, G]. (Compare with [5,
Theorem 1.5].)
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